Comparing dark matter models, modified Newtonian dynamics and modified gravity in accounting for galaxy rotation curves

  • We compare six models (including the baryonic model, two dark matter models, two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves. For the dark matter models, we assume NFW profile and core-modified profile for the dark halo, respectively. For the modified Newtonian dynamics models, we discuss Milgrom's MOND theory with two different interpolation functions, the standard and the simple interpolation functions. For the modified gravity, we focus on Moffat's MSTG theory. We fit these models to the observed rotation curves of 9 high-surface brightness and 9 low-surface brightness galaxies. We apply the Bayesian Information Criterion and the Akaike Information Criterion to test the goodness-of-fit of each model. It is found that none of the six models can fit all the galaxy rotation curves well. Two galaxies can be best fitted by the baryonic model without involving nonluminous dark matter. MOND can fit the largest number of galaxies, and only one galaxy can be best fitted by the MSTG model. Core-modified model fits about half the LSB galaxies well, but no HSB galaxies, while the NFW model fits only a small fraction of HSB galaxies but no LSB galaxies. This may imply that the oversimplified NFW and core-modified profiles cannot model the postulated dark matter haloes well.
      PCAS:
  • 加载中
  • [1] V. C. Rubin, N. Thonnard, and W. K. Ford, ApJ, 225: L107 (1978)
    [2] V. C. Rubin, W. K. Ford, and N. Thonnard, ApJ, 238: 471 (1980)
    [3] A. Bosma, AJ, 86: 1825 (1981)
    [4] Y. Sofue and V. Rubin, ARAA, 39: 137 (2001)
    [5] F. Walter, E. Brinks, W. J. G. de Blok et al, AJ, 136: 2563 (2008)
    [6] W. J. G. de Blok, F. Walter, E. Brinks et al, AJ, 136: 2648 (2008)
    [7] K. G. Begeman, A. H. Broeils, and R. H. Sanders, MNRAS, 249: 523 (1991)
    [8] M. Persic, P. Salucci, and F. Stel, MNRAS, 281: 27 (1996)
    [9] L. Chemin, W. J. G. de Blok, and G. A. Mamon, AJ, 142: 109 (2011)
    [10] J. C. Kapteyn, ApJ, 55: 302 (1922)
    [11] J. H. Oort, Bulletin of the Astronomical Institutes of the Netherlands, 6: 249 (1932)
    [12] M. Milgrom, ApJ, 270: 365 (1983)
    [13] M. Milgrom, ApJ, 270: 371 (1983)
    [14] M. Milgrom, ApJ, 302: 617 (1986)
    [15] J. D. Bekenstein, Phys. Rev. D, 70: 083509 (2004)
    [16] R. H. Sanders, ApJ, 473: 117 (1996)
    [17] R. H. Sanders and M. A. W. Verheijen, ApJ, 503: 97 (1998)
    [18] R. H. Sander and E. Noordermeer, MNRAS, 379: 702 (2007)
    [19] R. A. Swaters, R. H. Sanders, and S. S. McGaugh, ApJ, 718: 380 (2010)
    [20] F. Iocco, M. Pato, and G. Bertone, Phys. Rev. D, 92: 084046 (2015)
    [21] J. W. Moffat, JCAP, 0505: 003 (2005)
    [22] J. W. Moffat, JCAP, 0603: 004 (2006)
    [23] M. Carmeli, Int. J. Theor. Phys, 37: 2621 (1998)
    [24] M. Carmeli, Int. J. Theor. Phys, 39: 1397 (2000)
    [25] M. Carmeli, Cosmological Special Relativity (Singapore, World Scientific, 2002)
    [26] P. Horava, PRD, 79: 084008 (2009)
    [27] P. Horava, JHEP, 0903: 020 (2009)
    [28] P. Horava, PRL, 102: 161301 (2009)
    [29] D. Grumiller, PRL, 105: 211303 (2010)
    [30] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J, 462: 563 (1996)
    [31] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J, 490: 493 (1997)
    [32] J. R. Brownstein, arXiv:0908.0040
    [33] A. Tamm and P. Tenjes 2005, AA, 433: 31 (2005)
    [34] G. de Vaucouleurs, Hdb. d. Phys, 53: 311 (1959)
    [35] K. C. Freeman, ApJ, 160: 811 (1970)
    [36] W. J. G. de Blok, J. M. van der Hulst, and G. D. Bothun, MNRAS, 274: 235 (1995)
    [37] R. Jimenez, L. Verde, and S. P. Oh, MNRAS, 339: 243 (2003)
    [38] A. Burkert, Astrophys. J. Lett., 447: L25 (1995)
    [39] D. Merritt, A. W. Graham, and B. Moore et al, AJ, 132: 2685 (2006)
    [40] L. Hemquist, ApJ, 356: 359 (1990)
    [41] H. Zhao, Mon. Not. Roy. Astron. Soc, 278: 488 (1996)
    [42] J. An and H. Zhao, MNRAS, 428: 2805 (2013)
    [43] X.-F. Wu, B. Famaey, G. Gentile, H. Perets and H.-S. Zhao, MNRAS,386: 2199 (2008)
    [44] B. Famaey, J. Binney, MNRAS, 363: 603 (2005)
    [45] H. S. Zhao and B. Famaey, ApJ, 638, L9 (2006)
    [46] J. R. Brownstein and J. W. Moffat, ApJ, 636: 721 (2006)
    [47] P. Palunas and T. B. Williams, Astrophys. J, 120: 2884 (2000)
    [48] E. Kun, G. Szűcs, and Z. Keresztes et al, arXiv:1604.02465
    [49] W. J. G. de Blok, S. S. McGaugh, J. M. van der Hulst, MNRAS, 283: 18 (1996)
    [50] J. M. van der Hulst, E. D. Skillman, T. R. Smith et al, AJ, 106: 548 (1993)
    [51] S. S. McGaugh, V. C. Rubin, and W. J. G. de Blok, AJ, 122: 2381 (2001)
    [52] J. H. Kim, The Star Formation History of Low Surface Brightness Galaxies, PhD thesis (Maryland: University of Maryland, College Park, 2007)
    [53] G. Schwarz, Ann Statist, 1978, 6: 461 (1978)
    [54] H. Akaike, IEEE Trans. Automatic Control, 19: 716 (1974)
  • 加载中

Get Citation
null. Comparing dark matter models, modified Newtonian dynamics and modified gravity in accounting for galaxy rotation curves[J]. Chinese Physics C, 2017, 41(5): 055101. doi: 10.1088/1674-1137/41/5/055101
null. Comparing dark matter models, modified Newtonian dynamics and modified gravity in accounting for galaxy rotation curves[J]. Chinese Physics C, 2017, 41(5): 055101.  doi: 10.1088/1674-1137/41/5/055101 shu
Milestone
Received: 2016-12-09
Revised: 2017-01-18
Fund

    Supported by Fundamental Research Funds for the Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11305181, 11547305 and 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)

Article Metric

Article Views(796)
PDF Downloads(23)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Comparing dark matter models, modified Newtonian dynamics and modified gravity in accounting for galaxy rotation curves

Fund Project:  Supported by Fundamental Research Funds for the Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11305181, 11547305 and 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)

Abstract: We compare six models (including the baryonic model, two dark matter models, two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves. For the dark matter models, we assume NFW profile and core-modified profile for the dark halo, respectively. For the modified Newtonian dynamics models, we discuss Milgrom's MOND theory with two different interpolation functions, the standard and the simple interpolation functions. For the modified gravity, we focus on Moffat's MSTG theory. We fit these models to the observed rotation curves of 9 high-surface brightness and 9 low-surface brightness galaxies. We apply the Bayesian Information Criterion and the Akaike Information Criterion to test the goodness-of-fit of each model. It is found that none of the six models can fit all the galaxy rotation curves well. Two galaxies can be best fitted by the baryonic model without involving nonluminous dark matter. MOND can fit the largest number of galaxies, and only one galaxy can be best fitted by the MSTG model. Core-modified model fits about half the LSB galaxies well, but no HSB galaxies, while the NFW model fits only a small fraction of HSB galaxies but no LSB galaxies. This may imply that the oversimplified NFW and core-modified profiles cannot model the postulated dark matter haloes well.

    HTML

Reference (54)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return