System size dependence in backward relativistic hadron production in pA and AA collisions

Get Citation
B. M. Badawy. System size dependence in backward relativistic hadron production in pA and AA collisions[J]. Chinese Physics C, 2014, 38(11): 114001. doi: 10.1088/1674-1137/38/11/114001
B. M. Badawy. System size dependence in backward relativistic hadron production in pA and AA collisions[J]. Chinese Physics C, 2014, 38(11): 114001.  doi: 10.1088/1674-1137/38/11/114001 shu
Milestone
Received: 2013-12-04
Revised: 1900-01-01
Article Metric

Article Views(1347)
PDF Downloads(248)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

System size dependence in backward relativistic hadron production in pA and AA collisions

    Corresponding author: B. M. Badawy,
  • 1. Reactor Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt

Abstract: In this comprehensive study the multiplicity characteristics of the backward emitted relativistic hadron (shower particle) through hadron-nucleus and nucleus-nucleus are overviewed in three dimensions. These dimensions are the projectile size, target size, and energy. To confirm the universality in this production system, wide ranges of system size and energy (Elab~ 2.1 A up to 200 A GeV) are used. The multiplicity characteristics of this hadron imply a limiting behavior with respect to the projectile size and energy. The target size is the main effective parameter in this production system. The exponential decay shapes is a characteristic feature of the backward shower particle multiplicity distributions. The decay constant changes with the target size to be nearly 2.02, 1.41, and 1.12 for the interactions with CNO, Em, and AgBr nuclei, respectively, irrespective of the projectile size and energy. While the backward production probability and average multiplicity are constants at different projectile sizes and energies, they can be correlated with the target size in power law relations.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return