Nucleon resonances in πN→η'N and J/ψ→ppη'

  • We are aiming to study the J/ψ→ppη' decay in an isobar model and the effective Lagrangian approach on the basis of the coupling constants extracted from the πN→η'N reaction. After a careful exploration of the contributions of the S11(1535), P11(1710), P13(1900), S11(2090) and P11(2100) resonances, we conclude that either a subthreshold resonance or a broad P-wave state in the near threshold range seems to be indispensable to describe the present data of the πN→η'N. Furthermore, at least one broad resonance above η'N threshold is preferred. With this detailed analysis, we give the invariant mass spectrum and Dalitz plot of the J/ψ→ppη' decay for the purpose of assisting the future detailed partial wave analysis. It is found that the J/ψ→ppη' data are useful for disentangling the above or below threshold resonant contribution, though it still further needs the differential cross section data of πN→η'N to realize some of the resonant and non-resonant contribution.
      PCAS:
  • 加载中
  • [1] A. V. Anisovich, E. Klempt, V. A. Nikonov et al, Eur. Phys. J. A, 47: 27 (2011)
    [2] J. Beringer et al (Particle Data Group), Phys. Rev. D, 86: 010001 (2012); K. A. Olive et al (Particle Data Group), Chin. Phys. C, 38 (9): 090001 (2014)
    [3] A. V. Anisovich, R. Beck, E. Klempt et al., Eur. Phys. J. A, 48: 15 (2012)
    [4] V. A. Nikonov, A. V. Anisovich, E. Klempt et al., Phys. Lett. B, 662: 245-251 (2008)
    [5] A. V. Anisovich, E. Klempt, V. A. Nikonov et al., Phys. Lett. B, 711: 167-172 (2012)
    [6] T. Feuster and U. Mosel, Phys. Rev. C, 58: 457-488 (1998); 59: 460-491 (1999)
    [7] G. Penner and U. Mosel, Phys. Rev. C, 66: 055211 (2002); 66: 055212 (2002)
    [8] V. Shklyar, G. Penner, and U. Mosel, Eur. Phys. J. A, 21: 445-454 (2004)
    [9] V. Shklyar, H. Lenske, U. Mosel, and G. Penner, Phys. Rev. C, 71: 055206 (2005)
    [10] V. Shklyar, H. Lenske, and U. Mosel, Phys. Rev. C, 72: 015210 (2005)
    [11] V. Shklyar, H. Lenske, and U. Mosel, Phys. Lett. B, 650: 172-178 (2007)
    [12] V. Shklyar, H. Lenske, and U. Mosel, Phys. Rev. C, 87: 015201 (2013)
    [13] X. Cao, V. Shklyar, and H. Lenske, Phys. Rev. C, 88: 055204 (2013)
    [14] D. M. Manley and E. M. Saleski, Phys. Rev. D, 45: 4002-4033 (1992)
    [15] M. Shrestha and D. M. Manley, Phys. Rev. C, 86: 055203 (2012)
    [16] R. L. Workman, W. J. Briscoe, and M. W. Paris et al, Phys. Rev. C, 85: 025201 (2012)
    [17] M. Dring, C. Hanhart, and F. Huang et al, Nucl. Phys. A, 851: 58-98 (2011)
    [18] F. Huang, M. Dring, and H. Haberzettl et al, Phys.Rev. C, 85: 054003 (2012)
    [19] D. Rnchen, M. Dring, and F. Huang et al, Eur. Phys. J. A, 49: 44 (2013)
    [20] A. Matsuyama, T. Sato, and T.-S. H. Lee, Phys. Rep., 439: 193-253 (2007)
    [21] H. Kamano, S. X. Nakamura, T.-S. H. Lee, and T. Sato, Phys. Rev. C, 88: 035209 (2013)
    [22] H. Kamano, Phys. Rev. C, 88: 045203 (2013)
    [23] B. C. Liu and B. S. Zou, Phys. Rev. Lett., 96: 042002 (2006)
    [24] J. J. Xie and B. S. Zou, Phys. Lett. B, 649: 405-412 (2007)
    [25] J. J. Xie, B. S. Zou, and H. C. Chiang, Phys. Rev. C, 77: 015206 (2008)
    [26] J. J. Xie and C. Wilkin, Phys. Rev. C, 82: 025210 (2010)
    [27] J. J. Xie, H. X. Chen, and E. Oset, Phys. Rev. C, 84: 034004 (2011)
    [28] J. J. Xie and B. C. Liu, Phys. Rev. C, 87: 045210 (2013)
    [29] X. Cao, X. G. Lee, and Q. W. Wang, Chin. Phys. Lett., 25: 888 (2008)
    [30] X. Cao and X. G. Lee, Phys. Rev. C, 78: 035207 (2008)
    [31] X. Cao, J. J. Xie, B. S. Zou, and H. S. Xu, Phys. Rev. C, 80: 025203 (2009)
    [32] X. Cao, Chin. Phys. C, 33: 1381-1384 (2009)
    [33] X. Cao, B. S. Zou, and H. S. Xu, Phys. Rev. C, 81: 065201 (2010)
    [34] X. Cao, B. S. Zou, and H. S. Xu, Nucl. Phys. A, 861: 23-36 (2011)
    [35] X. Cao, B. S. Zou, and H. S. Xu, Int. J. Mod. Phys. A, 26: 505-510 (2011)
    [36] M. Ablikim et al (BES Collaboration), Phys. Rev. D, 80: 052004 (2009)
    [37] M. Ablikim et al (BES Collaboration), Phys. Rev. Lett., 97: 062001 (2006)
    [38] M. Ablikim et al (BES Collaboration), Phys. Rev. Lett., 110: 022001 (2013)
    [39] M. Ablikim et al (BES Collaboration), Phys. Rev. D, 74: 012004 (2006)
    [40] J. Z. Bai et al (BES Collaboration), Phys. Lett. B, 510: 75-82 (2001)
    [41] H. X. Yang et al (BES Collaboration), Int. J. Mod. Phys. A, 20: 1985-1989 (2005)
    [42] M. Ablikim et al (BES Collaboration), Phys. Lett. B, 659: 789-795 (2008)
    [43] M. Ablikim et al (BES Collaboration), Phys. Lett. B, 676: 25-30 (2009)
    [44] M. Ablikim et al (BES Collaboration), Phys. Rev. D, 87: 112004 (2013)
    [45] R. A. Briere et al (CLEO Collaboration), Phys. Rev. Lett., 95: 062001 (2005)
    [46] S. B. Athar et al (CLEO Collaboration), Phys. Rev. D, 75: 032002 (2007)
    [47] B. S. Zou and D. V. Bugg, Eur. Phys. J. A, 16: 537-547 (2003)
    [48] B. S. Zou and F. Hussain, Phys. Rev. C, 67: 015204 (2003)
    [49] S. Dulat and B. S. Zou, Eur. Phys. J. A, 26: 125-134 (2005)
    [50] K. P. Khemchandani, A. Martnez Torres, H. Nagahiro, and A. Hosaka, Phys. Rev. D, 88: 114016 (2013)
    [51] E. Oset and A. Ramos, Phys. Lett. B, 704: 334-342 (2011)
    [52] K. Nakayama, H. F. Arellano, J. W. Durso, and J. Speth, Phys. Rev. C, 61: 024001 (1999)
    [53] K. Nakayama and H. Haberzettl, Phys. Rev. C, 69: 065212 (2004)
    [54] K. Nakayama and H. Haberzettl, Phys. Rev. C, 73: 045211 (2006)
    [55] F. Huang, H. Haberzettl, and K. Nakayama, Phys. Rev. C, 87: 054004 (2013)
    [56] W. H. Liang, P. N. Shen, J. X. Wang, and B. S. Zou, J. Phys. G, 28: 333-343 (2002)
    [57] W. H. Liang, P.-N. Shen, B.-S. Zou, and A. Faessler, Eur. Phys. J. A, 21: 487-500 (2004)
    [58] T. Barnes, X. Li, and W. Roberts, Phys. Rev. D, 81: 034025 (2010)
    [59] R. Sinha and S. Okubo, Phys. Rev. D, 30: 2333 (1984)
    [60] J. P. Dai, P. N. Shen, J. J. Xie, and B. S. Zou, Phys. Rev. D, 85: 014011 (2012)
    [61] C. S. An and B. S. Zou, Sci. Sin. G, 52: 1452-1457 (2009)
    [62] C. S. An and B. Saghai, Phys. Rev. C, 84: 045204 (2011)
    [63] J. Shi, J. P. Dai, and B. S. Zou, Phys. Rev. D, 84: 017502 (2011)
    [64] A. Baldini, V. Flamino, W. G. Moorhead, and D. R. O. Morrison, Total Cross Sections of High Energy Particles (Landolt-Bornstein: Numerical Data and Functional Relationships in Science an Technology, vol. 12, edited by H. Schopper: Springer-Verlag, Berlin, 1988)
    [65] Q. Y Lin, H. S. Xu, and X. Liu, Phys. Rev. D, 86: 034007 (2012)
    [66] E. Czerwiński et al, Phys. Rev. Lett., 113: 062004 (2014)
    [67] P. Klaja et al, Phys. Lett. B, 684: 11-16 (2010)
  • 加载中

Get Citation
Xu Cao and Ju-Jun Xie. Nucleon resonances in πN→η'N and J/ψ→ppη'[J]. Chinese Physics C, 2016, 40(8): 083103. doi: 10.1088/1674-1137/40/8/083103
Xu Cao and Ju-Jun Xie. Nucleon resonances in πN→η'N and J/ψ→ppη'[J]. Chinese Physics C, 2016, 40(8): 083103.  doi: 10.1088/1674-1137/40/8/083103 shu
Milestone
Received: 2015-09-10
Revised: 2016-04-12
Fund

    Supported by National Natural Science Foundation of China (11347146, 11405222, 11105126, 11475227)

Article Metric

Article Views(1438)
PDF Downloads(255)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Nucleon resonances in πN→η'N and J/ψ→ppη'

    Corresponding author: Xu Cao,
    Corresponding author: Ju-Jun Xie,
  • 1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 2. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 3. Kavli Institute for Theoretical Physics China (KITPC), Chinese Academy of Sciences, Beijing 100190, China
  • 4. Research Center for Hadron and CSR Physics, Institute of Modern Physics ofCAS and Lanzhou University, Lanzhou 730000, China
Fund Project:  Supported by National Natural Science Foundation of China (11347146, 11405222, 11105126, 11475227)

Abstract: We are aiming to study the J/ψ→ppη' decay in an isobar model and the effective Lagrangian approach on the basis of the coupling constants extracted from the πN→η'N reaction. After a careful exploration of the contributions of the S11(1535), P11(1710), P13(1900), S11(2090) and P11(2100) resonances, we conclude that either a subthreshold resonance or a broad P-wave state in the near threshold range seems to be indispensable to describe the present data of the πN→η'N. Furthermore, at least one broad resonance above η'N threshold is preferred. With this detailed analysis, we give the invariant mass spectrum and Dalitz plot of the J/ψ→ppη' decay for the purpose of assisting the future detailed partial wave analysis. It is found that the J/ψ→ppη' data are useful for disentangling the above or below threshold resonant contribution, though it still further needs the differential cross section data of πN→η'N to realize some of the resonant and non-resonant contribution.

    HTML

Reference (67)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return