×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity

  • In this paper, the BF theory method is applied to the nonrotating isolated horizons in Lovelock theory. The final entropy matches the Wald entropy formula for this theory. We also confirm the conclusion obtained by Bodendorfer et al. that the entropy is related to the flux operator rather than the area operator in general diffeomorphic-invariant theory.
      PCAS:
  • 加载中
  • [1] J. D. Bekenstein, Phys. Rev. D, 7: 2333-2346 (1973)
    [2] S. W. Hawking, Nature, 248: 30-31 (1974)
    [3] S. Carlip, Lect. Notes Phys, 769: 89-123 (2009)
    [4] R. M. Wald, Phys. Rev. D, 48: 3427-3431 (1993)
    [5] V. Iyer and R. M. Wald, Phys. Rev. D, 50: 846-864 (1994)
    [6] T. Jacobson, G. Kang, and R. C. Myers, Phys. Rev. D, 49: 6587-6598 (1994)
    [7] D. Lovelock, J. Math. Phys., 12: 498-501 (1971)
    [8] X. O. Camanho and J. D. Edelstein, Class. Quant. Grav., 30: 035009 (2013)
    [9] N. Bodendorfer and Y. Neiman, Phys. Rev. D, 90: 084054 (2014)
    [10] C. Rovelli, Quantum Gravity (Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2004)
    [11] T. Thiemann, Modern Canonical Quantum General Relativity (ewblock Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2008)
    [12] A. Ashtekar and J. Lewandowski, Class. Quant. Grav., 21: R53 (2004)
    [13] M. Han, W. Huang, and Y. Ma, Int. J. Mod. Phys. D, 16: 1397-1474 (2007)
    [14] J. Wang, Y. Ma, and X.-A. Zhao, Phys. Rev. D, 89: 084065 (2014)
    [15] J. Wang and C.-G. Huang, Class. Quant. Grav., 32: 035026 (2015)
    [16] A. Ashtekar, C. Beetle, and S. Fairhurst, Class. Quant. Grav., 16: L1-L7 (1999)
    [17] A. Ashtekar, S. Fairhurst, and B. Krishnan, Phys. Rev. D, 62: 104025 (2000)
    [18] A. Ashtekar, J. C. Baez, A. Corichi, and K. Krasnov, Phys. Rev. Lett., 80: 904-907 (1998)
    [19] A. Ashtekar, J. C. Baez, and K. Krasnov, Adv. Theor. Math. Phys., 4: 1-94 (2000)
    [20] T. Liko and I. Booth, Class. Quant.Grav., 24: 3769-3782 (2007)
    [21] X.-N. Wu, C.-G. Huang, and J.-R. Sun, Phys. Rev. D, 77: 124023 (2008)
    [22] T. Jacobson and R. C. Myers, Phys. Rev. Lett., 70: 3684-3687 (1993)
    [23] G. F. Barbero, J. Lewandowski, and E. Villasenor, Phys. Rev. D, 80: 044016 (2009)
  • 加载中

Get Citation
Jing-Bo Wang, Chao-Guang Huang and Lin Li. Entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity[J]. Chinese Physics C, 2016, 40(8): 083102. doi: 10.1088/1674-1137/40/8/083102
Jing-Bo Wang, Chao-Guang Huang and Lin Li. Entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity[J]. Chinese Physics C, 2016, 40(8): 083102.  doi: 10.1088/1674-1137/40/8/083102 shu
Milestone
Received: 2016-01-25
Revised: 2016-04-25
Fund

    Supported by National Natural Science Foundation of China (11275207)

Article Metric

Article Views(1691)
PDF Downloads(147)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity

    Corresponding author: Jing-Bo Wang,
    Corresponding author: Chao-Guang Huang,
    Corresponding author: Lin Li,
  • 1.  Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China
  • 2.  Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Supported by National Natural Science Foundation of China (11275207)

Abstract: In this paper, the BF theory method is applied to the nonrotating isolated horizons in Lovelock theory. The final entropy matches the Wald entropy formula for this theory. We also confirm the conclusion obtained by Bodendorfer et al. that the entropy is related to the flux operator rather than the area operator in general diffeomorphic-invariant theory.

    HTML

Reference (23)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return