Pion properties at finite isospin chemical potential with isospin symmetry breaking

  • Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the m u quark and m d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI<0 and μI>0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses.
      PCAS:
  • 加载中
  • [1] M. Asakawa and K. Yazaki, Nucl. Phys. A, 504:668(1989)
    [2] S. Klimt, M. Lutz, and W. Weise, Phys. Lett. B, 249:386(1990)
    [3] S. Roessner, T. Hell, C. Ratti et al, Nucl. Phys. A, 814:118(2008)
    [4] K. Fukushima, Phys. Rev. D, 77:114028(2008)
    [5] A. Barducci, R. Casalbuoni, S. De Curtis et al, Phys. Rev. D, 46:2203(1992)
    [6] Zhao Zhang, Yu-Xin Liu, Phys. Rev. C, 75:064910(2007)
    [7] Jens O. Andersen, Lars Kyllingstad, J. Phys. G, 37:015003(2009)
    [8] C. Villavicencio, E.S. Fraga, Nucl. Phys. A, 785:238-240(2007)
    [9] M. Loewe and C. Villavicencio, Phys. Rev. D, 67:074034(2003); Phys. Rev. D, 70:074005(2004)
    [10] M. Huang, P. Zhuang, and W. Chao, Phys. Rev. D, 67:065015(2003)
    [11] A. Barducci, R. Casalbuoni, G. Pettini et al, Phys. Rev. D, 69:096004(2004)
    [12] A. Barducci, R. Casalbuoni, G. Pettini et al, Phys. Rev. D, 71:016011(2005)
    [13] Zan Pan, Zhu-Fang Cui, Chao-Hsi Chang et al, Int. J. Mod. Phys. A, 32:1750067(2017)
    [14] Qing-Wu Wang, Zhu-Fang Cui, and Hong-Shi Zong, Phys. Rev. D, 94:096003(2016)
    [15] Zhu-Fang Cui, Ian C. Cloet, Ya Lu et al, Phys. Rev. D, 94:071503(2016)
    [16] Ya Lu, Zhu-Fang Cui, Zan Pan et al, Phys. Rev. D, 93:074037(2016)
    [17] Yi-Lun Du, Zhu-Fang Cui, Yong-Hui Xia et al, Phys.Rev. D, 88:114019(2013)
    [18] Hong-shi Zong and Wei-min Sun, Phys. Rev. D, 78:054001(2008)
    [19] Guo-yun Shao, Lei Chang, Yu-xin Liu et al, Phys. Rev. D, 73:076003(2006)
    [20] Gao-feng Sun, Lianyi He, and Pengfei Zhuang, Phys. Rev. D, 75:096004(2007)
    [21] Lianyi He, Meng Jin, and Pengfei Zhuang, Phys. Rev. D, 74:036005(2006)
    [22] Yu Jiang, Yuan-mei Shi, Hua Li et al, Phys. Rev. D, 78:116005(2008)
    [23] Yu Jiang, Yuan-mei Shi, Hong-tao Feng et al, Phys. Rev. C, 78:025214(2008)
    [24] Hongshi Zong, Xiaohua Wu, Xiaofu Lu et al, arXiv:hep-ph/0109112
    [25] Lianyi He, Meng Jin, and Pengfei Zhuang, Phys. Rev. D, 71:116001(2005)
    [26] Nathan Isgur, Phys. Rev. D, 21:779(1980); Phys. Rev. D, 23:817(1981)
    [27] P. G. Reinhard, Rept. Prog. Phys., 52:439(1989)
    [28] John Dirk Walecka, Theoretical nuclear and subnuclear physics, Second edition (World Scientific, 2004), p.18
    [29] Takahiro Fujihara, Tomohiro Inagaki, and Daiji Kimura, arXiv:hep-ph/0702160
    [30] Takahiro Fujihara, Tomohiro Inagaki, and Daiji Kimura, arXiv:hep-ph/0511218
    [31] Shane Drury, Thomas Blum, Masashi Hayakawa et al, PoS LATTICE2013:268(2014)
    [32] Derek P. Horkel and Stephen R. Sharp, Phys. Rev. D, 92:074501(2015)
    [33] B. Klein, D. Toublan, and J. J. M. Verbaarschot, arXiv:hep-ph/0405180
    [34] B. Klein, D. Toublan, and J. J. M. Verbaarschot, Phys. Rev. D, 68:014009(2003)
    [35] S. P. Klevansky, Rev. Mod. Phys., 64:649(1992)
    [36] Nambu and G. Jona-Lasinio, Phys. Rev., 122:345(1961); 124:246(1961)
    [37] U. Vogl and Weise, Prog. Part. and Nucl. Phys., 27:195(1991)
    [38] M. K. Volkov, Phys. Part. Nucl., 24:35(1993)
    [39] T. Hatsuda and T. Kunihiro, Phys. Rep., 247:221(1994)
    [40] J. Hufner, S. P. Klevansky, P. Zhuang et al, Ann. Phys (N.Y), 234:225(1994)
    [41] P. Zhuang, J. Hufner, S. P. Klevansky, Nucl. Phys. A, 576:525(1994)
    [42] Michael E. Peskin and Daniel V. Schroeder, An introduction to quantum field, (World Book Press, 2006)
    [43] W. Greiner, J. Reinhardt, Quantum Electrodynamics, (Springer-Verlag Berlin Heidelberg, 1992)
    [44] J. I. Kapusta and C. Gale, Finite-temperature field theory:Priciples and applications, (Cambridge University Press, 2006)
    [45] Shusheng Xu, Yan Yan, Zhufang Cui et al, Int. J. Mod. Phys. A, 30:1550217(2015)
    [46] M. Huang, P. Zhuang and W. Chao, Phys. Rev. D, 65:076012(2002)
    [47] Z. G. Wang and S. L. Wan, and W. M. Yang, arXiv:hep-ph/0508302
    [48] Takahiro Sasaki, Yuji Sakai, Hiroaki Kouno et al, Phys. Rev. D, 82:116004(2010)
    [49] M. Framk, M. Buballa, and M. Oertel, Phys. Lett. B, 562:221(2003)
    [50] Xuewen Hao and Pengfei Zhuang, Phys. Lett. B, 652:275(2007)
    [51] He Liu, Jun Xu, Lie-Wen Chen et al, Phys. Rev. D, 94:065032(2016)}
  • 加载中

Get Citation
Zuqing Wu, Jialun Ping and Hongshi Zong. Pion properties at finite isospin chemical potential with isospin symmetry breaking[J]. Chinese Physics C, 2017, 41(12): 124106. doi: 10.1088/1674-1137/41/12/124106
Zuqing Wu, Jialun Ping and Hongshi Zong. Pion properties at finite isospin chemical potential with isospin symmetry breaking[J]. Chinese Physics C, 2017, 41(12): 124106.  doi: 10.1088/1674-1137/41/12/124106 shu
Milestone
Received: 2017-08-29
Fund

    Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)

Article Metric

Article Views(997)
PDF Downloads(24)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Pion properties at finite isospin chemical potential with isospin symmetry breaking

    Corresponding author: Zuqing Wu,
    Corresponding author: Jialun Ping,
    Corresponding author: Hongshi Zong,
  • 1.  Department of Physics, Nanjing Normal University, Nanjing 210023, China
  • 2.  Department of Physics, Nanjing University, Nanjing 210093, China
Fund Project:  Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)

Abstract: Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the m u quark and m d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI<0 and μI>0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses.

    HTML

Reference (51)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return