Two-dimensional Langevin modeling of fission dynamics of the excited compound nuclei 188Pt, 227Pa and 251Es

  • A stochastic approach based on one- and two-dimensional Langevin equations is applied to calculate the pre-scission neutron multiplicity, fission probability, anisotropy of fission fragment angular distribution, fission cross section and the evaporation cross section for the compound nuclei 188Pt, 227Pa and 251Es in an intermediate range of excitation energies. The chaos weighted wall and window friction formula are used in the Langevin equations. The elongation parameter, c, is used as the first dimension and projection of the total spin of the compound nucleus onto the symmetry axis, K, considered as the second dimension in Langevin dynamical calculations. A constant dissipation coefficient of K, γ K = 0.077(MeV zs)-1/2, is used in two-dimensional calculations to reproduce the above mentioned experimental data. Comparison of the theoretical results of the pre-scission neutron multiplicity, fission probability, fission cross section and the evaporation cross section with the experimental data shows that the results of two-dimensional calculations are in better agreement with the experimental data. Furthermore, it is shown that the two-dimensional Langevin equations together with a dissipation coefficient of K, γ K = 0.077(MeV zs)-1/2, can satisfactorily reproduce the anisotropy of fission fragment angular distribution for the heavy compound nucleus 251Es. However, a larger value of γ K = 0.250(MeV zs)-1/2 is needed to reproduce the anisotropy of fission fragment angular distribution for the lighter compound nucleus 227Pa.
      PCAS:
  • 加载中
  • [1] P. N. Nadtochy et al, Phys. Rev. C, 85: 064619 (2012)
    [2] J. P. Lestone et al, Nucl. Phys. A, 559: 277 (1993)
    [3] H. Eslamizadeh Eur. Phys. J. A, 47: 1 (2011)
    [4] A. Gavron, Phys. Rev. C, 21: 230 (1980)
    [5] F. Pulnhofer, Nucl. Phys. A, 280: 267 (1977)
    [6] W. Ye, Int. J. Mod. Phys. E, 23: 1460003 (2014)
    [7] P. N. Nadtochy et al, Phys. Rev. C, 89: 014616 (2014)
    [8] H. Eslamizadeh and M. Soltani, Ann. Nucl. Energy, 80: 261 (2015)
    [9] H. Eslamizadeh, Chinese Phys. C, 39: 054102 (2015)
    [10] J. P. Lestone and S. G. McCalla, Phys. Rev. C, 79: 044611 (2009)
    [11] P. N. Nadtochy, G. D. Adeev and A. V. Karpov, Phys. Rev. C, 65: 064615 (2002)
    [12] H. Eslamizadeh and H. Raanaei, Ann. Nucl. Energy, 51: 252 (2013)
    [13] P. Frbrich and I. I. Gontchar, Phys. Rep., 292: 131 (1998)
    [14] H. Eslamizadeh, Int. J. Mod. Phys. E, 21: 1 (2012)
    [15] H. Eslamizadeh, Chinese Phys. C, 34: 1714 (2010)
    [16] W. Ye and N. Wang, Tian J. Phys. Rev. C, 90: 041604 (2014)
    [17] W. Ye and J. Tian, Phys. Rev. C, 91: 064603 (2015)
    [18] J. Tian, N. Wang and W. Ye, Chinese Phys. C, 39: 034102 (2015)
    [19] E. G. Ryabov, A. V. Karpov, P. N. Nadtochy and G. D. Adeev, Phys. Rev. C, 78: 044614 (2008)
    [20] H. Eslamizadeh and M. Pirpour, Chinese Phys. C, 38: 064101 (2014)
    [21] J. P. Lestone, Phys. Rev. C, 59: 1540 (1999)
    [22] N. Wang and W. Ye, Phys. Rev. C, 87: 051601 (2013)
    [23] M. Brack et al, Rev. Mod. Phys., 44: 320 (1972)
    [24] A. V. Ignatyuk et al, Yad. Fiz., 21: 1185 (1975)
    [25] K. T. R. Davies, A. Sierk and J. R. Nix, Phys. Rev. C, 13: 2385 (1976)
    [26] J. P. Lestone, Phys. Rev. C, 51: 580 (1995)
    [27] W. D. Myers and W. J. Swiatecki, Nucl. Phys., 81: 1 (1966)
    [28] W. D. Myers and W. J. Swiatecki, Ark Fys., 36: 343 (1967)
    [29] J. Blocki et al, Nucl. Phys. A, 545: 511c (1992)
    [30] G. Chaudhuri, and S. Pal, Phys. Rev. C, 65: 054612 (2002)
    [31] S. Pal and T. Mukhopadhyay, Phys. Rev. C, 57: 210 (1998)
    [32] D. V. Vanin et al, Phys. Rev. C, 59: 2114 (1999)
    [33] M. Blann, Phys. Rev. C, 21: 1770 (1980)
    [34] J. E. Lynn, The theory of neutron resonance reactions (Clarendon: Oxford, 1968), p.325
    [35] S. G. McCalla and J. P. Lestone, Phys. Rev. Lett., 101: 032702 (2008)
    [36] T. Dossing and J. Randrup, Nucl. Phys. A, 433: 215 (1985)
    [37] J. Randrup, Nucl. Phys. A, 383: 468 (1982)
    [38] R. Vandenbosch and J. R. Huizenga, Nuclear Fission (Academic: New York, 1973)
    [39] A. Bohr in Proceedings of the United Nations international conference on the peaceful uses of atomic energy (United Nations: New York, 1956), 2: 151
    [40] I. Halpern and V. M. Strutinsky, in Proceedings of the United Nations international conference on the peaceful uses of atomic energy (United Nations: Geneva, 1958), 15: 408
    [41] J. P. Lestone et al, J. Phys. G: Nucl. Part. Phys., 23: 1349 (1997)
    [42] D. J. Hinde et al, Phys. Rev. C, 45: 1229 (1992)
    [43] J. O. Newton et al, Nucl. Phys. A, 483: 126 (1988)
    [44] R. J. Charity et al, Nucl. Phys. A, 457: 441 (1986)
    [45] B. B. Back et al, Phys. Rev. C, 32: 195 (1985)
    [46] Z. Liu et al, Phys. Rev. C, 54: 761 (1996)
  • 加载中

Get Citation
H. Eslamizadeh. Two-dimensional Langevin modeling of fission dynamics of the excited compound nuclei 188Pt, 227Pa and 251Es[J]. Chinese Physics C, 2016, 40(2): 024103. doi: 10.1088/1674-1137/40/2/024103
H. Eslamizadeh. Two-dimensional Langevin modeling of fission dynamics of the excited compound nuclei 188Pt, 227Pa and 251Es[J]. Chinese Physics C, 2016, 40(2): 024103.  doi: 10.1088/1674-1137/40/2/024103 shu
Milestone
Received: 2015-07-07
Article Metric

Article Views(1382)
PDF Downloads(25)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Two-dimensional Langevin modeling of fission dynamics of the excited compound nuclei 188Pt, 227Pa and 251Es

    Corresponding author: H. Eslamizadeh,
  • 1. Department of Physics, Persian Gulf University 7516913817, Bushehr, Iran

Abstract: A stochastic approach based on one- and two-dimensional Langevin equations is applied to calculate the pre-scission neutron multiplicity, fission probability, anisotropy of fission fragment angular distribution, fission cross section and the evaporation cross section for the compound nuclei 188Pt, 227Pa and 251Es in an intermediate range of excitation energies. The chaos weighted wall and window friction formula are used in the Langevin equations. The elongation parameter, c, is used as the first dimension and projection of the total spin of the compound nucleus onto the symmetry axis, K, considered as the second dimension in Langevin dynamical calculations. A constant dissipation coefficient of K, γ K = 0.077(MeV zs)-1/2, is used in two-dimensional calculations to reproduce the above mentioned experimental data. Comparison of the theoretical results of the pre-scission neutron multiplicity, fission probability, fission cross section and the evaporation cross section with the experimental data shows that the results of two-dimensional calculations are in better agreement with the experimental data. Furthermore, it is shown that the two-dimensional Langevin equations together with a dissipation coefficient of K, γ K = 0.077(MeV zs)-1/2, can satisfactorily reproduce the anisotropy of fission fragment angular distribution for the heavy compound nucleus 251Es. However, a larger value of γ K = 0.250(MeV zs)-1/2 is needed to reproduce the anisotropy of fission fragment angular distribution for the lighter compound nucleus 227Pa.

    HTML

Reference (46)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return