Quark chiral condensate from the overlap quark propagator

  • From the overlap lattice quark propagator calculated in the Landau gauge, we determine the quark chiral condensate by fitting operator product expansion formulas to the lattice data. The quark propagators are computed on domain wall fermion configurations generated by the RBC-UKQCD Collaborations with Nf=2+1 flavors. Three ensembles with different light sea quark masses are used at one lattice spacing 1/a=1.75(4) GeV. We obtain <ψψ>MS(2 GeV)=(-304(15)(20) MeV)3 in the SU(2) chiral limit.
      PCAS:
  • 加载中
  • [1] T. Blum et al (RBC and UKQCD Collaborations), Phys. Rev. D, 93(7): 074505 (2016) doi:10.1103/PhysRevD.93.074505 [arXiv:1411.7017 [hep-lat]]
    [2] A. Bazavov et al, PoS LATTICE, 2010: 083 (2010) [arXiv:1011.1792 [hep-lat]]
    [3] K. Cichy, E. Garcia-Ramos, and K. Jansen, JHEP, 1310: 175 (2013) doi:10.1007/JHEP10(2013)175 [arXiv:1303.1954 [hep-lat]]
    [4] S. Borsanyi, S. Durr, Z. Fodor, S. Krieg, A. Schafer, E. E. Scholz, and K. K. Szabo, Phys. Rev. D, 88: 014513 (2013) doi:10.1103/PhysRevD.88.014513 [arXiv:1205.0788 [hep-lat]]
    [5] S. D rr et al (Budapest-Marseille-Wuppertal Collaboration), Phys. Rev. D, 90 (11): 114504 (2014) doi:10.1103/PhysRevD.90.114504 [arXiv:1310.3626 [hep-lat]]
    [6] R. Baron et al (ETM Collaboration), JHEP, 1008: 097 (2010) doi:10.1007/JHEP08(2010)097 [arXiv:0911.5061 [hep-lat]]
    [7] B. B. Brandt, A. Jttner, and H. Wittig, JHEP, 1311: 034 (2013) doi:10.1007/JHEP11(2013)034 [arXiv:1306.2916 [hep-lat]]
    [8] G. P. Engel, L. Giusti, S. Lottini, and R. Sommer, Phys. Rev. D, 91 (5): 054505 (2015) doi:10.1103/PhysRevD.91.054505 [arXiv:1411.6386 [hep-lat]]
    [9] T. DeGrand, Z. Liu, and S. Schaefer, Phys. Rev. D, 74: 094504 (2006); Phys. Rev. D, 74: 099904 (2006) doi:10.1103/PhysRevD.74.094504, 10.1103/PhysRevD.74.099904 [hep-lat/0608019]
    [10] S. Aoki et al, arXiv:1607.00299 [hep-lat]
    [11] F. Burger, V. Lubicz, M. M ller-Preussker, S. Simula, and C. Urbach, Phys. Rev. D, 87 (3): 034514 (2013); Phys. Rev. D, 87: 079904 (2013) doi:10.1103/PhysRevD.87.034514, 10.1103/PhysRevD.87.079904 [arXiv:1210.0838 [hep-lat]]
    [12] P. O. Bowman, U. M. Heller, D. B. Leinweber, M. B. Parappilly, and A. G. Williams, Nucl. Phys. Proc. Suppl., 161: 27 (2006) doi:10.1016/j.nuclphysbps.2006.08.078
    [13] D. Becirevic and V. Lubicz, Phys. Lett. B, 600: 83 (2004) doi:10.1016/j.physletb.2004.07.065 [hep-ph/0403044]
    [14] P. Boucaud, J. P. Leroy, A. L. Yaouanc, J. Micheli, O. Pene, and J. Rodriguez-Quintero, Phys. Rev. D, 81: 094504 (2010) doi:10.1103/PhysRevD.81.094504 [arXiv:0912.3173 [hep-lat]]
    [15] V. Gimenez, V. Lubicz, F. Mescia, V. Porretti, and J. Reyes, Eur. Phys. J. C, 41: 535 (2005) doi:10.1140/epjc/s2005-02250-9 [hep-lat/0503001]
    [16] K. G. Chetyrkin and A. Maier, JHEP, 1001: 092 (2010) doi:10.1007/JHEP01(2010)092 [arXiv:0911.0594 [hep-ph]]
    [17] K. G. Chetyrkin and A. Retey, Nucl. Phys. B, 583: 3 (2000) doi:10.1016/S0550-3213(00)00331-X [hep-ph/9910332]
    [18] Y. Aoki et al (RBC and UKQCD Collaborations), Phys. Rev. D, 83: 074508 (2011) [arXiv:1011.0892 [hep-lat]]}
    [19] Y. B. Yang et al, Phys. Rev. D, 92 (3): 034517 (2015) [arXiv:1410.3343 [hep-lat]]}
    [20] H. Neuberger, Phys. Lett. B, 417: 141 (1998) [hep-lat/9707022]}
    [21] T. -W. Chiu and S. V. Zenkin, Phys. Rev. D, 59: 074501 (1999) [hep-lat/9806019]}
    [22] Z. Liu et al (chiQCD Collaboration), Phys. Rev. D, 90 (3): 034505 (2014) [arXiv:1312.7628 [hep-lat]]}
    [23] Y. Bi, H. Cai, Y. Chen, M. Gong, Z. Liu, H. X. Qiao, and Y. B. Yang, Chin. Phys. C, 40 (7): 073106 (2016) doi:10.1088/1674-1137/40/7/073106 [arXiv:1510.07354 [hep-ph]]
    [24] B. Blossier et al, Phys. Rev. D, 83: 074506 (2011) doi:10.1103/PhysRevD.83.074506 [arXiv:1011.2414 [hep-ph]]
    [25] B. Blossier et al (ETM Collaboration), Phys. Rev. D, 82: 034510 (2010) doi:10.1103/PhysRevD.82.034510 [arXiv: 1005.5290 [hep-lat]]
    [26] C. Patrignani et al (Particle Data Group Collaboration), Chin. Phys. C, 40 (10): 100001 (2016). doi:10.1088/1674-1137/40/10/100001
    [27] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and A. Vladikas, Nucl. Phys. B, 445: 81 (1995) [arXiv:hep-lat/9411010]}
  • 加载中

Get Citation
Chao Wang, Yujiang Bi, Hao Cai, Ying Chen, Ming Gong and Zhaofeng Liu. Quark chiral condensate from the overlap quark propagator[J]. Chinese Physics C, 2017, 41(5): 053102. doi: 10.1088/1674-1137/41/5/053102
Chao Wang, Yujiang Bi, Hao Cai, Ying Chen, Ming Gong and Zhaofeng Liu. Quark chiral condensate from the overlap quark propagator[J]. Chinese Physics C, 2017, 41(5): 053102.  doi: 10.1088/1674-1137/41/5/053102 shu
Milestone
Received: 2016-12-21
Fund

    Supported by National Natural Science Foundation of China (11575197, 11575196, 11335001, 11405178), joint funds of NSFC (U1632104, U1232109), YC and ZL acknowledge the support of NSFC and DFG (CRC110)

Article Metric

Article Views(859)
PDF Downloads(27)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Quark chiral condensate from the overlap quark propagator

    Corresponding author: Chao Wang,
    Corresponding author: Zhaofeng Liu,
  • 1. Institute of High Energy Physics and Theoretical Physics Center for Science Facilities,Chinese Academy of Sciences, Beijing 100049, China
  • 2. School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3.  School of Physics and Technology, Wuhan University, Wuhan 430072, China
Fund Project:  Supported by National Natural Science Foundation of China (11575197, 11575196, 11335001, 11405178), joint funds of NSFC (U1632104, U1232109), YC and ZL acknowledge the support of NSFC and DFG (CRC110)

Abstract: From the overlap lattice quark propagator calculated in the Landau gauge, we determine the quark chiral condensate by fitting operator product expansion formulas to the lattice data. The quark propagators are computed on domain wall fermion configurations generated by the RBC-UKQCD Collaborations with Nf=2+1 flavors. Three ensembles with different light sea quark masses are used at one lattice spacing 1/a=1.75(4) GeV. We obtain <ψψ>MS(2 GeV)=(-304(15)(20) MeV)3 in the SU(2) chiral limit.

    HTML

Reference (27)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return