Spatial and temporal variations of the fine-structure constant in the Finslerian universe

  • Recent observations show that the electromagnetic fine-structure constant, αe, may vary with space and time. In the framework of Finsler spacetime, we propose here an anisotropic cosmological model, in which both spatial and temporal variations of αe are allowed. Our model naturally leads to the dipole structure of αe, and predicts that the dipole amplitude increases with time. We fit our model to the most up-to-date measurements of αe from the quasar absorption lines. It is found that the dipole direction points towards (l,b)=(330.2°±7.3°,-13.0°±5.6°) in galactic coordinates, and the anisotropic parameter is b0=(0.47±0.09) ×10-5, which corresponds to a dipole amplitude (7.2±1.4)×10-8 at redshift z=0.015. This is consistent with the upper limit of the variation of αe measured in the Milky Way. We also fit our model to Union2.1 type Ia supernovae, and find that the preferred direction of Union2.1 is consistent with the dipole direction of αe.
      PCAS:
  • 加载中
  • [1] J. P. Uzan, Living Rev. Rel., 14: 2 (2011)
    [2] T. Damour and F. J. Dyson, Nucl. Phys. B, 480: 37 (1996)
    [3] Y. V. Petrov, A. I. Nazarov, M. S. Onegin, V. Y. Petrov, and E. G. Sakhnovsky, Phys. Rev. C, 74: 064610 (2006)
    [4] C. R. Gould, E. I. Sharapov, and S. K. Lamoreaux, Phys. Rev. C, 74: 024607 (2006)
    [5] T. Rosenband et al, Science, 319: 1808 (2008)
    [6] P. A. R. Ade et al, (Planck Collaboration), Astron. Astrophys., 571: A16 (2014)
    [7] J. K. Webb et al, Phys. Rev. Lett., 107: 191101 (2011)
    [8] J. A. King et al, Mon. Not. R. Astron. Soc., 422: 3370 (2012)
    [9] A. M. M. Pinho, C. J. A. P. Martins, Phys. Lett. B, 756: 121 (2016)
    [10] P. Molaro et al, Astron. Astrophys., 555: A68 (2013)
    [11] T. M. Evans et al, Mon. Not. Roy. Astron. Soc., 445: 128 (2014)
    [12] J. B. Whitmore and M. T. Murphy, Mon. Not. Roy. Astron. Soc., 447: 446 (2015)
    [13] M. C. Ferreira, O. Frigola, C. J. A. P. Martins, A. M. R. V. L. Monteiro, and J. Sola, Phys. Rev. D, 89: 083011 (2014)
    [14] A. Songaila, and L. Cowie, Astrophys. J., 793: 103 (2014)
    [15] P. Molaro, D. Reimers, I. I. Agafonova, and S. A. Levshakov, Eur. Phys. J. ST, 163: 173 (2008)
    [16] H. Chand, R. Srianand, P. Petitjean, B. Aracil, R. Quast, and D. Reimers, Astron. Astrophys., 451: 45 (2006)
    [17] I. I. Agafonova, P. Molaro, S. A. Levshakov, and J. L. Hou, Astron. Astrophys., 529: A28 (2011)
    [18] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D, 15: 1753 (2006)
    [19] C. J. A. P. Martins, A. M. M. Pinho, P. Carreira, A. Gusart, J. Lopez, and C. I. S. A. Rocha, Phys. Rev. D., 93: 023506 (2016)
    [20] I. Antoniou and L. Perivolaropoulos, JCAP, 1012: 012 (2012)
    [21] A. Mariano and L. Perivolaropoulos, Phys. Rev. D, 86: 083517 (2012)
    [22] X. Li, H.-N. Lin, S. Wang, and Z. Chang, Eur. Phys. J. C, 75: 181 (2015)
    [23] D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics 200, Springer, New York, 2000
    [24] S. A. Levshakov, I. I. Agafonova, P. Molaro, and D. Reimers, Mem. Soc. Astron. Ital., 80: 850, (2009)
    [25] J. K. Webb et al, Physical Review Letters, 82: 884 (1999)
    [26] G. Randers, Phys. Rev., 59: 195 (1941)
    [27] X. Li and Z. Chang, Differ. Geom. Appl., 30: 737 (2012)
    [28] X. Li and Z. Chang, Phys. Rev. D, 90: 064049 (2014)
    [29] K. Rosquist and R. T. Jantzen, Phys. Rep., 166: 89 (1988)
    [30] T. Koivisto and D. F. Mota, JCAP, 0806: 018 (2008)
    [31] L. Campanelli, P. Cea, G. L. Fogli, and A. Marrone, Phys. Rev. D, 83: 103503 (2011)
    [32] X. Li, M.-H. Li, H.-N. Lin, and Z. Chang, Mon. Not. R. Astron. Soc., 428: 2939 (2013)
    [33] H. Akbar-Zadeh. Acad. Roy. Belg. Bull. Cl. Sci., 74: 281 (1988)
    [34] P. A. R. Ade et al, (Planck Collaboration), Astron. Astrophys., 561: A97 (2014)
    [35] N. Suzuki et al, Astrophys. J., 746: 85 (2012)
    [36] H.-N. Lin, S. Wang, Z. Chang, and X. Li, Mon. Not. R. Astron. Soc., 456: 1881 (2016)
    [37] R. Amanullah et al, Astrophys. J., 716: 712 (2010)
    [38] M. Betoule et al, Astron. Astrophys., 568: A22 (2014)
    [39] Z. Chang and H.-N. Lin, Mon. Not. R. Astron. Soc., 428: 2939 (2013)
  • 加载中

Get Citation
Xin Li and Hai-Nan Lin. Spatial and temporal variations of the fine-structure constant in the Finslerian universe[J]. Chinese Physics C, 2017, 41(6): 065102. doi: 10.1088/1674-1137/41/6/065102
Xin Li and Hai-Nan Lin. Spatial and temporal variations of the fine-structure constant in the Finslerian universe[J]. Chinese Physics C, 2017, 41(6): 065102.  doi: 10.1088/1674-1137/41/6/065102 shu
Milestone
Received: 2017-01-14
Revised: 2017-02-19
Fund

    Supported by Fundamental Research Funds for Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11305181, 11547035, 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1).}

Article Metric

Article Views(1488)
PDF Downloads(29)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Spatial and temporal variations of the fine-structure constant in the Finslerian universe

    Corresponding author: Xin Li,
    Corresponding author: Hai-Nan Lin,
  • 1. Department of Physics, Chongqing University, Chongqing 401331, China
  • 2. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 3.  Department of Physics, Chongqing University, Chongqing 401331, China
Fund Project:  Supported by Fundamental Research Funds for Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11305181, 11547035, 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1).}

Abstract: Recent observations show that the electromagnetic fine-structure constant, αe, may vary with space and time. In the framework of Finsler spacetime, we propose here an anisotropic cosmological model, in which both spatial and temporal variations of αe are allowed. Our model naturally leads to the dipole structure of αe, and predicts that the dipole amplitude increases with time. We fit our model to the most up-to-date measurements of αe from the quasar absorption lines. It is found that the dipole direction points towards (l,b)=(330.2°±7.3°,-13.0°±5.6°) in galactic coordinates, and the anisotropic parameter is b0=(0.47±0.09) ×10-5, which corresponds to a dipole amplitude (7.2±1.4)×10-8 at redshift z=0.015. This is consistent with the upper limit of the variation of αe measured in the Milky Way. We also fit our model to Union2.1 type Ia supernovae, and find that the preferred direction of Union2.1 is consistent with the dipole direction of αe.

    HTML

Reference (39)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return