×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts

  • In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation(LIV). As the most energetic explosions in the Universe, gamma-ray bursts(GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale MQG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB, we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, MQG>5.05×1014 GeV in the linearly corrected case, is from GRB 140622A. Our constraint on MQG, although not as tight as previous results, is the safest and most reliable so far.
      PCAS:
  • 加载中
  • [1] G. Amelino-Camelia, J. Ellis, N. E. Mavromatos et al, Int. J. Mod. Phys. A, 12:607(1997)
    [2] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Phys. Lett. B, 665:412(2008)
    [3] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Int. J. Mod. Phys. A, 26:2243(2011)
    [4] R. Gambini and J. Pullin, Phys. Rev. D, 59:124021(1999)
    [5] J. Alfaro, H. A. Morales-Tcotl, and L. F. Urrutia, Phys. Rev. D, 65:103509(2002)
    [6] J. Ellis, N. Mavromatos, and D. Nanopoulos, Phys. Lett. B, 293:37(1992)
    [7] J. Ellis, N. Mavromatos, and D. Nanopoulos, Chaos, Solitons Fractals, 10:345(1999)
    [8] G. Amelino-Camelia, Int. J. Mod. Phys. D, 11:35(2002)
    [9] G. Amelino-Camelia, J. Ellis, N. Mavromatos, D. V. Nanopou-los, and S. Sarkar, Nature, 393:763(1998)
    [10] J. Ellis and N. E. Mavromatos, Astropart. Phys., 43:50(2013)
    [11] Z. Chang, Y. Jiang, and H. N. Lin, Astropart. Phys., 36:47(2012)
    [12] L. Shao, Z. Xiao, and B. Q. Ma, Astropart. Phys., 33:312(2010)
    [13] S. Zhang and B. Q. Ma, Astropart. Phys., 61:108(2014)
    [14] V. Vasileiou, A. Jacholkowska, F. Piron et al, Phys. Rev. D, 87:122001(2013)
    [15] A. A. Abdo, M. Ackermann, M. Ajello et al, Nature, 462:331(2009)
    [16] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos et al, Astropart. Phys., 25:402(2006)
    [17] V. Vasileiou, J. Granot, T. Piran et al, Nature Physics, 11:344(2015)
    [18] R. J. Nemiroff, R. Connolly, J. Holmes et al, Phys. Rev. Lett., 108:231103(2012)
    [19] J. Ellis, N. Mavromatos, D. V. Nanopoulos et al, Astron. As-trophys, 402:409(2003)
    [20] S. E. Boggs, C. B. Wunderer, K. Hurley et al, Astrophys. J., 611:L77(2004)
    [21] S. Zhang and B. Q. Ma, Astropart. Phys., 61:108(2015)
    [22] Y. Pan, Y. Gong, S. Cao et al, Astrophys. J., 808:78(2015)
    [23] Z. Xiao and B. Q. Ma, Phys. Rev. D, 80:116005(2009)
    [24] V. A. Kosteleck and M. Mewes, Phys. Rev. Lett., 110:201601(2013)
    [25] T. Kahniashvili, G. Gogoberidze, and B. Ratra, Phys. Lett. B, 643:81(2006)
    [26] S. Coleman and S. L. Glashow, Phys. Rev. D, 59:116008(1999)
    [27] M. Biesiada and A. Pirkowska, Class. Quantum Grav., 26:125007(2009)
    [28] M. Gogberashvili, A. S. Sakharov, and E. K. Sarkisyan, Phys. Lett. B, 644:179(2007)
    [29] B. E. Schaefer, Phys. Rev. Lett., 82:4964(1999)
    [30] P. Kumar and R. B. Duran, Mon. Not. Roy. Astron. Soc., 400:75(2009)
    [31] A. A. Abdo et al, Astrophys. J., 706:L138(2009)
    [32] M. Ackermann et al, Astrophys. J., 716:1178(2010)
    [33] M. Ackermann et al, Astrophys. J., 729:114(2011)
    [34] P. Kumar and B. Zhang, Phys. Rep., 561:1(2015)
    [35] C. Kouveliotou, C. A. Meegan, G. J. Fishman et al, Astrophys. J., 413:L101(1993)
    [36] T. Piran, Phys. Rep., 314:575(1999)
    [37] D. Band, J. Matteson, L. Ford et al, Astrophys. J., 413:281(1993)
    [38] R. D. Preece, G. N. Pendleton, M. S. Briggs et al, Astrophys. J., 496:849(1998)
    [39] N. M. Lloyd and V. Petrosian, Astrophys. J., 543:722(2000)
    [40] G. Amelino-Camelia and L. Smolin, Phys. Rev. D, 80:084017(2009)
    [41] U. Jacob and T. Piran, J. Cosmol. Astropart. Phys., 2008:031(2008)
    [42] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos et al, Astropart. Phys., 29:158(2008)
    [43] P. Ade et al(Planck Collaboration), arXiv:1502.01589
    [44] G. I. Rubtsov, M. S. Pshirkov, and P. G. Tinyakov, Mon. Not. R. Astron. Soc., 421:L14(2012)
  • 加载中

Get Citation
Zhe Chang, Xin Li, Hai-Nan Lin, Yu Sang, Ping Wang and Sai Wang. Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts[J]. Chinese Physics C, 2016, 40(4): 045102. doi: 10.1088/1674-1137/40/4/045102
Zhe Chang, Xin Li, Hai-Nan Lin, Yu Sang, Ping Wang and Sai Wang. Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts[J]. Chinese Physics C, 2016, 40(4): 045102.  doi: 10.1088/1674-1137/40/4/045102 shu
Milestone
Received: 2015-07-20
Revised: 2015-12-01
Fund

    Supported by National Natural Science Foundation of China(11375203, 11305181, 11322545, 11335012) and Knowledge Innovation Program of The Chinese Academy of Sciences

Article Metric

Article Views(1493)
PDF Downloads(140)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts

    Corresponding author: Yu Sang,
  • 1.  Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2.  Department of Physics, Chongqing University, Chongqing 401331, China
  • 3.  State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
Fund Project:  Supported by National Natural Science Foundation of China(11375203, 11305181, 11322545, 11335012) and Knowledge Innovation Program of The Chinese Academy of Sciences

Abstract: In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation(LIV). As the most energetic explosions in the Universe, gamma-ray bursts(GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale MQG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB, we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, MQG>5.05×1014 GeV in the linearly corrected case, is from GRB 140622A. Our constraint on MQG, although not as tight as previous results, is the safest and most reliable so far.

    HTML

Reference (44)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return