Two-gluon and trigluon glueballs from dynamical holography QCD

  • We study the scalar, vector and tensor two-gluon and trigluon glueball spectra in the framework of the 5-dimension dynamical holographic QCD model, where the metric structure is deformed self-consistently by the dilaton field. For comparison, the glueball spectra are also calculated in the hard-wall and soft-wall holographic QCD models. In order to distinguish glueballs with even and odd parities, we introduce a positive and negative coupling between the dilaton field and glueballs, and for higher spin glueballs, we introduce a deformed 5-dimension mass. With this set-up, there is only one free parameter from the quadratic dilaton profile in the dynamical holographic QCD model, which is fixed by the scalar glueball spectra. It is found that the two-gluon glueball spectra produced in the dynamical holographic QCD model are in good agreement with lattice data. Among six trigluon glueballs, the produced masses for 1±- and 2-- are in good agreement with lattice data, and the produced masses for 0--, 0+- and 2+- are around 1.5 GeV lighter than lattice results. This result might indicate that the three trigluon glueballs of 0--, 0+- and 2+- are dominated by the three-gluon condensate contribution.
      PCAS:
  • 加载中
  • [1] M. Gell-Mann, Acta Phys. Austriaca Suppl., 9:733(1972)
    [2] C. J. Morningstar and M. J. Peardon, Phys. Rev. D, 60:034509(1999)[hep-lat/9901004]
    [3] B. Lucini and M. Teper, JHEP, 0106, 050(2001)[hep-lat/0103027]
    [4] H. B. Meyer, arxiv:hep-lat/0508002
    [5] Y. Chen, A. Alexandru, S. J. Dong, T. Draper, I. Horvath, F. X. Lee, K. F. Liu and N. Mathur et al, Phys. Rev. D, 73:014516(2006)[hep-lat/0510074]
    [6] E. Gregory, A. Irving, B. Lucini, C. McNeile, A. Rago, C. Richards and E. Rinaldi, JHEP, 1210:170(2012)[arXiv:1208.1858[hep-lat]]
    [7] N. Isgur and J. E. Paton, Phys. Rev. D, 31:2910(1985)
    [8] T. Huang, H. Y. Jin and A. L. Zhang, Phys. Rev. D, 59:034026(1999)[hep-ph/9807391]
    [9] C.-F. Qiao and L. Tang, Phys. Rev. Lett., 113:221601(2014)
    [10] C. F. Qiao and L. Tang, arXiv:1509.00305[hep-ph]
    [11] V. Mathieu, N. Kochelev and V. Vento, arXiv:0810.4453[hep-ph]; E. Klempt and A. Zaitsev, Phys. Rept., 454:1(2007); C. Amsler and N. A. Tornqvist, Phys. Rept., 389:61(2004)
    [12] J. M. Maldacena, Adv. Theor. Math. Phys., 2:231(1998)[hep-th/9711200]
    [13] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B, 428:105(1998)[hep-th/9802109]
    [14] E. Witten, Adv. Theor. Math. Phys., 2:253(1998)[hep-th/9802150]
    [15] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Phys. Rept., 323183(2000); O. Aharony, arXiv:hep-th/0212193; A. Zaffaroni, PoS RTN2005, 005(2005); J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Eur. Phys. J. A, 35:81(2008),[arXiv:0711.4467[hep-th]]
    [16] P. Kovtun, D. T. Son and A. O. Starinets, Phys. Rev. Lett., 94:111601(2005)[arXiv:hep-th/0405231]
    [17] J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. Lett., 95:261602(2005)
    [18] A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D, 74:015005(2006)
    [19] T. Sakai and S. Sugimoto, Prog. Theor. Phys., 113:843(2005); Prog. Theor. Phys., 114:1083(2006); G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett., 94:201601(2005); L. Da Rold and A. Pomarol, Nucl. Phys. B, 721:79(2005); K. Ghoroku, N. Maru, M. Tachibana and M. Yahiro, Phys. Lett. B, 633:602(2006); O. Andreev, V. I. Zakharov, arXiv:hep-ph/0703010; Phys. Rev. D, 74:025023(2006); M. Kruczenski, L. A. P. Zayas, J. Sonnenschein and D. Vaman, JHEP, 06:046(2005); S. Kuperstein and J. Sonnenschein, JHEP, 11:026(2004); H. Forkel, M. Beyer and T. Frederico, JHEP, 0707:077(2007)
    [20] Deog Ki Hong, Takeo Inami, and Ho-Ung Yee, Phys. Lett. B, 646:165-171(2007); Kanabu Nawa, Hideo Suganuma, and Toru Kojo, Phys.Rev.D 75:086003(2007); Deog Ki Hong, Mannque Rho, Ho-Ung Yee, and Piljin Yi, Phys.Rev.D 76:061901(2007)
    [21] C. Csaki, H. Ooguri, Y. Oz and J. Terning, JHEP, 9901:017(1999); R. de Mello Koch, A. Jevicki, M. Mihailescu and J. P. Nunes, Phys. Rev. D, 58:105009(1998); M. Zyskin, Phys. Lett. B, 439:373(1998); J. A. Minahan, JHEP, 9901:020(1999); C. Csaki, Y. Oz, J. Russo and J. Terning, Phys. Rev. D, 59:065012(1999); R. Apreda, D. E. Crooks, N. J. Evans and M. Petrini, JHEP, 0405:065(2004)
    [22] R. C. Brower, S. D. Mathur and C. I. Tan, Nucl. Phys. B, 587:249(2000)
    [23] H. Boschi-Filho and N. R. F. Braga, JHEP, 0305:009(2003); H. Boschi-Filho and N. R. F. Braga, Eur. Phys. J. C, 32:529(2004); H. Boschi-Filho, N. R. F. Braga and H. L. Carrion, Phys. Rev. D, 73:047901(2006)
    [24] P. Colangelo, F. De Fazio, F. Jugeau and S. Nicotri, Phys. Lett. B, 652:73(2007)[hep-ph/0703316]. L. Bellantuono, P. Colangelo and F. Giannuzzi, arXiv:1507.07768[hep-ph]
    [25] H. Forkel, Phys. Rev. D, 78:025001(2008)[arXiv:0711.1179[hep-ph]]
    [26] T. Sakai and S. Sugimoto, Prog. Theor. Phys., 113:843(2005); Prog. Theor. Phys., 114, 1083(2006)
    [27] K. Hashimoto, C. I. Tan and S. Terashima, Phys. Rev. D, 77:086001(2008)[arXiv:0709.2208[hep-th]]. F. Brnner, D. Parganlija and A. Rebhan, Phys. Rev. D, 91(10):106002(2015)[arXiv:1501.07906[hep-ph]]. F. Brnner and A. Rebhan, Phys. Rev. Lett., 115(13):131601(2015)[arXiv:1504.05815[hep-ph]]
    [28] D. Li, M. Huang and Q.-S. Yan, Eur. Phys. J. C, 73:2615(2013)[arXiv:1206.2824[hep-th]]
    [29] D. Li and M. Huang, JHEP, 1311:088(2013)[arXiv:1303.6929[hep-ph]]
    [30] D. Li and M. Huang, arXiv:1311.0593[hep-ph]
    [31] D. Li, J. Liao and M. Huang, Phys. Rev. D, 89(12):126006(2014)[arXiv:1401.2035[hep-ph]]
    [32] D. Li, S. He and M. Huang, JHEP, 1506:046(2015)[arXiv:1411.5332[hep-ph]]
    [33] K. Chelabi, Z. Fang, M. Huang, D. Li and Y. L. Wu, arXiv:1511.02721[hep-ph]
    [34] Jaffe R. L., Phys. Rev. D, 15:267(1977)
    [35] K. F. Liu, Prog. Theor. Phys. Suppl., 168:160(2007); Liu K. F., Wong C. W., Phys. Lett. B, 107:391(1981); Cheng H. Y., Chua C. K., Liu K. F., Phys. Rev. D, 74:094005(2006);'t Hooft G., Isidori G., et al, Phys. Lett. B, 662:424(2008); Zhao Q., Zou B. s., Ma Z. b., Phys. Lett. B, 631:22(2005); Bugg D. V., Peardon M. J., Zou B. S., Phys. Lett. B, 486(2000):49; Narison S., Nucl.Phys.Proc.Suppl., 186:306-311(2009)
    [36] B. A. Li, Phys. Rev. D, 81:114002(2010)[arXiv:0912.2323[hep-ph]]. H. Y. Cheng, AIP Conf. Proc., 1257, 477(2010)[arXiv:0912.3561[hep-ph]]. S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D, 90(11):114005(2014)[arXiv:1408.4921[hep-ph]]. W. I. Eshraim, arXiv:1509.09117[hep-ph]. S. He, M. Huang and Q. S. Yan, Phys. Rev. D, 81:014003(2010)[arXiv:0903.5032[hep-ph]]. T. K. Mukherjee, M. Huang and Q. S. Yan, Phys. Rev. D, 86:114022(2012)[arXiv:1203.5717[hep-ph]]. T. K. Mukherjee and M. Huang, Phys. Rev. D, 89(7):076002(2014)[arXiv:1311.1313[hep-ph]]
    [37] F. Zuo, Phys. Rev. D, 82:086011(2010) doi:10.1103/PhysRevD.82.086011[arXiv:0909.4240[hep-ph]]
    [38] S. J. Brodsky, G. F. de Teramond and A. Deur, Phys. Rev. D, 81:096010(2010) doi:10.1103/PhysRevD.81.096010[arXiv:1002.3948[hep-ph]]
    [39] A. Karch, E. Katz, D. T. Son and M. A. Stephanov, JHEP, 1104:066(2011) doi:10.1007/JHEP04(2011)066[arXiv:1012.4813[hep-ph]]
    [40] D. Li, S. He, M. Huang and Q. S. Yan, JHEP, 1109:041(2011) doi:10.1007/JHEP09(2011)041[arXiv:1103.5389[hep-th]]
    [41] T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D, 85:076003(2012) doi:10.1103/PhysRevD.85.076003[arXiv:1108.0346[hep-ph]]
    [42] K. Chelabi, Z. Fang, M. Huang, D. Li and Y. L. Wu, Phys. Rev. D, 93(10):101901(2016) doi:10.1103/PhysRevD.93.101901[arXiv:1511.02721[hep-ph]]
    [43] K. Chelabi, Z. Fang, M. Huang, D. Li and Y. L. Wu, JHEP, 1604:036(2016) doi:10.1007/JHEP04(2016)036[arXiv:1512.06493[hep-ph]]
    [44] S. Narison and G. Veneziano, Int. J. Mod. Phys. A, 4:2751(1989). doi:10.1142/S0217751X89001060
    [45] J. I. Latorre, S. Narison and S. Paban, Phys. Lett. B, 191:437(1987). doi:10.1016/0370-2693(87)90636-8
    [46] S. Narison, Nucl. Phys. B, 509:312(1998) doi:10.1016/S0550-3213(97)00562-2[hep-ph/9612457]
  • 加载中

Get Citation
Yi-dian Chen and Mei Huang. Two-gluon and trigluon glueballs from dynamical holography QCD[J]. Chinese Physics C, 2016, 40(12): 123101. doi: 10.1088/1674-1137/40/12/123101
Yi-dian Chen and Mei Huang. Two-gluon and trigluon glueballs from dynamical holography QCD[J]. Chinese Physics C, 2016, 40(12): 123101.  doi: 10.1088/1674-1137/40/12/123101 shu
Milestone
Received: 2016-01-23
Revised: 2016-09-03
Fund

    Supported by the NSFC (11175251, 11621131001), DFG and NSFC (CRC 110), CAS Key Project KJCX2-EW-N01, K.C.Wong Education Foundation, and Youth Innovation Promotion Association of CAS

Article Metric

Article Views(2069)
PDF Downloads(93)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Two-gluon and trigluon glueballs from dynamical holography QCD

    Corresponding author: Yi-dian Chen, chenyd@ihep.ac.cn
    Corresponding author: Mei Huang, chenyd@ihep.ac.cn
  • 1.  Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3. Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Supported by the NSFC (11175251, 11621131001), DFG and NSFC (CRC 110), CAS Key Project KJCX2-EW-N01, K.C.Wong Education Foundation, and Youth Innovation Promotion Association of CAS

Abstract: We study the scalar, vector and tensor two-gluon and trigluon glueball spectra in the framework of the 5-dimension dynamical holographic QCD model, where the metric structure is deformed self-consistently by the dilaton field. For comparison, the glueball spectra are also calculated in the hard-wall and soft-wall holographic QCD models. In order to distinguish glueballs with even and odd parities, we introduce a positive and negative coupling between the dilaton field and glueballs, and for higher spin glueballs, we introduce a deformed 5-dimension mass. With this set-up, there is only one free parameter from the quadratic dilaton profile in the dynamical holographic QCD model, which is fixed by the scalar glueball spectra. It is found that the two-gluon glueball spectra produced in the dynamical holographic QCD model are in good agreement with lattice data. Among six trigluon glueballs, the produced masses for 1±- and 2-- are in good agreement with lattice data, and the produced masses for 0--, 0+- and 2+- are around 1.5 GeV lighter than lattice results. This result might indicate that the three trigluon glueballs of 0--, 0+- and 2+- are dominated by the three-gluon condensate contribution.

    HTML

Reference (46)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return