Dynamical parton distributions from DGLAP equations with nonlinear corrections

  • Determination of proton parton distribution functions is presented under the dynamical parton model assumption by applying DGLAP equations with GLR-MQ-ZRS corrections. We provide two data sets, referred to as IMParton16, which are from two different nonperturbative inputs. One is the naive input of three valence quarks and the other is the input of three valence quarks with flavor-asymmetric sea components. Basically, both data sets are compatible with the experimental measurements at high scale (Q2 >2 GeV2). Furthermore, our analysis shows that the input with flavor-asymmetric sea components better reproduces the structure functions at high Q2. Generally, the parton distribution functions obtained, especially the gluon distribution function, are good options for inputs to simulations of high energy scattering processes. The analysis is performed under the fixed-flavor number scheme for nf= 3, 4, 5. Both data sets start from very low scales, around 0.07 GeV2, where the nonperturbative input is directly connected to the simple picture of the quark model. These results may shed some lights on the origin of the parton distributions observed at high Q2.
      PCAS:
  • 加载中
  • [1] G. Sterman, arXiv:hep-ph/9606312
    [2] J. C. Collins and D. E. Soper, Annu. Rev. Nucl. Part. Sci., 37}: 383 (1987)
    [3] J. C. Collins, Phys. Rev. D, 58: 094002 (1998)
    [4] F. M. Steffens and A. W. Thomas, Prog. Theor. Phys. Suppl., 120}: 145 (1995)
    [5] R. J. Holt and C. D. Roberts, Rev. Mod. Phys., 82: 2991 (2010)
    [6] H. Mineo, W. Bentz, N. Ishii, A. W. Thomas, and K. Yazaki, Nucl. Phys. A, 735: 482 (2004)
    [7] Rong Wang and Xurong Chen, Phys. Rev. D, 91: 054026 (2015)
    [8] X. Ji, Phys. Rev. Lett., 110: 262002 (2013)
    [9] X. Ji, arXiv:1404.6680
    [10] Yan-Qing Ma and Jian-Wei Qiu, arXiv:1404.6860
    [11] A. Vogt, Phys. Lett. B, 354: 145 (1995)
    [12] M. Glck, E. Reya, A. Vogt, Eur. Phys. J. C, 5: 461 (1998)
    [13] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C, 63: 189 (2009)
    [14] Hung-Liang Lai, Marco Guzzi, Joey Huston, Zhao Li, Pavel M. Nadolsky, Jon Pumplin, and C.-P. Yuan, Phys. Rev. D, 82: 074024 (2010)
    [15] S. Alekhin, J. Blmlein, and S. Moch, Phys. Rev. D, 86: 054009 (2012)
    [16] R. D. Ball et al (Neural Network PDF Collaboration), Nucl. Phys. B, 838: 136 (2010)
    [17] F. D. Aaron et al (The H1 and ZEUS Collaborations), JHEP, 01}: 109 (2010)
    [18] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Eur. Phys. J. C, 75: 204 (2015)
    [19] V. P. Gonalves, L. A. S. Martins, and W. K. Sauter, Eur. Phys. J. C, 76: 97 (2016)
    [20] Adeola Adeluyi and Carlos A. Bertulani, Phys. Rev. C, 84: 024916 (2011)
    [21] D. Stump, J. Huston, J. Pumplin, W. Tung, H. L. Lai, S. Kuhlmann, and J. F. Owens, JHEP, 10: 046 (2003)
    [22] Graeme Watt, arXiv:1001.3954
    [23] Shin-Shan Yu, arXiv:0907.2725
    [24] P. Jimenez-Delgado and E. Reya, Phys. Rev. D, 79: 074023 (2009)
    [25] P. Jimenez-Delgado and E. Reya, Phys. Rev. D, 80: 114011 (2009)
    [26] M. Glck and E. Reya, Nucl. Phys. B, 130: 76 (1977)
    [27] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Eur. Phys. J. C, 23: 73 (2002)
    [28] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Phys. Lett. B, 531: 216 (2002)
    [29] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Phys. Lett. B, 652: 292 (2007)
    [30] Xurong Chen, Jianhong Ruan, Rong Wang, Pengming Zhang and Wei Zhu, Int. J. Mod. Phys. E, 23: 1450057 (2014)
    [31] Wei Zhu, Rong Wang, Jianhong Ruan, Xurong Chen, and Pengming Zhang, Eur. Phys. J. Plus, 131: 6 (2016)
    [32] Y. L. Dokshitzer, Sov. Phys. JETP, 46: 641 (1977)
    [33] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys., 15: 438 (1972)
    [34] G. Altarelli and G. Parisi, Nucl. Phys. B, 126: 298 (1977)
    [35] L. V. Gribov, E. M. Levin and M. G. Ryskin, Phys. Rep., 100: 1 (1983)
    [36] A. H. Mueller and Jianwei Qiu, Nucl. Phys. B, 268: 427 (1986)
    [37] Wei Zhu, Nucl. Phys. B, 551: 245 (1999)
    [38] Wei Zhu and Jianhong Ruan, Nucl. Phys. B, 559: 378 (1999) [arXiv:hep-ph/9907330v2]
    [39] Wei Zhu and Zhenqi Shen, High Energy Physics and Nuclear Physics, 29: 109 (2005) [arXiv:hep-ph/0406213v3]
    [40] K. J. Eskola, H. Honkanen, V. J. Kolhinen, J. Qiu, and C. A. Salgado, Nucl. Phys. B, 660: 211 (2003)
    [41] L. W. Whitlow et al, Phys. Lett. B, 282: 475 (1992)
    [42] A. C. Benvenuti et al (BCDMS Collaboration), Phys. Lett. B, 223}: 485 (1989)
    [43] M. Arneodo et al (The New Muon Collaboration), Nucl. Phys. B, 483}: 3 (1997)
    [44] M. R. Adams et al (Fermilab E665 Collaboration), Phys. Rev. D, 54: 3006 (1996)
    [45] F. D. Aaron et al (The H1 Collaboration), Eur. Phys. J. C, 71}: 1579 (2011)
    [46] Howard Georgi and H. David Politzer, Phys. Rev. D, 14: 1829 (1976)
    [47] Ingo Schienbein et al., J. Phys. G: Nucl. Part. Phys., 35: 053101 (2008)
    [48] G. Parisi and R. Petronzio, Phys. Lett. B, 62: 331 (1976)
    [49] A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, JETP Lett., 24: 341 (1976)
    [50] S.J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys Lett. B, 93: 451 (1980)
    [51] Wen-Chen Chang and Jen-Chieh Peng, Phys. Rev. Lett., 106: 252002 (2011)
    [52] Keh-Fei Liu and Shao-Jing Dong, Phys. Rev. Lett., 72: 1790 (1994)
    [53] Keh-Fei Liu, Phys. Rev. D, 62: 074501 (2000)
    [54] Keh-Fei Liu, Wen-Chen Chang, Hai-Yang Cheng, and Jen-Chieh Peng, Phys. Rev. Lett., 109: 252002 (2012)
    [55] A. Signal, A. W. Schreiber, and A. W. Thomas, Mod. Phys. Lett. A, 6: 271 (1991)
    [56] W. Melnitchouk, J. Speth, and A. W. Thomas, Phys. Rev. D, 59}: 014033 (1998)
    [57] N. N. Nikolaev, W. Schfer, A. Szczurek, and J. Speth, Phys. Rev. D, 60: 014004 (1999)
    [58] R.S. Towell et al (FNAL E866/NuSea Collaboration), Phys. Rev. D, 64: 052002 (2001)
    [59] G. Altarelli, Phys. Rep., 81: 1 (1982)
    [60] F. M. Steffens and A. W. Thomas, Prog. Theor. Phys. Suppl., 120}: 145 (1995)
    [61] E. Witten, Nucl. Phys. B, 104: 445 (1976)
    [62] M. Glck and E. Reya, Phys. Lett. B, 83: 98 (1979)
    [63] Wen-Chen Chang and Jen-Chieh Peng, Prog. Part. Nucl. Phys., 79}: 95
    [64] A. Airapetian et al (HERMES Collaboration), Phys. Lett. B, 666}: 446 (2008)
    [65] A. Airapetian et al (HERMES Collaboration), Phys. Rev. D, 89}: 097101 (2014)
    [66] C. Adloff et al (H1 Collaboration), Phys. Lett. B, 528: 199 (2002)
    [67] S. Chekanov et al (ZEUS Collaboration), Phys. Rev. D, 69: 012004 (2004)
    [68] git clone https://github.com/lukeronger/IMParton.git
  • 加载中

Get Citation
Rong Wang and Xu-Rong Chen. Dynamical parton distributions from DGLAP equations with nonlinear corrections[J]. Chinese Physics C, 2017, 41(5): 053103. doi: 10.1088/1674-1137/41/5/053103
Rong Wang and Xu-Rong Chen. Dynamical parton distributions from DGLAP equations with nonlinear corrections[J]. Chinese Physics C, 2017, 41(5): 053103.  doi: 10.1088/1674-1137/41/5/053103 shu
Milestone
Received: 2016-12-01
Revised: 2016-01-04
Fund

    Supported by National Basic Research Program (973 Program 2014CB845406) and Century Program of Chinese Academy of Sciences (Y101020BR0)

Article Metric

Article Views(804)
PDF Downloads(17)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Dynamical parton distributions from DGLAP equations with nonlinear corrections

    Corresponding author: Rong Wang,
    Corresponding author: Xu-Rong Chen,
  • 1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 2. Lanzhou University, Lanzhou 730000, China
  • 3.  Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Fund Project:  Supported by National Basic Research Program (973 Program 2014CB845406) and Century Program of Chinese Academy of Sciences (Y101020BR0)

Abstract: Determination of proton parton distribution functions is presented under the dynamical parton model assumption by applying DGLAP equations with GLR-MQ-ZRS corrections. We provide two data sets, referred to as IMParton16, which are from two different nonperturbative inputs. One is the naive input of three valence quarks and the other is the input of three valence quarks with flavor-asymmetric sea components. Basically, both data sets are compatible with the experimental measurements at high scale (Q2 >2 GeV2). Furthermore, our analysis shows that the input with flavor-asymmetric sea components better reproduces the structure functions at high Q2. Generally, the parton distribution functions obtained, especially the gluon distribution function, are good options for inputs to simulations of high energy scattering processes. The analysis is performed under the fixed-flavor number scheme for nf= 3, 4, 5. Both data sets start from very low scales, around 0.07 GeV2, where the nonperturbative input is directly connected to the simple picture of the quark model. These results may shed some lights on the origin of the parton distributions observed at high Q2.

    HTML

Reference (68)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return