×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Antimagnetic rotation in 108,110In with tilted axis cranking relativistic mean-field approach

  • Based on tilted axis cranking relativistic mean-field theory within point-coupling interaction PC-PK1, the rotational structure and the characteristic features of antimagnetic rotation for ΔI=2 bands in 108,110In are studied. Tilted axis cranking relativistic mean-field calculations reproduce the experimental energy spectrum well and are in agreement with the experimental I~ω plot, although the calculated spin overestimates the experimental values. In addition, the two-shears-like mechanism in candidate antimagnetic rotation bands is clearly illustrated and the contributions from two-shears-like orbits, neutron (gd) orbits above Z=50 shell and Z=50,N=50 core are investigated microscopically. The predicted B(E2), dynamic moment of inertia ℑ(2), deformation parameters β and γ, and ℑ(2)/B(E2) ratios in tilted axis cranking relativistic mean-field calculations are discussed and the characteristic features of antimagnetic rotation for the bands before and after alignment are shown.
      PCAS:
  • 加载中
  • [1] S. Frauendorf, Rev. Mod. Phys., 73: 463 (2001)
    [2] J. Meng et al, Front. Phys., 8: 55 (2013)
    [3] J. Meng, S. Q. Zhang, and P. W. Zhao, Novel rotational excitations, in Relativistic Density Functional for Nuclear Structure, Edited by Jie Meng Singapore: World Scientific, (2016)
    [4] D. Choudhury et al, Phys. Rev. C, 82: 061308 (2010)
    [5] A. J. Simons et al, Phys. Rev. Lett., 91: 162501 (2003)
    [6] D. Choudhury et al, Phys. Rev. C, 87: 034304 (2013)
    [7] A. J. Simons et al, Phys. Rev. C, 72: 024318 (2005)
    [8] P. Datta et al, Phys. Rev. C, 71: 041305 (2005)
    [9] S. Roy et al, Phys. Lett. B, 694: 322 (2011)
    [10] M. Sugawara et al, Phys. Rev. C, 86: 034326 (2012)
    [11] N. Rather et al, Phys. Rev. C, 89: 061303 (2014)
    [12] S. Zhu et al, Phys. Rev. C, 64: 041302 (2001)
    [13] C. J. Chiara et al, Phys. Rev. C, 64: 054314 (2001)
    [14] X. W. Li et al, Phys. Rev. C, 86: 057305 (2012)
    [15] M. Sugawara et al, Phys. Rev. C, 79: 064321 (2009)
    [16] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys., 16: 1 (1986)
    [17] B. A. Nikolaus, T. Hoch, and D. G. Madland, Phys. Rev. C, 46: 1757 (1992)
    [18] W. H. Long, N. Van Giai, and J. Meng, Phys. Lett. B, 640: 150 (2006)
    [19] P. G. Reinhard, Rep. Prog. Phys., 52: 439 (1989)
    [20] P. Ring, Prog. Part. Nucl. Phys., 37: 193 (1996)
    [21] D. Vretenar et al, Phys. Rep., 409: 101 (2005)
    [22] J. Meng et al, Prog. Part. Nucl. Phys., 57: 470 (2006)
    [23] P. W. Zhao et al, Phys. Rev. C, 85: 054310 (2012)
    [24] J. Peng and P. W. Zhao, Phys. Rev. C, 91: 044329 (2015)
    [25] D. Steppenbeck et al, Phys. Rev. C, 85: 044316 (2012)
    [26] P. W. Zhao et al, Phys. Lett. B, 699: 181 (2011)
    [27] H. Madokoro, J. Meng, M. Matsuzaki, and S. Yamaji, Phys. Rev. C, 62: 061301(R) (2000)
    [28] Y. Zheng et al, J. Phys. G, 42: 085108 (2015)
    [29] J. Li et al, Phys. Rev. C, 88: 014317 (2013)
    [30] K. Y. Ma et al, Eur. Phys. J. A, 48: 82 (2012)
    [31] C. B. Li et al, Nucl. Phys. A, 892: 34 (2012)
    [32] J. Peng, J. Meng, P. Ring, and S. Q. Zhang, Phys. Rev. C, 78: 024313 (2008)
    [33] L. F. Yu et al, Phys. Rev. C, 85: 024318 (2012)
    [34] S. Frauendorf and J. Meng, Z. Phys. A, 356: 263 (1996)
    [35] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C, 82: 054319 (2010)
    [36] P. Zhang, B. Qi, and S. Y. Wang, Phys. Rev. C, 89: 047302 (2014)
    [37] P. W. Zhao, S. Q. Zhang, and J. Meng, Phys. Rev. C, 92: 034319 (2015)
    [38] C. J. Chiara et al, Phys. Rev. C, 61: 034318 (2000)
    [39] S. Roy and S. Chattopadhyay, Phys. Rev. C, 83: 024305 (2011)
  • 加载中

Get Citation
Wu-Ji Sun, Hai-Dan Xu, Jian Li, Yong-Hao Liu, Ke-Yan Ma, Dong Yang, Jing-Bing Lu and Ying-Jun Ma. Antimagnetic rotation in 108,110In with tilted axis cranking relativistic mean-field approach[J]. Chinese Physics C, 2016, 40(8): 084101. doi: 10.1088/1674-1137/40/8/084101
Wu-Ji Sun, Hai-Dan Xu, Jian Li, Yong-Hao Liu, Ke-Yan Ma, Dong Yang, Jing-Bing Lu and Ying-Jun Ma. Antimagnetic rotation in 108,110In with tilted axis cranking relativistic mean-field approach[J]. Chinese Physics C, 2016, 40(8): 084101.  doi: 10.1088/1674-1137/40/8/084101 shu
Milestone
Received: 2016-02-05
Revised: 2016-04-07
Fund

    Supported by National Natural Science Foundation of China (11205068, 11205069, 11405072, 11475072, 11547308) and China Postdoctoral Science Foundation (2012M520667)

Article Metric

Article Views(1716)
PDF Downloads(158)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Antimagnetic rotation in 108,110In with tilted axis cranking relativistic mean-field approach

    Corresponding author: Jian Li,
  • 1. College of Physics, Jilin University, Changchun 130012, China
Fund Project:  Supported by National Natural Science Foundation of China (11205068, 11205069, 11405072, 11475072, 11547308) and China Postdoctoral Science Foundation (2012M520667)

Abstract: Based on tilted axis cranking relativistic mean-field theory within point-coupling interaction PC-PK1, the rotational structure and the characteristic features of antimagnetic rotation for ΔI=2 bands in 108,110In are studied. Tilted axis cranking relativistic mean-field calculations reproduce the experimental energy spectrum well and are in agreement with the experimental I~ω plot, although the calculated spin overestimates the experimental values. In addition, the two-shears-like mechanism in candidate antimagnetic rotation bands is clearly illustrated and the contributions from two-shears-like orbits, neutron (gd) orbits above Z=50 shell and Z=50,N=50 core are investigated microscopically. The predicted B(E2), dynamic moment of inertia ℑ(2), deformation parameters β and γ, and ℑ(2)/B(E2) ratios in tilted axis cranking relativistic mean-field calculations are discussed and the characteristic features of antimagnetic rotation for the bands before and after alignment are shown.

    HTML

Reference (39)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return