Ab initio many-body perturbation theory and no-core shell model

  • In many-body perturbation theory (MBPT) we always introduce a parameter Nshell to measure the maximal allowed major harmonic-oscillator (HO) shells for the single-particle basis, while the no-core shell model (NCSM) uses Nmax HO excitation truncation above the lowest HO configuration for the many-body basis. It is worth comparing the two different methods. Starting from "bare" and Okubo-Lee-Suzuki renormalized modern nucleon-nucleon interactions, NNLOopt and JISP16, we show that MBPT within Hartree-Fock bases is in reasonable agreement with NCSM within harmonic oscillator bases for 4He and 16O in "close" model space. In addition, we compare the results using "bare" force with the Okubo-Lee-Suzuki renormalized force.
      PCAS:
  • 加载中
  • [1] P. Navrtil and B. R. Barrett. Phys. Rev. C, 57:562-568 (1998)
    [2] P. Navrtil, J. P. Vary and B. R. Barrett. Phys. Rev. Lett., 84:5728-5731 (2000)
    [3] B. R. Barrett, P. Navrtil and J. P. Vary. Progress in Particle and Nuclear Physics, 69(0):131-181 (2013)
    [4] S. C. Pieper, V. R. Pandharipande, R. B. Wiringa and J. Carlson. Phys. Rev. C, 64:014001 (2001)
    [5] S. C. Pieper, R. B. Wiringa and J. Carlson. Phys. Rev. C, 70:054325 (2004)
    [6] M. Pervin, S. C. Pieper and R. B. Wiringa. Phys. Rev. C, 76:064319 (2007)
    [7] L. E. Marcucci, M. Pervin, S. C. Pieper, R. Schiavilla and R. B. Wiringa. Phys. Rev. C, 78:065501 (2008)
    [8] G. Hagen, T. Papenbrock, D. J. Dean and M. Hjorth-Jensen. Phys. Rev. Lett., 101:092502 (2008)
    [9] G. Hagen, T. Papenbrock and D. J. Dean. Phys. Rev. Lett., 103:062503 (2009)
    [10] G. Hagen, T. Papenbrock, D. J. Dean and M. Hjorth-Jensen. Phys. Rev. C, 82:034330 (2010)
    [11] R. Roth and P. Navrtil. Phys. Rev. Lett., 99:092501 (2007)
    [12] M. K. G. Kruse, E. D. Jurgenson, P. Navrtil, B. R. Barrett and W. E. Ormand. Phys. Rev. C, 87:044301 (2013)
    [13] L. Coraggio, N. Itaco, A. Covello, A. Gargano and T. T. S. Kuo. Phys. Rev. C, 68:034320 (2003)
    [14] Hasan, A. Mahmoud, J. P. Vary and P. Navrtil. Phys. Rev. C, 69:034332 (2004)
    [15] R. Roth, P. Papakonstantinou, N. Paar, H. Hergert, T. Neff and H. Feldmeier. Phys. Rev. C, 73:044312 (2006)
    [16] F. R. WANG, X. F. MENG, Y. A. LUO and F. PAN. Chinese physics C, 32(S2):109 (2008)
    [17] F. Pan, V. G. Gueorguiev and J. P. Draayer. Phys. Rev. Lett., 92:112503 (2004)
    [18] S. G. Zhou, C. K. Zheng and J. M. Hu. Chinese physics C, 22(12):1143 (1998)
    [19] Z. Z. Ren and G. O. Xu. Chinese physics C, 19(11):1029 (1995)
    [20] S. G. Zhou, F. R. Xu, C. K. Zheng and J. M. Hu. Chinese physics C, 23(08):803 (1999)
    [21] Y. M. Zhao, J. Q. Chen and B. Q. Chen. Chinese physics C, 21(04):356 (1997)
    [22] Y. M. Zhao and A. Arima. Physics Reports, 545(1):1-45 (2014)
    [23] A. Ekstrm, G. Baardsen, C. Forssn, G. Hagen, M. HjorthJensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T. Papenbrock, J. Sarich and S. M. Wild. Phys. Rev. Lett., 110:192502 (2013)
    [24] A. M. Shirokov, A. I. Mazur, S. A. Zaytsev, J. P. Vary and T. A. Weber. Phys. Rev. C, 70:044005 (2004)
    [25] A. Shirokov, J. Vary, A. Mazur, S. Zaytsev and T. Weber. Physics Letters B, 621(1-2):96-101 (2005)
    [26] A. Shirokov, J. Vary, A. Mazur and T. Weber. Physics Letters B, 644(1):33-37 (2007)
    [27] I. Stetcu, B. Barrett and U. van Kolck. Physics Letters B, 653(2-4):358-362 (2007)
    [28] R. J. Furnstahl, G. Hagen and T. Papenbrock. Phys. Rev. C, 86:031301 (2012)
    [29] S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van Kolck, P. Maris and J. P. Vary. Phys. Rev. C, 86:054002 (2012)
    [30] S. kubo. Progress of Theoretical Physics, 12(5):603-622 (1954)
    [31] K. Suzuki and S. Y. Lee. Progress of Theoretical Physics, 64(6):2091-2106 (1980)
    [32] K. Suzuki. Progress of Theoretical Physics, 68(1):246-260 (1982)
    [33] K. Suzuki and R. Okamoto. Progress of Theoretical Physics, 70(2):439-451 (1983)
    [34] K. Suzuki. Progress of Theoretical Physics, 68(6):1999-2013 (1982)
    [35] K. Suzuki and R. Okamoto. Progress of Theoretical Physics, 92(6):1045-1080 (1994)
    [36] P. Navrtil and E. Caurier. Phys. Rev. C, 69:014311 (2004)
    [37] R. Machleidt. Phys. Rev. C, 63:024001 (2001)
    [38] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen and J. J. de Swart. Phys. Rev. C, 49:2950-2962 (1994)
    [39] R. B. Wiringa, V. G. J. Stoks and R. Schiavilla. Phys. Rev. C, 51:38-51 (1995)
    [40] P. Doleschall. Phys. Rev. C, 69:054001 (2004)
    [41] D. R. Entem and R. Machleidt. Phys. Rev. C, 68:041001 (2003)
    [42] R. Machleidt and D. Entem. Physics Reports, 503(1):1-75 (2011)
    [43] K. A. Brueckner. Phys. Rev., 97:1353-1366 (1955)
    [44] J. Goldstone. Proc. R. Soc. Lond. A, 239:267-279 (1957)
    [45] H. A. Bethe, B. H. Brandow and A. G. Petschek. Phys. Rev., 129:225-264 (1963)
    [46] S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello and N. Itaco. Phys. Rev. C, 65:051301 (2002)
    [47] S. Bogner, T. Kuo and A. Schwenk. Physics Reports, 386(1):1-27 (2003)
    [48] S. K. Bogner, R. J. Furnstahl and R. J. Perry. Phys. Rev. C, 75:061001 (2007)
    [49] R. Roth, H. Hergert, P. Papakonstantinou, T. Neff and H. Feldmeier. Phys. Rev. C, 72:034002 (2005)
    [50] R. Roth, T. Neff and H. Feldmeier. Progress in Particle and Nuclear Physics, 65(1):50-93 (2010)
    [51] B. S. Hu, F. R. Xu, Z. H. Sun, J. P. Vary and T. Li. Phys. Rev. C, 94:014303 (2016)
    [52] C. Constantinou, M. A. Caprio, J. P. Vary and P. Maris (2016)
    [53] J. W. Negele. Phys. Rev. C, 1:1260-1321 (1970)
  • 加载中

Get Citation
B. S. Hu, Q. Wu and F. R. Xu. Ab initio many-body perturbation theory and no-core shell model[J]. Chinese Physics C, 2017, 41(10): 104101. doi: 10.1088/1674-1137/41/10/104101
B. S. Hu, Q. Wu and F. R. Xu. Ab initio many-body perturbation theory and no-core shell model[J]. Chinese Physics C, 2017, 41(10): 104101.  doi: 10.1088/1674-1137/41/10/104101 shu
Milestone
Received: 2017-05-16
Fund

    Supported by National Key Basic Research Program of China (2013CB834402), National Natural Science Foundation of China (11235001, 11320101004, 11575007) and the CUSTIPEN (China-U.S. Theory Institute for Physics with Exotic Nuclei) funded by the U.S. Department of Energy, Office of Science (DE-SC0009971)

Article Metric

Article Views(1940)
PDF Downloads(65)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Ab initio many-body perturbation theory and no-core shell model

  • 1. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
Fund Project:  Supported by National Key Basic Research Program of China (2013CB834402), National Natural Science Foundation of China (11235001, 11320101004, 11575007) and the CUSTIPEN (China-U.S. Theory Institute for Physics with Exotic Nuclei) funded by the U.S. Department of Energy, Office of Science (DE-SC0009971)

Abstract: In many-body perturbation theory (MBPT) we always introduce a parameter Nshell to measure the maximal allowed major harmonic-oscillator (HO) shells for the single-particle basis, while the no-core shell model (NCSM) uses Nmax HO excitation truncation above the lowest HO configuration for the many-body basis. It is worth comparing the two different methods. Starting from "bare" and Okubo-Lee-Suzuki renormalized modern nucleon-nucleon interactions, NNLOopt and JISP16, we show that MBPT within Hartree-Fock bases is in reasonable agreement with NCSM within harmonic oscillator bases for 4He and 16O in "close" model space. In addition, we compare the results using "bare" force with the Okubo-Lee-Suzuki renormalized force.

    HTML

Reference (53)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return