Processing math: 100%

A comprehensive revisit of the ρ meson with improved Monte-Carlo based QCD sum rules

  • We improve the Monte-Carlo based QCD sum rules by introducing the rigorous Hölder-inequality-determined sum rule window and a Breit-Wigner type parametrization for the phenomenological spectral function. In this improved sum rule analysis methodology, the sum rule analysis window can be determined without any assumptions on OPE convergence or the QCD continuum. Therefore, an unbiased prediction can be obtained for the phenomenological parameters (the hadronic mass and width etc.). We test the new approach in the ρ meson channel with re-examination and inclusion of αs corrections to dimension-4 condensates in the OPE. We obtain results highly consistent with experimental values. We also discuss the possible extension of this method to some other channels.
      PCAS:
    • 12.38.Lg(Other nonperturbative calculations)
    • 14.40.Be(Light mesons (S=C=B=0))
  • [1] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B, 147: 448 (1979)
    [2] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B, 147: 385 (1979)
    [3] L. J. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rept., 127: 1 (1985)
    [4] S. Narison, Nucl. Phys. Proc. Suppl., 207-208: 315 (2010) [arXiv:1010.1959 [hep-ph]]
    [5] S. Narison, Nucl. Part. Phys. Proc., 258-259: 189 (2015) [arXiv:1409.8148 [hep-ph]]
    [6] S. Narison, Phys. Lett. B, 738: 346 (2014) [arXiv:1401.3689 [hep-ph]]
    [7] S. Narison, Nucl. Part. Phys. Proc., 270-272: 143 (2016) [arXiv:1511.05903 [hep-ph]]
    [8] R. Albuquerque, S. Narison, A. Rabemananjara, and D. Rabetiarivony, Int. J. Mod. Phys. A, 31(17): 1650093 (2016) [arXiv:1604.05566 [hep-ph]]
    [9] Z. R. Huang, H. Y. Jin, T. G. Steele, and Z. F. Zhang, Phys. Rev. D, 94(5): 054037 (2016) [arXiv:1608.03028 [hep-ph]]
    [10] R. Albuquerque, S. Narison, F. Fanomezana, A. Rabemananjara, D. Rabetiarivony, and G. Randriamanatrika, Int. J. Mod. Phys. A, 31(36): 1650196 (2016) [arXiv:1609.03351 [hep-ph]]
    [11] Z. R. Huang, W. Chen, T. G. Steele, Z. F. Zhang, and H. Y. Jin, Phys. Rev. D, 95(7): 076017 (2017) [arXiv:1610.02081[hep-ph]]
    [12] R. Shankar, Phys. Rev. D, 15: 755 (1977)
    [13] R. D. Matheus and S. Narison, Nucl. Phys. Proc. Suppl., 152: 236 (2006) [hep-ph/0412063]
    [14] S. Narison, Phys. Lett. B, 675: 319 (2009) [arXiv:0903.2266 [hep-ph]]
    [15] D. B. Leinweber, Annals Phys., 254: 328 (1997) [nucl-th/9510051]
    [16] F. X. Lee, D. B. Leinweber, and X.-M. Jin, Phys. Rev. D, 55: 4066 (1997) [nucl-th/9611011]
    [17] F. X. Lee, Phys. Rev. C, 57: 322 (1998) [hep-ph/9707332]
    [18] F. X. Lee, Phys. Lett. B, 419: 14 (1998) [hep-ph/9707411]
    [19] G. Erkol and M. Oka, Nucl. Phys. A, 801: 142 (2008) [arXiv:0801.0783 [nucl-th]]
    [20] L. Wang and F. X. Lee, Phys. Rev. D, 78: 013003 (2008) [arXiv:0804.1779 [hep-ph]]
    [21] Z. F. Zhang, H. Y. Jin, and T. G. Steele, Chin. Phys. Lett., 31: 051201 (2014) [arXiv:1312.5432 [hep-ph]]
    [22] Z. R. Huang, H. Y. Jin, and Z. F. Zhang, JHEP, 1504: 004 (2015) [arXiv:1411.2224 [hep-ph]]
    [23] M. Benmerrouche, G. Orlandini, and T. G. Steele, Phys. Lett. B, 356: 573 (1995) [hep-ph/9507304]
    [24] T. G. Steele, S. Alavian, and J. Kwan, Phys. Lett. B, 392: 189 (1997) [hep-ph/9701267]
    [25] T. G. Steele, K. Kostuik, and J. Kwan, Phys. Lett. B, 451: 201 (1999) [hep-ph/9812497]
    [26] F. Shi, T. G. Steele, V. Elias, K. B. Sprague, Y. Xue, and A. H. Fariborz, Nucl. Phys. A, 671: 416 (2000) [hep-ph/9909475]
    [27] R. T. Kleiv, T. G. Steele, A. Zhang, and I. Blokland, Phys. Rev. D, 87(12): 125018 (2013) [arXiv:1304.7816 [hep-ph]]
    [28] W. Chen, H. X. Chen, X. Liu, T. G. Steele, and S. L. Zhu, arXiv:1605.01647 [hep-ph]
    [29] C. Patrignani et al (Particle Data Group Collaboration), Chin. Phys. C, 40(10): 100001 (2016)
    [30] S. Leupold, W. Peters, and U. Mosel, Nucl. Phys. A, 628: 311 (1998) [nucl-th/9708016]
    [31] S. H. Lee, K. Morita, and M. Nielsen, Phys. Rev. D, 78: 076001 (2008) [arXiv:0808.3168 [hep-ph]]
    [32] L. R. Surguladze and F. V. Tkachov, Nucl. Phys. B, 331: 35 (1990)
    [33] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Fortsch. Phys., 32: 585 (1984)
    [34] K. G. Chetyrkin, V. P. Spiridonov, and S. G. Gorishnii, Phys. Lett. B, 160: 149 (1985)
    [35] H. Y. Jin and J. G. Korner, Phys. Rev. D, 64: 074002 (2001) [hep-ph/0003202]
    [36] H. Y. Jin, J. G. Korner, and T. G. Steele, Phys. Rev. D, 67: 014025 (2003) [hep-ph/0211304]
    [37] L. F. Abbott, Nucl. Phys. B, 185: 189 (1981)
    [38] S. Narison and E. de Rafael, Phys. Lett. B, 103: 57 (1981)
    [39] R. E. Cutkosky, J. Math. Phys., 1: 429 (1960)
    [40] A. K. Das, V. S. Mathur, and P. Panigrahi, Phys. Rev. D, 35: 2178 (1987)
    [41] C. A. Dominguez and N. Paver, Z. Phys. C, 31: 591 (1986)
    [42] L. Martinovic, Phys. Rev. D, 41: 1709 (1990)
    [43] L. Martinovic, Phys. Rev. D, 44: 220 (1991)
    [44] E. F. Beckenbach, R. Bellman,Inequalities (Berlin: Springer, 1961)
    [45] S. K. Berberian,Measure and Integration (New York: MacMillan, 1965)
    [46] Y. Chung, H. G. Dosch, M. Kremer, and D. Schall, Z. Phys. C, 25: 151 (1984)
    [47] S. Narison, Phys. Lett. B, 361: 121 (1995) [hep-ph/9504334]
    [48] S. Narison, Phys. Lett. B, 673: 30 (2009) [arXiv:0901.3823 [hep-ph]]
    [49] E. V. Shuryak, Rev. Mod. Phys., 65: 1 (1993)
    [50] J. Gasser and U. G. Meissner, Nucl. Phys. B, 357: 90 (1991)
  • [1] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B, 147: 448 (1979)
    [2] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B, 147: 385 (1979)
    [3] L. J. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rept., 127: 1 (1985)
    [4] S. Narison, Nucl. Phys. Proc. Suppl., 207-208: 315 (2010) [arXiv:1010.1959 [hep-ph]]
    [5] S. Narison, Nucl. Part. Phys. Proc., 258-259: 189 (2015) [arXiv:1409.8148 [hep-ph]]
    [6] S. Narison, Phys. Lett. B, 738: 346 (2014) [arXiv:1401.3689 [hep-ph]]
    [7] S. Narison, Nucl. Part. Phys. Proc., 270-272: 143 (2016) [arXiv:1511.05903 [hep-ph]]
    [8] R. Albuquerque, S. Narison, A. Rabemananjara, and D. Rabetiarivony, Int. J. Mod. Phys. A, 31(17): 1650093 (2016) [arXiv:1604.05566 [hep-ph]]
    [9] Z. R. Huang, H. Y. Jin, T. G. Steele, and Z. F. Zhang, Phys. Rev. D, 94(5): 054037 (2016) [arXiv:1608.03028 [hep-ph]]
    [10] R. Albuquerque, S. Narison, F. Fanomezana, A. Rabemananjara, D. Rabetiarivony, and G. Randriamanatrika, Int. J. Mod. Phys. A, 31(36): 1650196 (2016) [arXiv:1609.03351 [hep-ph]]
    [11] Z. R. Huang, W. Chen, T. G. Steele, Z. F. Zhang, and H. Y. Jin, Phys. Rev. D, 95(7): 076017 (2017) [arXiv:1610.02081[hep-ph]]
    [12] R. Shankar, Phys. Rev. D, 15: 755 (1977)
    [13] R. D. Matheus and S. Narison, Nucl. Phys. Proc. Suppl., 152: 236 (2006) [hep-ph/0412063]
    [14] S. Narison, Phys. Lett. B, 675: 319 (2009) [arXiv:0903.2266 [hep-ph]]
    [15] D. B. Leinweber, Annals Phys., 254: 328 (1997) [nucl-th/9510051]
    [16] F. X. Lee, D. B. Leinweber, and X.-M. Jin, Phys. Rev. D, 55: 4066 (1997) [nucl-th/9611011]
    [17] F. X. Lee, Phys. Rev. C, 57: 322 (1998) [hep-ph/9707332]
    [18] F. X. Lee, Phys. Lett. B, 419: 14 (1998) [hep-ph/9707411]
    [19] G. Erkol and M. Oka, Nucl. Phys. A, 801: 142 (2008) [arXiv:0801.0783 [nucl-th]]
    [20] L. Wang and F. X. Lee, Phys. Rev. D, 78: 013003 (2008) [arXiv:0804.1779 [hep-ph]]
    [21] Z. F. Zhang, H. Y. Jin, and T. G. Steele, Chin. Phys. Lett., 31: 051201 (2014) [arXiv:1312.5432 [hep-ph]]
    [22] Z. R. Huang, H. Y. Jin, and Z. F. Zhang, JHEP, 1504: 004 (2015) [arXiv:1411.2224 [hep-ph]]
    [23] M. Benmerrouche, G. Orlandini, and T. G. Steele, Phys. Lett. B, 356: 573 (1995) [hep-ph/9507304]
    [24] T. G. Steele, S. Alavian, and J. Kwan, Phys. Lett. B, 392: 189 (1997) [hep-ph/9701267]
    [25] T. G. Steele, K. Kostuik, and J. Kwan, Phys. Lett. B, 451: 201 (1999) [hep-ph/9812497]
    [26] F. Shi, T. G. Steele, V. Elias, K. B. Sprague, Y. Xue, and A. H. Fariborz, Nucl. Phys. A, 671: 416 (2000) [hep-ph/9909475]
    [27] R. T. Kleiv, T. G. Steele, A. Zhang, and I. Blokland, Phys. Rev. D, 87(12): 125018 (2013) [arXiv:1304.7816 [hep-ph]]
    [28] W. Chen, H. X. Chen, X. Liu, T. G. Steele, and S. L. Zhu, arXiv:1605.01647 [hep-ph]
    [29] C. Patrignani et al (Particle Data Group Collaboration), Chin. Phys. C, 40(10): 100001 (2016)
    [30] S. Leupold, W. Peters, and U. Mosel, Nucl. Phys. A, 628: 311 (1998) [nucl-th/9708016]
    [31] S. H. Lee, K. Morita, and M. Nielsen, Phys. Rev. D, 78: 076001 (2008) [arXiv:0808.3168 [hep-ph]]
    [32] L. R. Surguladze and F. V. Tkachov, Nucl. Phys. B, 331: 35 (1990)
    [33] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Fortsch. Phys., 32: 585 (1984)
    [34] K. G. Chetyrkin, V. P. Spiridonov, and S. G. Gorishnii, Phys. Lett. B, 160: 149 (1985)
    [35] H. Y. Jin and J. G. Korner, Phys. Rev. D, 64: 074002 (2001) [hep-ph/0003202]
    [36] H. Y. Jin, J. G. Korner, and T. G. Steele, Phys. Rev. D, 67: 014025 (2003) [hep-ph/0211304]
    [37] L. F. Abbott, Nucl. Phys. B, 185: 189 (1981)
    [38] S. Narison and E. de Rafael, Phys. Lett. B, 103: 57 (1981)
    [39] R. E. Cutkosky, J. Math. Phys., 1: 429 (1960)
    [40] A. K. Das, V. S. Mathur, and P. Panigrahi, Phys. Rev. D, 35: 2178 (1987)
    [41] C. A. Dominguez and N. Paver, Z. Phys. C, 31: 591 (1986)
    [42] L. Martinovic, Phys. Rev. D, 41: 1709 (1990)
    [43] L. Martinovic, Phys. Rev. D, 44: 220 (1991)
    [44] E. F. Beckenbach, R. Bellman,Inequalities (Berlin: Springer, 1961)
    [45] S. K. Berberian,Measure and Integration (New York: MacMillan, 1965)
    [46] Y. Chung, H. G. Dosch, M. Kremer, and D. Schall, Z. Phys. C, 25: 151 (1984)
    [47] S. Narison, Phys. Lett. B, 361: 121 (1995) [hep-ph/9504334]
    [48] S. Narison, Phys. Lett. B, 673: 30 (2009) [arXiv:0901.3823 [hep-ph]]
    [49] E. V. Shuryak, Rev. Mod. Phys., 65: 1 (1993)
    [50] J. Gasser and U. G. Meissner, Nucl. Phys. B, 357: 90 (1991)
  • 加载中

Cited by

1. Li, S., Steele, T.G., Ho, J. et al. Bounds on aμHVP,LO using Hölder's inequalities and finite-energy QCD sum rules[J]. Nuclear and Particle Physics Proceedings, 2024. doi: 10.1016/j.nuclphysbps.2024.09.002
2. Li, H.-N.. Dispersive Analysis of Excited Glueball States[J]. Chinese Physics Letters, 2024, 41(10): 101101. doi: 10.1088/0256-307X/41/10/101101
3. Li, S., Steele, T.G., Ho, J. et al. QCD bounds on leading-order hadronic vacuum polarization contributions to the muon anomalous magnetic moment[J]. Physical Review D, 2024, 110(1): 014046. doi: 10.1103/PhysRevD.110.014046
4. Li, H.-N.. Dispersive determination of electroweak-scale masses[J]. Physical Review D, 2023, 108(5): 054020. doi: 10.1103/PhysRevD.108.054020
5. Li, H.-N.. Dispersive analysis of glueball masses[J]. Physical Review D, 2021, 104(11): 114017. doi: 10.1103/PhysRevD.104.114017
6. Yin, F.-H., Tian, W.-Y., Tang, L. et al. Determination of the up/down-quark mass within QCD sum rules in the scalar channel[J]. European Physical Journal C, 2021, 81(9): 818. doi: 10.1140/epjc/s10052-021-09599-3
7. Mutuk, H.. Monte-Carlo based QCD sum rules analysis of X 0(2900) and X 1(2900)[J]. Journal of Physics G: Nuclear and Particle Physics, 2021, 48(5): 055007. doi: 10.1088/1361-6471/abeb7f
8. Li, H.-N., Umeeda, H. QCD sum rules with spectral densities solved in inverse problems[J]. Physical Review D, 2020, 102(11): 114014. doi: 10.1103/PhysRevD.102.114014
9. Chen, Z.-S., Zhang, Z.-F., Huang, Z.-R. et al. Vector and scalar mesons’ mixing from QCD sum rules[J]. Journal of High Energy Physics, 2019, 2019(12): 66. doi: 10.1007/JHEP12(2019)066
10. Ho, J., Berg, R., Steele, T.G. et al. Mass calculations of light quarkonium, exotic JPC=0+- hybrid mesons from Gaussian sum rules[J]. Physical Review D, 2018, 98(9): 096020. doi: 10.1103/PhysRevD.98.096020
11. Yuan, J.-M., Zhang, Z.-F., Steele, T.G. et al. Constraint on the light quark mass mq from QCD sum rules in the I=0 scalar channel[J]. Physical Review D, 2017, 96(1): 014034. doi: 10.1103/PhysRevD.96.014034
Get Citation
Qi-Nan Wang, Zhu-Feng Zhang, T. G. Steele, Hong-Ying Jin and Zhuo-Ran Huang. A comprehensive revisit of the ρ meson with improved Monte-Carlo based QCD sum rules[J]. Chinese Physics C, 2017, 41(7): 074107. doi: 10.1088/1674-1137/41/7/074107
Qi-Nan Wang, Zhu-Feng Zhang, T. G. Steele, Hong-Ying Jin and Zhuo-Ran Huang. A comprehensive revisit of the ρ meson with improved Monte-Carlo based QCD sum rules[J]. Chinese Physics C, 2017, 41(7): 074107.  doi: 10.1088/1674-1137/41/7/074107 shu
Milestone
Received: 2017-03-01
Fund

    Supported by NSFC (11175153, 11205093, 11347020), Open Foundation of the Most Important Subjects of Zhejiang Province, and K. C. Wong Magna Fund in Ningbo University, TGS is Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Z. F. Zhang and Z. R. Huang are Grateful to the University of Saskatchewan for its Warm Hospitality

Article Metric

Article Views(2689)
PDF Downloads(18)
Cited by(11)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

A comprehensive revisit of the ρ meson with improved Monte-Carlo based QCD sum rules

    Corresponding author: Zhu-Feng Zhang,
  • 1.  Physics Department, Ningbo University, Zhejiang 315211, China
  • 2. Physics Department, Ningbo University, Zhejiang 315211, China
  • 3. Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada
  • 4.  Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada
  • 5.  Zhejiang Institute of Modern Physics, Zhejiang University, Zhejiang 310027, China
  • 6. Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada
  • 7. Zhejiang Institute of Modern Physics, Zhejiang University, Zhejiang 310027, China
Fund Project:  Supported by NSFC (11175153, 11205093, 11347020), Open Foundation of the Most Important Subjects of Zhejiang Province, and K. C. Wong Magna Fund in Ningbo University, TGS is Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Z. F. Zhang and Z. R. Huang are Grateful to the University of Saskatchewan for its Warm Hospitality

Abstract: We improve the Monte-Carlo based QCD sum rules by introducing the rigorous Hölder-inequality-determined sum rule window and a Breit-Wigner type parametrization for the phenomenological spectral function. In this improved sum rule analysis methodology, the sum rule analysis window can be determined without any assumptions on OPE convergence or the QCD continuum. Therefore, an unbiased prediction can be obtained for the phenomenological parameters (the hadronic mass and width etc.). We test the new approach in the ρ meson channel with re-examination and inclusion of αs corrections to dimension-4 condensates in the OPE. We obtain results highly consistent with experimental values. We also discuss the possible extension of this method to some other channels.

    HTML

Reference (50)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return