Investigating the topological structure of quenched lattice QCD with overlap fermions using a multi-probing approximation

  • The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 163×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion.
      PCAS:
  • 加载中
  • [1] E. Witten, Nuclear Physics B, 156(2):269-283(1979)
    [2] G. Veneziano, Nuclear Physics B, 159(1):213-224(1979)
    [3] G. Veneziano, Physics Letters B, 95(1):90-92(1980)
    [4] Erhard Seiler, Physics Letters B, 525(3-4):355-359(2002)
    [5] P. Di Vecchia, K. Fabricius, G. C. Rossi, and G. Veneziano, Physics Letters B, 108(4):323-326(1982)
    [6] Adriano Di Giacomo and Ettore Vicari, Physics Letters B, 275(3):429-434(1992)
    [7] Gino Briganti, Adriano Di Giacomo, and Haralambos Panagopoulos, Physics Letters B, 253(3):427-429(1991)
    [8] A. Di Giacomo, E. Meggiolaro, and H. Panagopoulos. Physics Letters B, 291(1):147-150(1992)
    [9] P. Hasenfratz, V. Laliena, and F. Niedermayer. Physics Letters B, 427:125-131(1998)
    [10] Herbert Neuberger, Physics Letters B, 417(1-2):141-144(1998)
    [11] Herbert Neuberger, Physics Letters B, 427(3-4):353-355(1998)
    [12] Pilar Hernndez, Karl Jansen, and Martin L scher, Nuclear Physics B, 552(1):363-378(1999)
    [13] E.-M. Ilgenfritz, K. Koller, Y. Koma, G. Schierholz, T. Streuer, and V. Weinberg, Phys. Rev. D, 76:034506(2007)
    [14] I. Horvth, S. J. Dong, T. Draper, F. X. Lee, K. F. Liu, H. B. Thacker, and J. B. Zhang, Phys. Rev. D, 67:011501(2003)
    [15] I. Horvth, S. J. Dong, T. Draper, F. X. Lee, K. F. Liu, N. Mathur, H. B. Thacker, and J. B. Zhang, Phys. Rev. D, 68:114505(2003)
    [16] Guang-Yi Xiong, You-Hao Zou, and Jian-Bo Zhang, In preparation
    [17] Pilar Hernndez, Karl Jansen, and Martin L scher, Nuclear Physics B, 552(1):363-378(1999)
    [18] Steven Weinberg, Phys. Rev. D, 11:3583-3593(1975)
    [19] Edward Witten, Nuclear Physics B, 149(2):285-320(1979)
    [20] A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Physics Letters B, 59(1):85-87(1975)
    [21] A. M. Polyakov, Nuclear Physics B, 120(3):429-458(1977)
    [22] E.-M. Ilgenfritz, M. L. laursen, M. M ller-Preussker, G. Schierholz, and H. Schiller, Nuclear Physics B, 268(3):693-705(1986)
    [23] M. Teper, Physics Letters B, 171(1):86-94(1986)
    [24] Douglas A. Smith and Michael J. Teper. Phys. Rev. D, 58:014505(1998)
    [25] Margarita Gara Prez, Owe Philipsen, and Ion-Olimpiu Stamatescu, Nuclear Physics B, 551(1):293-313(1999)
    [26] Thomas DeGrand, Anna Hasenfratz, and Decai Zhu, Nuclear Physics B, 475(1):321-336(1996)
    [27] Thomas DeGrand, Anna Hasenfratz, and Decai Zhu, Nuclear Physics B, 478(1):349-364(1996)
    [28] M. Feurstein, E.-M. Ilgenfritz, M. M ller-Preussker, and S. Thurner, Nuclear Physics B, 511(1):421-447(1998)
    [29] Thomas DeGrand, Anna Hasenfratz, and Tams G. Kovcs, Nuclear Physics B, 505(1):417-441(1997)
    [30] Thomas DeGrand, Anna Hasenfratz, and Tams G. Kovcs, Nuclear Physics B, 520(1):301-322(1998)
    [31] Martin L scher, Journal of High Energy Physics, 2010(8):1-18(2010)
    [32] Szabolcs Bors nyi, Stephan D rr, Zolt n Fodor, Christian Hoelbling, S ndor D. Katz, Stefan Krieg, Thorsten Kurth, Laurent Lellouch, Thomas Lippert, Craig McNeile, and K lm n K. Szab , Journal of High Energy Physics, 2012(9):1-15(2012)
    [33] R. Sommer, Scale setting in lattice QCD, ArXiv e-prints, January 2014
    [34] Luigi Del Debbio, Leonardo Giusti, and Claudio Pica, Phys. Rev. Lett., 94:032003(2005)
    [35] K Osterwalder and E Seiler, Annals of Physics, 110(2):440-471(1978)
    [36] Konrad Osterwalder and Robert Schrader, Communications in Mathematical Physics, 31(2):83-112(1973)
    [37] Konrad Osterwalder and Robert Schrader, Communications in Mathematical Physics, 42(3):281-305(1975)
    [38] E. V. Shuryak and J. J. M. Verbaarschot, Phys. Rev. D, 52:295-306(1995)
    [39] C. Michael, Phys. Rev. D, 49:2616-2619(1994)
    [40] Y. Chen, A. Alexandru, S. J. Dong, T. Draper, I. Horvth, F. X. Lee, K. F. Liu, N. Mathur, C. Morningstar, M. Peardon, S. Tamhankar, B. L. Young, and J. B. Zhang, Phys. Rev. D, 73:014516(2006)
  • 加载中

Get Citation
You-Hao Zou, Jian-Bo Zhang, Guang-Yi Xiong, Ying Chen, Chuan Liu, Yu-Bin Liu and Jian-Ping Ma. Investigating the topological structure of quenched lattice QCD with overlap fermions using a multi-probing approximation[J]. Chinese Physics C, 2017, 41(10): 103104. doi: 10.1088/1674-1137/41/10/103104
You-Hao Zou, Jian-Bo Zhang, Guang-Yi Xiong, Ying Chen, Chuan Liu, Yu-Bin Liu and Jian-Ping Ma. Investigating the topological structure of quenched lattice QCD with overlap fermions using a multi-probing approximation[J]. Chinese Physics C, 2017, 41(10): 103104.  doi: 10.1088/1674-1137/41/10/103104 shu
Milestone
Received: 2017-05-12
Revised: 2017-07-14
Fund

    Supported by National Natural Science Foundation of China (NSFC) (11335001, 11275169, 11075167), It is also supported in part by the DFG and the NSFC (11261130311) through funds provided to the Sino-German CRC 110 Symmetries and the Emergence of Structure in QCD. This work was also funded in part by National Basic Research Program of China (973 Program) (2015CB856700)

Article Metric

Article Views(851)
PDF Downloads(2)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Investigating the topological structure of quenched lattice QCD with overlap fermions using a multi-probing approximation

    Corresponding author: You-Hao Zou,
    Corresponding author: Jian-Bo Zhang,
    Corresponding author: Guang-Yi Xiong,
  • 1.  Department of Physics, Zhejiang University, Zhejiang 310027, China
  • 2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3. Theoretical Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China
  • 4. School of Physics, Peking University, Beijing 100871, China
  • 5. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
  • 6.  School of Physics, Nankai University, Tianjin 300071, China
  • 7.  Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China
Fund Project:  Supported by National Natural Science Foundation of China (NSFC) (11335001, 11275169, 11075167), It is also supported in part by the DFG and the NSFC (11261130311) through funds provided to the Sino-German CRC 110 Symmetries and the Emergence of Structure in QCD. This work was also funded in part by National Basic Research Program of China (973 Program) (2015CB856700)

Abstract: The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 163×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion.

    HTML

Reference (40)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return