×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Signal photon flux generated by high-frequency relic gravitational waves

  • The power spectrum of primordial tensor perturbations Pt increases rapidly in the high frequency region if the spectral index nt>0. It is shown that the amplitude of relic gravitational waves ht(5×109 Hz) varies from 10-36 to 10-25 while nt varies from -6.25×10-3 to 0.87. A high frequency gravitational wave detector proposed by F.-Y. Li detects gravitational waves through observing the perturbed photon flux that is generated by interaction between relic gravitational waves and electromagnetic field. It is shown that the perturbative photon flux Nx1 (5×109 Hz) varies from 1.40×10-4 s-1 to 2.85×107 s-1 while nt varies from -6.25× 10-3 to 0.87. Correspondingly, the ratio of the transverse perturbative photon flux Nx1 to the background photon flux varies from 10-28 to 10-16.
      PCAS:
  • 加载中
  • [1] B.P.Abbott et al (LIGO Scientific and VIRGO Collaborations), Phys. Rev. Lett., 116: 061102 (2016)
    [2] J. H. Taylor and J. M. Weisberg, Astrophys. J., 253: 908 (1982)
    [3] G. Hobbs, Class. Quantum Grav., 25: 114032 (2008); R. Nan et al, Int. J. Mod. Phys. D, 20: 989 (2011); R. M. Shannon et al, Science, 349: 1522 (2015); L. Lentati et al (EPTA Collaboration), Mon. Not. Astron. Soc., 453: 2576 (2015); Z. Arzoumanian et al (NANOGrav Collaboration), arXiv:1508.03024
    [4] V. Sahni, Class. Quant. Grav., 19: 3435 (2002)
    [5] T. Padmanabhan, Phys. Rept., 380: 235 (2003)
    [6] E. Komatsu et al (WMAP Collaboration), Astrophys. J. Suppl., 192: 18 (2011)
    [7] P.A.R. Ade et al (Planck collaboration), arXiv: 1502.01582; P.A.R. Ade et al (Planck collaboration), arXiv: 1502.01589
    [8] N. Suzuki et al, Astrophys. J., 746: 85 (2012)
    [9] A. Riotto, arXiv:hep-ph/0210162
    [10] The BICEP2/Keck and Planck Collaborations, Phys. Rev. Lett., 114: 101301, (2015)
    [11] H. X. Miao and Y. Zhang, Phys. Rev. D, 75: 104009 (2007); X.J. Liu, W. Zhao, Y. Zhang, and Z. H. Zhu, Phys. Rev. D, 93: 024031 (2016)
    [12] J. Aasi et al (LIGO and Virgo Collaboration), Phys. Rev. Lett., 113: 231101 (2014)
    [13] P.A.R. Ade et al (Planck collaboration), arXiv:1502.02114
    [14] S. Mukohyama, R. Namba, M. Peloso, and G. Shiu, JCAP, 1408: 036 (2014)
    [15] J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D, 64: 123522 (2001)
    [16] Q. G. Huang and S. Wang, JCAP, 1506: 021 (2015)
    [17] F. Y. Li, R. M. L. Baker Jr., Z.-Y. Fang, G.V. Stephenson and Z. Y. Chen, Eur. Phys. J. C, 56: 407 (2008)
    [18] F.-Y. Li, N. Yang, Z.-Y. Fang, R.M.L. Baker, G.V. Stephenson, and H. Wen, Phys. Rev. D, 80: 064013 (2009); J. Li, K. Lin, F.-Y. Li, and Y.-H. Zhong, Gen. Relativ. Gravit., 43: 2209 (2011); H. Wen, F.-Y. Li, and Z.-Y. Fang, Phys. Rev. D, 89: 104025 (2014); H. Wen, F.-Y. Li, Z.-Y. Fang and A. Beckwith, Eur. Phys. J. C, 74: 2998 (2014)
    [19] Planck Collaboration, arXiv:1502.01589
    [20] M. S. Turner, M. White and J. E. Lidsey, Phys. Rev. D, 48: 4613 (1993)
    [21] W. Zhao, Y. Zhang, X. P. You, and Z. H. Zhu, Phys. Rev. D, 87: 124012 (2013)
    [22] S. Kuroyanagi, C. Gordon, J. Silk, and N. Sugiyama, Phys. Rev. D, 81: 083524 (2010)
    [23] Y. Watanabe and E. Komatsu, Phys. Rev. D, 73: 123515 (2006)
    [24] N. D. Birrel and P. C. W. Davies, Quantum fields in curved space (Cambridge University Press, New York Melbourne Pp, 1982)
  • 加载中

Get Citation
null. Signal photon flux generated by high-frequency relic gravitational waves[J]. Chinese Physics C, 2016, 40(8): 085101. doi: 10.1088/1674-1137/40/8/085101
null. Signal photon flux generated by high-frequency relic gravitational waves[J]. Chinese Physics C, 2016, 40(8): 085101.  doi: 10.1088/1674-1137/40/8/085101 shu
Milestone
Received: 2015-11-09
Revised: 2016-03-08
Fund

    Supported by National Natural Science Foundation of China (11305181,11322545,11335012) and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)

Article Metric

Article Views(1694)
PDF Downloads(180)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Signal photon flux generated by high-frequency relic gravitational waves

Fund Project:  Supported by National Natural Science Foundation of China (11305181,11322545,11335012) and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)

Abstract: The power spectrum of primordial tensor perturbations Pt increases rapidly in the high frequency region if the spectral index nt>0. It is shown that the amplitude of relic gravitational waves ht(5×109 Hz) varies from 10-36 to 10-25 while nt varies from -6.25×10-3 to 0.87. A high frequency gravitational wave detector proposed by F.-Y. Li detects gravitational waves through observing the perturbed photon flux that is generated by interaction between relic gravitational waves and electromagnetic field. It is shown that the perturbative photon flux Nx1 (5×109 Hz) varies from 1.40×10-4 s-1 to 2.85×107 s-1 while nt varies from -6.25× 10-3 to 0.87. Correspondingly, the ratio of the transverse perturbative photon flux Nx1 to the background photon flux varies from 10-28 to 10-16.

    HTML

Reference (24)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return