Neutrino emissivity of the nucleon direct URCA process for rotational traditional and hyperonic neutron stars

  • Based on covariant density functional theory, we study the effects of rotation on the nucleon direct URCA (N-DURCA) process for traditional and hyperonic neutron stars. The calculated results indicate that, for a fixed mass sequence of rotational traditional neutron stars, the neutrino emissivity of the star is nearly invariant with increasing frequency, while it always increases for rotational hyperonic neutron stars. Thus, rotation has different effects on the N-DURCA process for these two kinds of neutron stars.
      PCAS:
  • 加载中
  • [1] S. L. Shapiro, S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (New York: A Wiley-Interscience Publication, 1983)
    [2] J. M. Lattimer, C. J. Pethick, M. Prakash, and P. Haensel, Phys. Rev. Lett., 66: 21 (1991)
    [3] D. G. Yakovlev, O. Y. Gnedin, A. D. Kaminker, and A. Y. Potekhin, AIP Conf. Proc., 983: 379 (2008)
    [4] D. Page, U. Geppert, and F. Weber, Nucl. Phys. A, 777: 497 (2006)
    [5] D. G. Yakovlev, A. D. Kaminkera, O. Y. Gnedinc, and P. Haenseld, Physics Reports, 354: 1 (2001)
    [6] N. K. Glendenning, Astrophys. J., 293: 470 (1985)
    [7] W. B. Ding, Z. Yu, and Y. H. Liu, Chin. Phys. Lett., 28: 072601 (2011)
    [8] Y. Xu, G. Z. Liu, Y. R. Wu, M. F. Zhu, Z. Yu, H. Y. Wang, and E. G. Zhao, Chin. Phys. Lett., 28: 079701 (2011)
    [9] Y. Xu, G. Z. Liu, C. Z. Liu, C. B. Fan, H. Y. Wang, M. F. Zhu, and E. G. Zhao, Chin. Phys. Lett., 30: 129501 (2013)
    [10] Y. Xu, G. Z. Liu, C. Z. Liu, C. B. Fan, X. W. Han, X. J. Zhang, H. Y. Wang, M. F. Zhu, and Y. Meng, Chin. Sci. Bull., 59: 273 (2014)
    [11] Y. Xu, X. L. Huang, X. J. Zhang, T. Bao, L. Xiao, C. B. Fan, and C. Z, Liu, arXiv:1509.05150v4 (2016)
    [12] M. Prakash, M. Prakash, J. M. Lattimer, and C. J. Pethick, Astrophys. J.,390: L77 (1992)
    [13] C. Schaab, S. Balberg, and J. Schaffner-Bielich, Astrophys. J.,504: L99 (1998)
    [14] D. Page, M. Prakash, J. M. Lattimer, and A. Steiner, Phys. Rev. Lett.,85: 2048 (2000)
    [15] I. Vidana and L. Tolos, Phys. Rev. C,70: 028802 (2004)
    [16] P. G. Krastev, B. A. Li, and A. Worley, Astrophys. J., 676: 1170 (2008)
    [17] R. Negreiros, S. Schramm, and F. Weber, Astron. Nachr., 335: 703 (2014)
    [18] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys., 57: 470 (2006)
    [19] P. Ring, Prog. Part. Nucl. Phys., 37: 193 (1996)
    [20] S. F. Ban, J. Li, S. Q. Zhang, H. Y. Jia, J. P. Sang, and J. Meng, Phys. Rev. C, 69: 045805 (2004)
    [21] N. B. Zhang, B. Qi, S. Y. Wang, S. L. Ge, and B. Y. Sun, Int. Jou. Mod. Phys. E, 22: 1350085 (2013)
    [22] C. Y. Ryua, M. K. Cheouna, T. Kajinob, T. Maruyamad, and G. J. Mathewse, Astroparticle Physics, 38: 25 (2012)
    [23] T. Miyatsu, S. Yamamuro, and K. Nakazato, Astrophys. J., 774: 4 (2013)
    [24] J. N. Hu, A. Li, H. Toki, and W. Zuo, Phys. Rev. C, 89: 025802 (2014)
    [25] H. Fujii, T. Maruyama, T. Muto, and T. Tatsumi, Nucl. Phys. A, 597: 645 (1996)
    [26] N. K. Glendenning, and J. Schaffner-Bielich, Phys. Rev. Lett., 81: 4564 (1998)
    [27] W. Z. Jiang, B. A. Li, and L. W. Chen, Astrophys. J., 756: 56 (2012)
    [28] D. B. Kaplan, and A. E. Nelson, Phys. Lett. B, 175: 57 (1986)
    [29] B. Y. Sun, W. H. Long, J. Meng, and U. Lombardo, Phys. Rev. C, 78: 065805 (2008)
    [30] S. Wang, H. F. Zhang, and J. M. Dong, Phys. Rev. C, 90: 055801 (2014)
    [31] B. Qi, N. B. Zhang, S. Y. Wang, and B. Y. Sun, Chin. Phys. Lett., 32: 112101 (2015)
    [32] B. Qi, N. B. Zhang, B. Y. Sun, S. Y. Wang, and J. H. Gao, RAA, 16: 60 (2016)
    [33] T. Miyatsu, M. K. Cheoun, and K. Saito, Phys. Rev. C, 88: 015802 (2013)
    [34] P. A. M. Guichon, Phys. Lett. B, 200: 235 (1988)
    [35] K. Saito, and A. W. Thomas, Phys. Lett. B, 327: 9 (1994)
    [36] P. A. M. Guichon, A. W. Thomas, and K. Tsushima, Nucl. Phys. A, 814: 66 (2008)
    [37] T. Miyatsu, and K. Saito, PThPh, 122: 1035 (2010)
    [38] S. Nagai, T. Miyatsu, K. Saito, and K. Tsushima, Phys. Lett. B, 666: 239 (2008)
    [39] N. K. Glendenning, Compact Stars, Nuclear Physics, ParticlePhysics and General Relativity, 2nd ed. (Springer-Verlag, New York, 2000)
    [40] W. H. Long, J. Meng, N. Van Giai, and S. G. Zhou, Phys. Rev. C, 69: 034319 (2004)
    [41] Y. Sugahara, and H. Toki, Prog. Theor. Phys., 92: 803 (1994)
    [42] S. A. Moszkowski, Phys. Rev. D, 9: 1613 (1974)
    [43] J. W. Negele, and D. Vautherin, Nucl. Phys. A, 207: 298 (1973)
    [44] G. Baym, C. Pethick, and D. Sutherland, Astrophys. J., 170: 299 (1971)
    [45] J. Rikovska-Stone, G P. A. M. uichon, H. H. Matevosyan, and A. W. Thomas, Nucl. Phys. A, 792: 341 (2007)
    [46] D. L. Whittenbury, J. D. Carroll, A. W. Thomas, K. Tsushima, and J. R. Stone, arXiv:1204.2614 (2012)
    [47] N. Stergioulas, Living Rev. Relativ., 6: 3 (2003)
    [48] H. Komatsu, Y. Eriguchi, and I. Hachisu, MNRAS, 237: 355 (1989)
    [49] G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Astrophys. J., 424: 823 (1994)
    [50] N. Stergioulas, and J. L. Friedman, Astrophys. J., 444: 306 (1995)
    [51] T. Nozawa, N. Stergioulas, E. Gourgoulhon, and Y. Eriguchi, A A, 132: 431 (1998)
    [52] L. B. Leinson, and A. Prez, Phys. Lett. B, 518: 15 (2001a)
    [53] L. B. Leinson, and A. Prez, Phys. Lett. B, 522: 358 (2001b)
  • 加载中

Get Citation
Nai-Bo Zhang, Shou-Yu Wang, Bin Qi, Jian-Hua Gao and Bao-Yuan Sun. Neutrino emissivity of the nucleon direct URCA process for rotational traditional and hyperonic neutron stars[J]. Chinese Physics C, 2017, 41(7): 075101. doi: 10.1088/1674-1137/41/7/075101
Nai-Bo Zhang, Shou-Yu Wang, Bin Qi, Jian-Hua Gao and Bao-Yuan Sun. Neutrino emissivity of the nucleon direct URCA process for rotational traditional and hyperonic neutron stars[J]. Chinese Physics C, 2017, 41(7): 075101.  doi: 10.1088/1674-1137/41/7/075101 shu
Milestone
Received: 2017-01-18
Fund

    Supported by National Natural Science Foundation of China (11545011, 11405096), the Shandong Natural Science Foundation (ZR2014AQ012), the Young Scholars Program of Shandong University, Weihai (2015WHWLJH01) and the Fundamental Research Funds for the Central Universities (lzujbky-2016-30)

Article Metric

Article Views(1679)
PDF Downloads(31)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Neutrino emissivity of the nucleon direct URCA process for rotational traditional and hyperonic neutron stars

    Corresponding author: Shou-Yu Wang,
    Corresponding author: Bin Qi,
  • 1.  Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment,Institute of Space Sciences, Shandong University, Weihai 264209, China
  • 2.  School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Fund Project:  Supported by National Natural Science Foundation of China (11545011, 11405096), the Shandong Natural Science Foundation (ZR2014AQ012), the Young Scholars Program of Shandong University, Weihai (2015WHWLJH01) and the Fundamental Research Funds for the Central Universities (lzujbky-2016-30)

Abstract: Based on covariant density functional theory, we study the effects of rotation on the nucleon direct URCA (N-DURCA) process for traditional and hyperonic neutron stars. The calculated results indicate that, for a fixed mass sequence of rotational traditional neutron stars, the neutrino emissivity of the star is nearly invariant with increasing frequency, while it always increases for rotational hyperonic neutron stars. Thus, rotation has different effects on the N-DURCA process for these two kinds of neutron stars.

    HTML

Reference (53)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return