Triaxial dynamics in the quadrupole-deformed rotor

  • The triaxial dynamics of the quadrupole-deformed rotor model of both the rigid and the irrotational type are investigated in detail. The results indicate that level patterns of the two types of model can be matched with each other to the leading order of the deformation parameter β. In particular, it is found that the dynamical structure of the irrotational type with most triaxial deformation (γ=30°) is equivalent to that of the rigid type with oblate deformation (γ=60°), and the associated spectrum can be classified into the standard rotational bands obeying the rotational L(L+1)-law or regrouped into a new ground- and γ-band with odd-even staggering in the new γ-band, commonly recognized as a signature of the triaxiality. The differences between the two types of the model in this case are emphasized, especially in the E2 transitional characteristics.
      PCAS:
  • 加载中
  • [1] H. B. G. Casimir, Rotation of a rigid body in quantum mechanics, (The Hague: Wolters, 1931)
    [2] R. L. Kronig, and I. I. Rabi, Phys. Rev., 29: 262-269 (1927)
    [3] A. Bohr, Konggl. Dan. Vid. Selsk. Mat.-fys. Medd., 26(14): (1952)
    [4] A. S. Davydov, and G. F. Filippov, Nucl. Phys., 8: 237-249 (1958)
    [5] A. Bohr, and B. R. Mottelson, Nuclear Structure, (Reading Ma: Benjamin W A Inc., 1975)
    [6] W. Greiner, and J. A. Maruhn, Nuclear models, (Berlin: Springer-Verlag, 1996)
    [7] H. Ui, Prog. Theor. Phys., 44: 153-171 (1970)
    [8] Y. Leschber, and J. P. Draayer, Phys. Lett. B, 190: 1-6 (1987)
    [9] O. Castaos, J. P. Draayer, and Y. Z. Leschber, Phys. A, 329: 33-43 (1998)
    [10] H. A. Naqvi, C. Bahri, D. Troltenier, J. P. Draayer, A. Z. Faessler, Phys. A, 351: 259-270 (1995)
    [11] Yuri F. Smirnov, Nadya A. Smirnova, van Isacker Piet, Phys. Rev. C, 61: 041302(R) (2000)
    [12] G. Thiamova, Eur. Phys. J. A, 45: 81-90 (2010)
    [13] Y. Zhang, F. Pan, Lian-Rong Dai, and J. P. Draayer, Phys. Rev. C, 90: 044310 (2014)
    [14] J. L. Wood, A. M. Oros-Peusquens, R. Zaballa, J. M. Allmond, and W. D. Kulp, Phys. Rev. C, 70: 024308 (2004)
    [15] J. M. Allmond, R. Zaballa, A. M. Oros-Peusquens, W. D. Kulp, and J. L. Wood, Phys. Rev. C, 78: 014302 (2008)
    [16] J. M. Allmond, J. L. Wood, and W. D. Kulp, Phys. Rev. C, 80: 021303(R) (2009)
    [17] J. M. Allmond, J. L. Wood, and W. D. Kulp, Phys. Rev. C, 81: 051305(R) (2010)
    [18] Q. B. Chen, S. Q. Zhang, P. W. Zhao, and J. Meng, Phys. Rev. C, 90: 044306 (2014)
    [19] N. V. Zamfir, and R. F. Casten, Phys. Lett. B, 260: 265-270 (1991)
  • 加载中

Get Citation
Qiu-Yue Li, Xiao-Xiang Wang, Yan Zuo, Yu Zhang and Feng Pan. Triaxial dynamics in the quadrupole-deformed rotor[J]. Chinese Physics C, 2016, 40(1): 014101. doi: 10.1088/1674-1137/40/1/014101
Qiu-Yue Li, Xiao-Xiang Wang, Yan Zuo, Yu Zhang and Feng Pan. Triaxial dynamics in the quadrupole-deformed rotor[J]. Chinese Physics C, 2016, 40(1): 014101.  doi: 10.1088/1674-1137/40/1/014101 shu
Milestone
Received: 2015-04-22
Fund

    Supported by National Natural Science Foundation of China (11375005, 11005056, 11175078)

Article Metric

Article Views(1753)
PDF Downloads(118)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Triaxial dynamics in the quadrupole-deformed rotor

    Corresponding author: Yu Zhang,
  • 1. Department of Physics, Liaoning Normal University, Dalian 116029, China
Fund Project:  Supported by National Natural Science Foundation of China (11375005, 11005056, 11175078)

Abstract: The triaxial dynamics of the quadrupole-deformed rotor model of both the rigid and the irrotational type are investigated in detail. The results indicate that level patterns of the two types of model can be matched with each other to the leading order of the deformation parameter β. In particular, it is found that the dynamical structure of the irrotational type with most triaxial deformation (γ=30°) is equivalent to that of the rigid type with oblate deformation (γ=60°), and the associated spectrum can be classified into the standard rotational bands obeying the rotational L(L+1)-law or regrouped into a new ground- and γ-band with odd-even staggering in the new γ-band, commonly recognized as a signature of the triaxiality. The differences between the two types of the model in this case are emphasized, especially in the E2 transitional characteristics.

    HTML

Reference (19)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return