Application of the first collision source method to CSNS target station shielding calculation

Get Citation
Ying Zheng, Bin Zhang, Meng-Teng Chen, Liang Zhang, Bo Cao, Yi-Xue Chen, Wen Yin and Tian-Jiao Liang. Application of the first collision source method to CSNS target station shielding calculation[J]. Chinese Physics C, 2016, 40(4): 046201. doi: 10.1088/1674-1137/40/4/046201
Ying Zheng, Bin Zhang, Meng-Teng Chen, Liang Zhang, Bo Cao, Yi-Xue Chen, Wen Yin and Tian-Jiao Liang. Application of the first collision source method to CSNS target station shielding calculation[J]. Chinese Physics C, 2016, 40(4): 046201.  doi: 10.1088/1674-1137/40/4/046201 shu
Milestone
Received: 2015-06-03
Fund

    Supported by Major National S T Specific Program of Large Advanced Pressurized Water Reactor Nuclear Power Plant(2011ZX06004-007), National Natural Science Foundation of China(11505059, 11575061), and the Fundamental Research Funds for the Central Universities(13QN34)

Article Metric

Article Views(1748)
PDF Downloads(242)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Application of the first collision source method to CSNS target station shielding calculation

    Corresponding author: Yi-Xue Chen,
Fund Project:  Supported by Major National S T Specific Program of Large Advanced Pressurized Water Reactor Nuclear Power Plant(2011ZX06004-007), National Natural Science Foundation of China(11505059, 11575061), and the Fundamental Research Funds for the Central Universities(13QN34)

Abstract: Ray effects are an inherent problem of the discrete ordinates method. RAY3D, a functional module of ARES, which is a discrete ordinates code system, employs a semi-analytic first collision source method to mitigate ray effects. This method decomposes the flux into uncollided and collided components, and then calculates them with an analytical method and discrete ordinates method respectively. In this article, RAY3D is validated by the Kobayashi benchmarks and applied to the neutron beamline shielding problem of China Spallation Neutron Source(CSNS) target station. The numerical results of the Kobayashi benchmarks indicate that the solutions of DONTRAN3D with RAY3D agree well with the Monte Carlo solutions. The dose rate at the end of the neutron beamline is less than 10.83 μSv/h in the CSNS target station neutron beamline shutter model. RAY3D can effectively mitigate the ray effects and obtain relatively reasonable results.

    HTML

Reference (16)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return