Determination of neutron capture cross sections of 232Th at 14.1 MeV and 14.8 MeV using the neutron activation method

  • The 232Th(n,γ)233Th neutron capture reaction cross sections were measured at average neutron energies of 14.1 MeV and 14.8 MeV using the activation method. The neutron flux was determined using the monitor reaction 27Al(n,α)24Na. The induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The experimentally determined cross sections were compared with the data in the literature, and the evaluated data of ENDF/B-VⅡ.1, JENDL-4.0u+, and CENDL-3.1. The excitation functions of the 232Th(n,γ)233Th reaction were also calculated theoretically using the TALYS1.6 computer code.
  • [1] V. G Pronyaev, Summary Report of the Consultants' Meeting on Assessment of Nuclear Data Needs for Thorium and Other Advanced Cycles, Rep. INDC(NDS)-408, IAEA, Vienna, 1999
    [2] M. H. Jiang, H. J. Xu, and Z. M. Dai, Bulletin of Chinese Academy of Sciences, 27:366 (2012)(in Chinese)
    [3] M. B. Chadwick, M. Herman, P. ObloŽinsk'y et al, Nucl. Data Sheets, 112:2887 (2011)
    [4] K. Shibata, O. Iwamoto, T. Nakagawa et al, J. Nucl. Sci. Technol., 48:1 (2011)
    [5] Z. G. Ge, Y.X. Zhuang, T.J. Liu et al, J. Korean. Phys. Soc., 59:2 (2011)
    [6] L. F. Curtis, Introduction to neutron physics. (D. Van Nostrand Company, Princeton, NJ, 1969)
    [7] V. E. Lewis and K. J. Zieba, Nucl. Instrum. Methods, 179:141 (1980)
    [8] J. H. Luo, L. Du and J. Zhao, Nucl. Instrum. Methods B, 298:61 (2013)
    [9] J. H. Luo, X. S. Xu, X. X. Cao et al, Nucl. Instrum. Methods B, 265:453 (2007)
    [10] B. Singh and J. K. Tuli, Nucl. Data Sheets, 105:109 (2005)
    [11] R. B. Firestone, Nucl. Data Sheets, 108:2319 (2007)
    [12] X. Z. Kong, R. Wang, Y. C. Wang et al, Appl. Radiat Isot., 50:361 (1999)
    [13] A. J. Koning, S. Hilaire and M. C. Duijvestijn, TALYS-1.0, in Proceedings of the International Conference on Nuclear Data for Science and Technology, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and S. Leray (Nice, France, EDP Sciences 2008), p. 211
    [14] A. J. Koning and J. P. Delaroche, Nucl. Phys. A, 713:231 (2003)
    [15] W. Hauser, H. Feshbach, Phys. Rev., 87:366 (1952)
    [16] C. Kalbach, Phys. Rev. C, 33:818 (1986)
    [17] H. Naik, S. V. Surayanarayana, S. Bishnoi et al, J. Radianal. Nucl. Chem., 303:2497 (2015)
    [18] J. L. Perkin, L. P. O'Connor, R.F. Colemann, Proc. Phys. Soc. London, 72:505 (1958)
    [19] M. Lindner, R. J. Nagle, J.H. Landrum, Nucl. Sci. Eng., 59:381 (1976)
    [20] W. P. Poenitz and D. L. Smith, Argonne National Laboratory Reports No.42 (1978)
    [21] H. Naik, P. M. Prajapati, S. V. Surayanarayana et al, Eur. Phys. J. A, 47:51 (2011)
    [22] S. Mukerji, H. Naik, S. V. Suryanarayana et al, Pramana, 79:249 (2012)
    [23] C. Rita, H. Naik, S.V. Surayanarayana et al, Ann. Nucl. Energy, 47:160 (2012)
    [24] P. M. Prajapati, H. Naik, S. V. Surayanarayana et al, Eur. Phys. J. A, 48:52 (2012)
    [25] M. Bhike, B. J. Roy, A. Saxena et al, Nucl. Sci. Eng., 170:44 (2012)
  • [1] V. G Pronyaev, Summary Report of the Consultants' Meeting on Assessment of Nuclear Data Needs for Thorium and Other Advanced Cycles, Rep. INDC(NDS)-408, IAEA, Vienna, 1999
    [2] M. H. Jiang, H. J. Xu, and Z. M. Dai, Bulletin of Chinese Academy of Sciences, 27:366 (2012)(in Chinese)
    [3] M. B. Chadwick, M. Herman, P. ObloŽinsk'y et al, Nucl. Data Sheets, 112:2887 (2011)
    [4] K. Shibata, O. Iwamoto, T. Nakagawa et al, J. Nucl. Sci. Technol., 48:1 (2011)
    [5] Z. G. Ge, Y.X. Zhuang, T.J. Liu et al, J. Korean. Phys. Soc., 59:2 (2011)
    [6] L. F. Curtis, Introduction to neutron physics. (D. Van Nostrand Company, Princeton, NJ, 1969)
    [7] V. E. Lewis and K. J. Zieba, Nucl. Instrum. Methods, 179:141 (1980)
    [8] J. H. Luo, L. Du and J. Zhao, Nucl. Instrum. Methods B, 298:61 (2013)
    [9] J. H. Luo, X. S. Xu, X. X. Cao et al, Nucl. Instrum. Methods B, 265:453 (2007)
    [10] B. Singh and J. K. Tuli, Nucl. Data Sheets, 105:109 (2005)
    [11] R. B. Firestone, Nucl. Data Sheets, 108:2319 (2007)
    [12] X. Z. Kong, R. Wang, Y. C. Wang et al, Appl. Radiat Isot., 50:361 (1999)
    [13] A. J. Koning, S. Hilaire and M. C. Duijvestijn, TALYS-1.0, in Proceedings of the International Conference on Nuclear Data for Science and Technology, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and S. Leray (Nice, France, EDP Sciences 2008), p. 211
    [14] A. J. Koning and J. P. Delaroche, Nucl. Phys. A, 713:231 (2003)
    [15] W. Hauser, H. Feshbach, Phys. Rev., 87:366 (1952)
    [16] C. Kalbach, Phys. Rev. C, 33:818 (1986)
    [17] H. Naik, S. V. Surayanarayana, S. Bishnoi et al, J. Radianal. Nucl. Chem., 303:2497 (2015)
    [18] J. L. Perkin, L. P. O'Connor, R.F. Colemann, Proc. Phys. Soc. London, 72:505 (1958)
    [19] M. Lindner, R. J. Nagle, J.H. Landrum, Nucl. Sci. Eng., 59:381 (1976)
    [20] W. P. Poenitz and D. L. Smith, Argonne National Laboratory Reports No.42 (1978)
    [21] H. Naik, P. M. Prajapati, S. V. Surayanarayana et al, Eur. Phys. J. A, 47:51 (2011)
    [22] S. Mukerji, H. Naik, S. V. Suryanarayana et al, Pramana, 79:249 (2012)
    [23] C. Rita, H. Naik, S.V. Surayanarayana et al, Ann. Nucl. Energy, 47:160 (2012)
    [24] P. M. Prajapati, H. Naik, S. V. Surayanarayana et al, Eur. Phys. J. A, 48:52 (2012)
    [25] M. Bhike, B. J. Roy, A. Saxena et al, Nucl. Sci. Eng., 170:44 (2012)
  • 加载中

Cited by

1. Yang, X.-L., Lan, C.-L., Wei, Y.-T. et al. Cross section determination of 27Al(n,2n)26Al reaction induced by 14-MeV neutrons uniting with D-T neutron activation and AMS techniques[J]. Nuclear Science and Techniques, 2024, 35(6): 94. doi: 10.1007/s41365-024-01451-z
2. Yao, Z., Wang, J., Zhang, Y. et al. Development and Application of Neutron Generator at Lanzhou University | [兰州大学的中子发生器研制及应用展望][J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2022, 56(9): 1840-1852. doi: 10.7538/yzk.2022.youxian.0445
3. Lan, C., Yang, X., Li, X. et al. Measurement of 54Fe(n,2n)53Fe reaction cross-sections at 14 MeV neutron energies using activation method and its relevance for fusion-plasma temperature diagnosis[J]. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2022. doi: 10.1016/j.nimb.2022.06.003
4. Yang, X., Lan, C., Wang, J. et al. Cross section measurements of (n, α) (n, n'α) and (n, p) reactions for 65Cu at 14 MeV neutrons[J]. Radiation Physics and Chemistry, 2022. doi: 10.1016/j.radphyschem.2022.110192
5. Gao, X.. DETERMINATION OF CHEMICAL COMPOSITION OF SURFACE WATER IN THE YELLOW RIVER BASIN[J]. Environmental Engineering and Management Journal, 2022, 21(2): 237-245.
6. Liu, S., Ge, Z., Ruan, X. et al. China Nuclear Data Research Progress and Prospect | [中国核数据研究进展及未来展望][J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2020. doi: 10.7538/yzk.2020.zhuankan.0347
7. Ganesapandy, T.S., Jeremiah, J.J., Dahiwale, S.S. et al. Analysis of neutron induced (n,γ)and (n,2n)reactions on 232Th from reaction threshold to 20 MeV[J]. Applied Radiation and Isotopes, 2019. doi: 10.1016/j.apradiso.2019.05.021
8. Qiu, Y., Liu, T., Zhan, X. et al. Study on Indirect Measurement of Fast Neutron Activation Cross Section by Using Decay Product | [利用衰变产物间接测量快中子活化截面的研究][J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2018, 52(10): 1729-1734. doi: 10.7538/yzk.2018.youxian.0016
9. Huang, Z.-W., Wang, J.-R., Wei, Z. et al. Development of a compact D-D neutron generator[J]. Journal of Instrumentation, 2018, 13(1): P01013. doi: 10.1088/1748-0221/13/01/P01013
Get Citation
Chang-Lin Lan, Yi Zhang, Tao Lv, Bao-Lin Xie, Meng Peng, Ze-En Yao, Jin-Gen Chen and Xiang-Zhong Kong. Determination of neutron capture cross sections of 232Th at 14.1 MeV and 14.8 MeV using the neutron activation method[J]. Chinese Physics C, 2017, 41(4): 044002. doi: 10.1088/1674-1137/41/4/044002
Chang-Lin Lan, Yi Zhang, Tao Lv, Bao-Lin Xie, Meng Peng, Ze-En Yao, Jin-Gen Chen and Xiang-Zhong Kong. Determination of neutron capture cross sections of 232Th at 14.1 MeV and 14.8 MeV using the neutron activation method[J]. Chinese Physics C, 2017, 41(4): 044002.  doi: 10.1088/1674-1137/41/4/044002 shu
Milestone
Received: 2016-08-03
Revised: 2016-10-22
Fund

    Supported by Chinese TMSR Strategic Pioneer Science and Technology Project-The Th-U Fuel Physics Term (XDA02010100) and National Natural Science Foundation of China (11205076, 21327801)

Article Metric

Article Views(2343)
PDF Downloads(27)
Cited by(9)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Determination of neutron capture cross sections of 232Th at 14.1 MeV and 14.8 MeV using the neutron activation method

    Corresponding author: Chang-Lin Lan,
  • 1.  School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
  • 2.  Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Fund Project:  Supported by Chinese TMSR Strategic Pioneer Science and Technology Project-The Th-U Fuel Physics Term (XDA02010100) and National Natural Science Foundation of China (11205076, 21327801)

Abstract: The 232Th(n,γ)233Th neutron capture reaction cross sections were measured at average neutron energies of 14.1 MeV and 14.8 MeV using the activation method. The neutron flux was determined using the monitor reaction 27Al(n,α)24Na. The induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The experimentally determined cross sections were compared with the data in the literature, and the evaluated data of ENDF/B-VⅡ.1, JENDL-4.0u+, and CENDL-3.1. The excitation functions of the 232Th(n,γ)233Th reaction were also calculated theoretically using the TALYS1.6 computer code.

    HTML

Reference (25)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return