Influence of binding energies of electrons on nuclear mass predictions

  • Nuclear mass contains a wealth of nuclear structure information, and has been widely employed to extract the nuclear effective interactions. The known nuclear mass is usually extracted from the experimental atomic mass by subtracting the masses of electrons and adding the binding energy of electrons in the atom. However, the binding energies of electrons are sometimes neglected in extracting the known nuclear masses. The influence of binding energies of electrons on nuclear mass predictions are carefully investigated in this work. If the binding energies of electrons are directly subtracted from the theoretical mass predictions, the rms deviations of nuclear mass predictions with respect to the known data are increased by about 200 keV for nuclei with Z, N≥8. Furthermore, by using the Coulomb energies between protons to absorb the binding energies of electrons, their influence on the rms deviations is significantly reduced to only about 10 keV for nuclei with Z, N≥8. However, the binding energies of electrons are still important for the heavy nuclei, about 150 keV for nuclei around Z=100 and up to about 500 keV for nuclei around Z=120. Therefore, it is necessary to consider the binding energies of electrons to reliably predict the masses of heavy nuclei at an accuracy of hundreds of keV.
      PCAS:
  • 加载中
  • [1] D. Lunney, J. M. Pearson, and C. Thibault, Rev. Mod. Phys., 75:1021-1082(2003)
    [2] E. M. Burbidge, G. R. Burbidge, W. A. Fowler et al, Rev. Mod. Phys., 29:547-650(1957)
    [3] B. A. Brown, Phys. Rev. C, 58:220-231(1998)
    [4] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett., 102:152503(2009)
    [5] X. Roca-Maza, G. Col, and H. Sagawa, Phys. Rev. C, 86:031306(2012)
    [6] J. Meng, H. Toki, S. G. Zhou et al, Prog. Part. Nucl. Phys., 57:470-563(2006)
    [7] P. W. Zhao, Z. P. Li, J. M. Yao et al, Phys. Rev. C, 82:054319(2010)
    [8] G. A. Lalazissis, T. Nikić, D. Vretenar et al, Phys. Rev. C, 71:024312(2005)
    [9] W. H. Long, N. Van Giai, and J. Meng, Phys. Lett. B, 640:150-154(2006)
    [10] M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep., 450:97-213(2007)
    [11] B. H. Sun, F. Montes, L. S. Geng et al, Phys. Rev. C, 78:025806(2008)
    [12] Z. M. Niu, B. H. Sun, and J. Meng, Phys. Rev. C, 80:065806(2009)
    [13] Z. Li, Z. M. Niu, B. H. Sun et al, Acta. Phys. Sin., 61:072601(2012)
    [14] X. D. Xu, B. H. Sun, Z. M. Niu et al, Phys. Rev. C, 87:015805(2013)
    [15] B. H. Sun, Yu A. Litvinov, I. Tanihata et al, Front. Phys., 10:102102(2015)
    [16] M. Wang, G. Audi, A. H. Wapstra et al, Chin. Phys. C, 36:1603-2014(2012)
    [17] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A, 729:337-676(2003)
    [18] P. Mller, J. R. Nix, W. D. Myers et al, Atom. Data Nucl. Data Tables, 59:185-381(1995)
    [19] P. Mller, W. D. Myers, H. Sagawa et al, Phys. Rev. Lett., 108:052501(2012)
    [20] N. Wang, M. Liu, and X. Z. Wu, Phys. Rev. C, 81:044322(2010)
    [21] N. Wang, Z. Y. Liang, M. Liu et al, Phys. Rev. C, 82:044304(2010)
    [22] M. Liu, N. Wang, Y. G. Deng et al, Phys. Rev. C, 84:014333(2011)
    [23] N. Wang, M. Liu, X. Z. Wu et al, Phys. Lett. B, 734:215-219(2014)
    [24] S. Goriely and R. Capote, Phys. Rev. C, 89:054318(2014)
    [25] S. Goriely, N. Chamel, J. M. Pearson, Phys. Rev. C, 88:061302(R) (2013)
    [26] L. S. Geng, H. Toki, and J. Meng, Prog. Theor. Phys., 113:785-800(2005)
    [27] Y. Sugahara and H. Toki, Nucl. Phys. A, 579:557-572(1994)
    [28] Z. M. Niu, Z. L. Zhu, Y. F. Niu et al, Phys. Rev. C, 88:024325(2013)
    [29] J. S. Zheng, N. Y. Wang, Z. Y. Wang et al, Phys. Rev. C, 90:014303(2014)
    [30] X. M. Hua, T. H. Heng, Z. M. Niu et al, Sci. China Phys. Mech. Astron., 55:2414-2419(2012)
    [31] P. W. Zhao, L. S. Song, B. H. Sun et al, Phys. Rev. C, 86:064324(2012)
    [32] J. Meng, J. Peng, S. Q. Zhang et al, Front. Phys., 8:55-79(2013)
    [33] Q. S. Zhang, Z. M. Niu, Z. P. Li et al, Front. Phys., 9:529-536(2014)
    [34] Z. M. Niu, Y. F. Niu, Q. Liu et al, Phys. Rev. C, 87:051303(R) (2013)
    [35] Z. P. Li, C. Y. Li, J. Xiang et al, Phys. Lett. B, 717:470-473(2012)
    [36] J. M. Yao, H. Mei, and Z. P. Li, Phys. Lett. B, 723:459-463(2013)
    [37] Z. P. Li, B. Y. Song, J. M. Yao et al, Phys. Lett. B, 726:866-869(2013)
    [38] J. M. Yao, K. Hagino, Z. P. Li et al, Phys. Rev. C, 89:054306(2014)
    [39] X. Y. Wu, J. M. Yao, and Z. P. Li, Phys. Rev. C, 89:017304(2014)
    [40] Y. F. Niu, Z. M. Niu, N. Paar et al, Phys. Rev. C, 88:034308(2013)
    [41] J. Zhao, B. N. Lu, and E. G. Zhao, Phys. Rev. C, 86:057304(2012)
    [42] B. N. Lu, J. Zhao, E. G. Zhao et al, Phys. Rev. C, 89:014323(2014)
    [43] J. Zhao, B. N. Lu, D. Vretenar et al, Phys. Rev. C, 91:014321(2015)
    [44] T. K. Dong and Z. Z. Ren, Phys. Rev. C, 82:034320(2010)
    [45] N. Wan, C. Xu, and Z. Z. Ren, Phys. Rev. C, 92:024301(2015)
    [46] A. Ya. Dzyublik, Phys. Rev. C, 90:054619(2014)
    [47] F. F. Karpeshin, Phys. Rev. C, 87:054319(2013)
    [48] J. Duflo and A. P. Zuker, Phys. Rev. C, 52:R23-R27(1995)
  • 加载中

Get Citation
Jing Tang, Zhong-Ming Niu and Jian-You Guo. Influence of binding energies of electrons on nuclear mass predictions[J]. Chinese Physics C, 2016, 40(7): 074102. doi: 10.1088/1674-1137/40/7/074102
Jing Tang, Zhong-Ming Niu and Jian-You Guo. Influence of binding energies of electrons on nuclear mass predictions[J]. Chinese Physics C, 2016, 40(7): 074102.  doi: 10.1088/1674-1137/40/7/074102 shu
Milestone
Received: 2015-12-23
Revised: 2016-02-16
Fund

    Supported by National Natural Science Foundation of China (11205004)

Article Metric

Article Views(1494)
PDF Downloads(261)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Influence of binding energies of electrons on nuclear mass predictions

    Corresponding author: Zhong-Ming Niu,
  • 1. School of Physics and Material Science, Anhui University, Hefei 230601, China
Fund Project:  Supported by National Natural Science Foundation of China (11205004)

Abstract: Nuclear mass contains a wealth of nuclear structure information, and has been widely employed to extract the nuclear effective interactions. The known nuclear mass is usually extracted from the experimental atomic mass by subtracting the masses of electrons and adding the binding energy of electrons in the atom. However, the binding energies of electrons are sometimes neglected in extracting the known nuclear masses. The influence of binding energies of electrons on nuclear mass predictions are carefully investigated in this work. If the binding energies of electrons are directly subtracted from the theoretical mass predictions, the rms deviations of nuclear mass predictions with respect to the known data are increased by about 200 keV for nuclei with Z, N≥8. Furthermore, by using the Coulomb energies between protons to absorb the binding energies of electrons, their influence on the rms deviations is significantly reduced to only about 10 keV for nuclei with Z, N≥8. However, the binding energies of electrons are still important for the heavy nuclei, about 150 keV for nuclei around Z=100 and up to about 500 keV for nuclei around Z=120. Therefore, it is necessary to consider the binding energies of electrons to reliably predict the masses of heavy nuclei at an accuracy of hundreds of keV.

    HTML

Reference (48)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return