Estimating proton radius and proportion of other non-perturbative components in the proton by the maximum entropy method

  • In this paper, we apply the Maximum Entropy Method to estimate the proton radius and determine the valence quark distributions in the proton at extremely low resolution scale Q02. Using the simplest functional form of the valence quark distribution and standard deviations of quark distribution functions in the estimation of the proton radius, we obtain a quadratic polynomial for the relationship between the proton radius and the momentum fraction of other non-perturbative components in the proton. The proton radii are approximately equal to the muonic hydrogen experimental result rp=0.841 fm and the CODATA analysis rp=0.877 fm when the other non-perturbative components account for 17.5% and 22.3% respectively. We propose "ghost matter" to explain the difference in other non-perturbative components (4.8%) that the electron can detect.
      PCAS:
  • 加载中
  • [1] F. Dahia and A. S. Lemos, Eur. Phys. J. C, 76:435(2016)
    [2] I. T. Lorenz, H. W. Hammer, and Ulf-G. Meişner, Eur. Phys. J. A, 48:151(2012)
    [3] Carl E. Carlson, arXiv:1502.05314v1
    [4] R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben et al, Nature, 466:213(2010)
    [5] A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, F. Biraben et al, Science, 339:417(2013)
    [6] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys., 84:1527(2012)
    [7] I. Sick, Phys. Lett. B, 576:62(2003)
    [8] P. G. Blunden and I. Sick, Phys. Rev. C, 72:057601(2005)
    [9] E. Kraus, K. E. Mesick, A. White, R. Gilman, and S. Strauch, Phys. Rev. C, 90:045206(2014)
    [10] Krzysztof M. Graczyk and Cezary Juszczak, Phys. Rev. C, 90:054334(2014)
    [11] Rong Wang and Xurong Chen, Phys. Rev. D, 91:054026(2015)
    [12] E. M Henley and G. A. Miller, Phys. Lett. B, 251:453(1990)
    [13] A. I. Signal, A. W. Schreiber, and A. W. Thomas, Mod. Phys. Lett. A, 6:271(1991)
    [14] W. Melnitchouk, J. Speth, and A. W. Thomas, Phys. Rev. D, 59:014033(1998)
    [15] N. N. Nikolaev, W. Schafer, A. Szczurek, and J. Speth, Phys. Rev. D, 60:014004(1999)
    [16] B. S. Zou, Nucl. Phys. A, 835:199(2010)
    [17] B. S. Zou and D. O. Riska, Phys. Rev. Lett., 95:072001(2005)
    [18] D. O. Riska and B. S. Zou, Phys. Lett. B, 636:265(2006)
    [19] C. S. An, D. O. Riska, and B. S. Zou, Phys. Rev. C, 73:035207(2006)
    [20] S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys. Lett. B, 93:451(1980)
    [21] Wen-Chen Chang and Jen-Chieh Peng, Phys. Rev. Lett., 106:252002(2011)
    [22] M. Salajegheh, Phys. Rev. D, 73:074033(2015)
    [23] Keh-Fei Liu and Shao-Jing Dong, Phys. Rev. Lett., 72:1790(1994)
    [24] Keh-Fei Liu, Phys. Rev. D, 62:074501(2000)
    [25] Keh-Fei Liu, Wen-Chen Chang, Hai-Yang Cheng, and Jen-Chieh Peng, Phys. Rev. Lett., 109:252002(2012)
    [26] H. L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C. P. Yuan, Phys. Rev. D, 82:074024(2010)
    [27] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C, 63:189(2009)
    [28] Rong Wang and Xurong Chen, Chinese Physics C, 41(5):053103(2017)
    [29] G. Parisi and R. Petronzio, Phys. Lett. B, 62:331(1976)
    [30] A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, JETP Lett., 24:341(1976)
    [31] M. Glck and E. Reya, Nucl. Phys. B, 130:76(1977)
    [32] X. Chen, J. Ruan, R. Wang, P. Zhang, and W. Zhu, Int. J. Mod. Phys. E, 23:1450057(2014)
    [33] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky, and W. K. Tung, J. High Energy Phys., 07:012(2002)
    [34] Wei Zhu, Rong Wang, Jinghong Ruan et al, Eur. Phys. J. Plus, 131:6(2016)
    [35] K. A. Olive et al (Particle Data Group), Chin. Phys. C, 38:090001(2014)
    [36] Yong-jun Zhang, Bin Zhang, and Bo-Qiang Ma, Phys. Lett. B, 523:260-264(2001)
    [37] Yong-Jun Zhang, Wei-Zhen Deng, and Bo-Qiang Ma, Phys. Rev. D, 65:114005(2002)
    [38] J. Magnin and H. R. Christiansen, Phys. Rev. D, 61:054006(2000)
    [39] Yun-hua Zhang, Lijing Shao, and Bo-Qiang Ma, Phys. Lett. B, 671:30-35(2009)
    [40] E. Mac, E. Ugaz, Z. Phys. C, 43:655(1989)
  • 加载中

Get Citation
Cheng-Dong Han and Xu-Rong Chen. Estimating proton radius and proportion of other non-perturbative components in the proton by the maximum entropy method[J]. Chinese Physics C, 2017, 41(11): 113103. doi: 10.1088/1674-1137/41/11/113103
Cheng-Dong Han and Xu-Rong Chen. Estimating proton radius and proportion of other non-perturbative components in the proton by the maximum entropy method[J]. Chinese Physics C, 2017, 41(11): 113103.  doi: 10.1088/1674-1137/41/11/113103 shu
Milestone
Received: 2017-06-06
Fund

    Supported by National Basic Research Program of China (973 Program) (2014CB845406)

Article Metric

Article Views(1587)
PDF Downloads(20)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Estimating proton radius and proportion of other non-perturbative components in the proton by the maximum entropy method

    Corresponding author: Xu-Rong Chen,
  • 1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3.  Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Fund Project:  Supported by National Basic Research Program of China (973 Program) (2014CB845406)

Abstract: In this paper, we apply the Maximum Entropy Method to estimate the proton radius and determine the valence quark distributions in the proton at extremely low resolution scale Q02. Using the simplest functional form of the valence quark distribution and standard deviations of quark distribution functions in the estimation of the proton radius, we obtain a quadratic polynomial for the relationship between the proton radius and the momentum fraction of other non-perturbative components in the proton. The proton radii are approximately equal to the muonic hydrogen experimental result rp=0.841 fm and the CODATA analysis rp=0.877 fm when the other non-perturbative components account for 17.5% and 22.3% respectively. We propose "ghost matter" to explain the difference in other non-perturbative components (4.8%) that the electron can detect.

    HTML

Reference (40)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return