Dynamical mass generation in QED3 beyond the instantaneous approximation

  • In this paper, we investigate dynamical mass generation in (2+1)-dimensional quantum electrodynamics at finite temperature. Many studies are carried out within the instantaneous-exchange approximation, which ignores all but the zero-frequency component of the boson propagator and fermion self-energy function. We extend these studies by taking the retardation effects into consideration. In this paper, we get the explicit frequency n and momentum p dependence of the fermion self-energy function and identify the critical temperature for different fermion flavors in the chiral limit. Also, the phase diagram for spontaneous symmetry breaking in the theory is presented in Tc-Nf space. The results show that the chiral condensate is just one-tenth of the scale of previous results, and the chiral symmetry is restored at a smaller critical temperature.
      PCAS:
  • 加载中
  • [1] C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. Phys., 45,S1: S1-S103 (2000)
    [2] C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys., 33: 477 (1994)
    [3] R. Alkofer and L. von Smekal, Phys. Rep., 353: 281 (2001)
    [4] C. D. Roberts, M. S. Bhagwat, A. Hll, and S. V. Wright, Eur. Phys. J. Special Topics, 140: 53 (2007)
    [5] P. A. Lee, N. Nagaosa, Xiao-Gang Wen, Rev. Mod. Phys., 78: 17 (2006)
    [6] I. M. Affleck, and J. Brad, Phys. Rev. B, 37: 3774 (1988)
    [7] L. B. Ioffe, A. I. Larkin, Phys. Rev. B, 39: 8988 (1989)
    [8] D. H. Kim, P. A. Lee, Xiao-Gang Wen, Phys. Rev. Lett., 79: 2109 (1997)
    [9] D. H. Kim, P. A. Lee, Annals of Physics, 272: 130 (1999)
    [10] W. Rantner, Xiao-Gang Wen, Phys. Rev. Lett., 86: 3871 (2001)
    [11] M. Franz, Z. Teanović, Phys. Rev. Lett., 87: 257003 (2001)
    [12] M. Franz, Z. Teanović, and O. Vafek, Phys. Rev. B, 66: 054535 (2002)
    [13] I. F. Herbut, Phys. Rev. Lett., 88: 047006 (2002)
    [14] I. F. Herbut, Phys. Rev. B, 66: 094504 (2002)
    [15] Guo-Zhu Liu, Geng Cheng, Phys. Rev. B, 66: 100505 (2002)
    [16] Guo-Zhu Liu, Geng Cheng, Phys. Rev. D, 67: 065010 (2003)
    [17] Guo-Zhu Liu, Wei Li, and Geng Cheng, Phys. Rev. B, 79: 205429 (2009)
    [18] Jing-Rong Wang, Guo-Zhu Liu, New. J. Phys., 14: 043036 (2012)
    [19] A. Katanin, Phys. Rev. B, 93: 035132 (2016)
    [20] A. S. Mayorov, D. C. Elias, I. S. Mukhin, S. V. Morozov, L. A. Ponomarenko, K. S. Novoselov, A. K. Geim, and R. V. Gorbachev Nano. Lett., 12: 4629 (2012)
    [21] S. G. Sharapov, V. P. Gusynin, and H. Beck, Phys. Rev. B, 69: 075104 (2004)
    [22] A. Raya, E. D. Reyes, J. Phys. A, 41: 355401 (2008)
    [23] Z. Teanović, O. Vafek, and M. Franz, Phys. Rev. B, 65: 180511 (2002)
    [24] A. A. Nersesyan, G. E. Vachnadze, J. Low. Temp. Phys., 77: 293 (1989)
    [25] T. Appelquist, D. Nash, and L. C. R. Wijewardhana, Phys. Rev. Lett., 60: 2575
    [26] D. Nash, Phys. Rev. Lett., 62: 3024 (1989)
    [27] M. R. Pennington, D. Walsh, Phys. Lett. B, 253: 246 (1991)
    [28] D. C. Curtis, M. R. Pennington, and D. Walsh, Phys. Lett. B, 295: 313 (1992)
    [29] P. Maris, Phys. Rev. D, 54: 4049 (1996)
    [30] R. Alkofer, W. Detmold, C. S. Fischer, and P. Maris, Phys. Rev. D, 70: 014014 (2004)
    [31] S. Coleman, Comm. Math. Phys., 31: 259 (1973)
    [32] N. D. Mermin, H. Wagner, Phys. Rev. Lett., 17: 1133 (1966)
    [33] R. J. Cava, B. Batlogg, R. B. van Dover, J. J. Krajewski, J. V. Waszczak, R. M. Fleming, W. F. Peck, L. W. Rupp, P. Marsh, A. C. W. P. James, and L. F. Schneemeyer, Nature, 345: 602 (1990)
    [34] Elbio Dagotto, Rev. Mod. Phys., 66: 763 (1994)
    [35] K. Aleksandar, Phys. Lett. B, 189: 449 (1987)
    [36] N. Dorey, N. E. Mavromatos, Phys. Lett. B, 266: 163 (1991)
    [37] N. Dorey, N. E. Mavromatos, Nucl. Phys. B, 386: 614 (1992)
    [38] I. J. R. Aitchison, M. Klein-Kreisler, Phys. Rev. D, 50: 1068 (1994)
    [39] Ian Johnston Rhind Aitchison, Zeitschrift fr Physik C Particles, Fields, 67: 303 (1995)
    [40] I. J. R. Aitchison, N. Dorey, M. Klein-Kreisler, and N. E. Mavromatos, Phys. Lett. B, 294: 91 (1992)
    [41] Hong-tao Feng, Bin Wang, Wei-min Sun, and Hong-shi Zong, Eur. Phys. J. C, 73: 2444 (2013)
    [42] Hong-tao Feng, Yu-qing Zhou, Pei-Lin Yin, and Hong-shi Zong, Phys. Rev. D, 88: 125022 (2013)
    [43] Pei-lin Yin, Yuan-mei Shi, Zhu-fang Cui, Hong-tao Feng, and Hong-shi Zong, Phys. Rev. D, 90: 036007 (2014)
    [44] Pei-Lin Yin, Wei Wei, Hai-Xiao Xiao, Hong-Tao Feng, Xiao-Jun Liu, and Hong-Shi Zong, Phys. Rev. D, 93: 016009 (2016)
    [45] G. Triantaphyllou, Phys. Rev. D, 58: 065006 (1998)
    [46] L. O. Nascimento, van Srgio Alves, F. Pea, C. M. Smith, and E. C. Marino, Phys. Rev. D, 92: 025018 (2015)
    [47] F. Karsch, E. Laermann, Phys. Rev. D, 50: 6954 (1994)
    [48] M. Cheng, N. H. Christ, M. A. Clark, J. van der Heide, C. Jung, F. Karsch, O. Kaczmarek, E. Laermann, R. D. Mawhinney, C. Miao, P. Petreczky, K. Petrov, C. Schmidt, W. Soeldner, and T. Umeda, Phys. Rev. D, 75: 034506 (2007)
    [49] Liang-Kai Wu, Xiang-Qian Luo, and He-Sheng Chen, Phys. Rev. D, 76: 034505 (2007)
    [50] Hong-tao Feng, Bin Wang, Wei-min Sun, and Hong-shi Zong, Phys. Rev. D, 86: 105042 (2012)
    [51] Zhu-Fang Cui, Feng-Yao Hou, Yuan-Mei Shi, Yong-Long Wang, and Hong-Shi Zong, Annals of Physics, 358: 172 (2015)
    [52] Hongtao Feng, Song Shi, Peilin Yin, and Hongshi Zong, Phys. Rev. D, 86: 065002 (2012)
    [53] P. M. Lo, E. S. Swanson, Phys. Rev. D, 89: 025015 (2014)
  • 加载中

Get Citation
Hai-Xiao Xiao, Jian-Feng Li, Wei Wei, Pei-Lin Yin and Hong-Shi Zong. Dynamical mass generation in QED3 beyond the instantaneous approximation[J]. Chinese Physics C, 2017, 41(7): 073102. doi: 10.1088/1674-1137/41/7/073102
Hai-Xiao Xiao, Jian-Feng Li, Wei Wei, Pei-Lin Yin and Hong-Shi Zong. Dynamical mass generation in QED3 beyond the instantaneous approximation[J]. Chinese Physics C, 2017, 41(7): 073102.  doi: 10.1088/1674-1137/41/7/073102 shu
Milestone
Received: 2017-03-29
Fund

    Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030), Natural Science Foundation of Jiangsu Province (BK20130387) and Jiangsu Planned Projects for Postdoctoral Research Funds (1501035B)

Article Metric

Article Views(757)
PDF Downloads(25)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Dynamical mass generation in QED3 beyond the instantaneous approximation

    Corresponding author: Hong-Shi Zong,
  • 1.  Department of Physics, Nanjing University, Nanjing 210093, China
  • 2. Department of Physics, Nanjing University, Nanjing 210093, China
  • 3. College of Mathematics and Physics, Nantong University, Nantong 226019, China
  • 4.  Department of Physics, Southeast University, Nanjing 211189, China
  • 5. Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093, China
  • 6. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
Fund Project:  Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030), Natural Science Foundation of Jiangsu Province (BK20130387) and Jiangsu Planned Projects for Postdoctoral Research Funds (1501035B)

Abstract: In this paper, we investigate dynamical mass generation in (2+1)-dimensional quantum electrodynamics at finite temperature. Many studies are carried out within the instantaneous-exchange approximation, which ignores all but the zero-frequency component of the boson propagator and fermion self-energy function. We extend these studies by taking the retardation effects into consideration. In this paper, we get the explicit frequency n and momentum p dependence of the fermion self-energy function and identify the critical temperature for different fermion flavors in the chiral limit. Also, the phase diagram for spontaneous symmetry breaking in the theory is presented in Tc-Nf space. The results show that the chiral condensate is just one-tenth of the scale of previous results, and the chiral symmetry is restored at a smaller critical temperature.

    HTML

Reference (53)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return