Simulation of energy scan of pion interferometry in central Au+Au collisions at relativistic energies

  • We present a systematic analysis of two-pion interferometry for the central Au+Au collisions at √sNN=3, 5, 7, 11, 17, 27, 39, 62, 130 and 200 GeV/c with the help of a multiphase transport (AMPT) model. Emission source-size radius parameters Rlong, Rout, Rside and the chaotic parameter λ are extracted and compared with the experimental data. Transverse momentum and azimuthal angle dependencies of the HBT radii are also discussed for central Au+Au collisions at 200 GeV/c. The results show that the HBT radii in central collisions do not change much above 7 GeV/c. For central collisions at 200 GeV/c, the radii decrease with the increasing of transverse momentum pT but are not sensitive to the azimuthal angle. These results provide a theoretical reference for the energy scan program of the RHIC-STAR experiment.
      PCAS:
  • 加载中
  • [1] Arsene I et al. Nucl. Phys. A, 2004, 757: 1; Back B B et al. (PHOBOS collaboration). 2005, 757: 28; Adams J et al. (STAR collaboration). 2005, 757: 102; Adcox S S et al. (PHENIX collaboration). 2005, 757: 184[2] For reviews, please see Boal D H, Gelbke C K, Jenningsm B K. Rev. Mod. Phys., 1990, 62: 553; Bauer W, Gelbke C K, Pratt S. Annu. Rev. Nucl. Part. Sci., 1992, 42: 77; Heinz U W, Jacak B V. Annu. Rev. Nucl. Part. Sci., 1999, 49: 529; Wiedemann U A, Heinz U W. Phys. Rep., 1999, 319: 145; Lisa M A, Pratt S, Soltz R, Wiedemann U. Annu. Rev. Nucl. Part. Sci., 2005, 55: 357[3] Adler C et al. (STAR collaboration). Phys. Rev. Lett., 2001, 87: 082301[4] Adams J et al. (STAR collaboration). Phys. Rev. Lett., 2004, 93: 012301; Adams J et al. (STAR collaboration). Phys. Rev. C, 2005, 71: 044906[5] Adler S S et al. (PHENIX collaboration). Phys. Rev. Lett., 2004, 93: 152302[6] Abelev B I et al. (STAR collaboration). Phys. Rev. C, 2009, 80: 024905; Abelev B I et al. (STAR collaboration). Phys. Rev. C, 2010, 81: 024911[7] Aamodt K et al. (ALICE collaboration). Phys. Lett. B, 2011, 696: 328[8] Kolb P F, Heinz U. Quark Gluon Plasma 3. Ed. Hwa R C, WANG X N. Singapore: World Scientific, 2003. 634[9] Hirano T. J. Phys. G, 2004, 30: S845[10] LIN Zi-Wei, KO C M, Pal Subrata. Phys. Rev. Lett., 2002, 89: 152301[11] LIN Zi-Wei, KO C M. J. Phys. G: Nucl. Part. Phys., 2004, 30: S263[12] LI Qing-Feng, Bleicher Marcus, Stcker Horst. Phys. Lett. B, 2008, 659: 525[13] LI Qing-Feng, Grf G, Bleicher Marcus. Phys. Rev. C, 2012, 85: 034908[14] Odyniec G. Phys. Atom. Nucl., 2012, 75: 602[15] LIN Z W, KO C M, LI B A, ZHANG B, Pal S. Phys. Rev. C, 2005, 72: 064901[16] WANG X N. Phys. Rev. D, 1991, 43: 104[17] WANG X N, Gyulassy M. Phys. Rev. D, 1991, 44: 3501[18] WANG X N, Gyulassy M. Phys. Rev. D, 1992, 45: 844[19] Gyulassy M, WANG X N. Comput. Phys. Commun., 1994, 83: 307[20] ZHANG B. Comput. Phys. Commun., 1998, 109: 193[21] Andersson B, Gustafson G, Soderberg B. Z. Phys. C, 1983, 20: 317[22] Andersson B, Gustafson G, Ingelman G, Sjostrand T. Phys. Rep., 1983, 97: 31[23] Sjostrand T. Comput. Phys. Commun., 1994, 82: 74[24] LI B A, KO C M. Phys. Rev. C, 1995, 52: 2037[25] LI B A, Sustich A T, ZHANG B, KO C M. Int. J. Mod. Phys. E, 2001, 10: 267[26] LIN Z W, KO C M. Phys. Rev. C, 2002, 65: 034904[27] ZHANG B, KO C M, LI B A, LIN Z W. Phys. Rev. C, 2000, 61: 067901[28] ZHANG B, KO C M, LI B A, LIN Z W, SA B H. Phys. Rev. C, 2000, 62: 054905[29] LIN Z W, Pal S, KO C M, LI B A, ZHANG B. Phys. Rev. C, 2001, 64: 011902(R)[30] Pal S, KO C M, LIN Z W. Nucl. Phys. A, 2004, 730: 143[31] Pal S, KO C M, LIN Z W. Nucl. Phys. A, 2002, 707: 525[32] LIN Z W, KO C M. Phys. Rev. C, 2003, 68: 054904[33] Pratt S. Phys. Rev. Lett., 1984, 53: 1219[34] Pratt S. Phys. Rev. Lett., 2009, 102: 232301[35] Goldhaber G et al. Phys. Rev., 1960, 120: 300[36] Pratt S. Nucl. Phys. A, 1994, 566: 103c[37] Weiner R M. Phys. Rept., 2000, 327: 249; Baym G. Acta Phys. Polon. B, 1998, 29: 1839[38] Abelev B I et al. (STAR collaboration). Phys. Lett. B, 2009, 673: 183[39] ZHANG S, ZHU Y H, MA G L et al. Nucl. Phys. A, 2011, 860: 76[40] Back B B et al. (PHOBOS collaboration). Phys. Rev. C, 2006, 73: 031901[41] Ahle L et al. (E802 collaboration). Phys. Rev. C, 2002, 66: 054906[42] Adamova D et al. (CERES collaboration). Nucl. Phys. A, 2003, 714: 124[43] Lisa M A et al. (E895 collaboration). Phys. Rev. Lett., 2000, 84: 2798[44] Bearden I G et al. (NA44 collaboration). Phys. Rev. C, 1998, 58: 1656[45] Alt C et al. (NA49 collaboration). Phys. Rev. C, 2008, 77: 064908[46] Soltz R A et al. (E866 collaboration). Nucl. Phys. A, 1999, 661: 439[47] Aggarwal M M et al. (WA98 collaboration). Phys. Rev. C, 2003, 67: 014906
  • 加载中

Get Citation
ZHANG Zheng-Qiao, ZHANG Song and MA Yu-Gang. Simulation of energy scan of pion interferometry in central Au+Au collisions at relativistic energies[J]. Chinese Physics C, 2014, 38(1): 014102. doi: 10.1088/1674-1137/38/1/014102
ZHANG Zheng-Qiao, ZHANG Song and MA Yu-Gang. Simulation of energy scan of pion interferometry in central Au+Au collisions at relativistic energies[J]. Chinese Physics C, 2014, 38(1): 014102.  doi: 10.1088/1674-1137/38/1/014102 shu
Milestone
Received: 2013-05-17
Revised: 1900-01-01
Article Metric

Article Views(1680)
PDF Downloads(592)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Simulation of energy scan of pion interferometry in central Au+Au collisions at relativistic energies

    Corresponding author: MA Yu-Gang,

Abstract: We present a systematic analysis of two-pion interferometry for the central Au+Au collisions at √sNN=3, 5, 7, 11, 17, 27, 39, 62, 130 and 200 GeV/c with the help of a multiphase transport (AMPT) model. Emission source-size radius parameters Rlong, Rout, Rside and the chaotic parameter λ are extracted and compared with the experimental data. Transverse momentum and azimuthal angle dependencies of the HBT radii are also discussed for central Au+Au collisions at 200 GeV/c. The results show that the HBT radii in central collisions do not change much above 7 GeV/c. For central collisions at 200 GeV/c, the radii decrease with the increasing of transverse momentum pT but are not sensitive to the azimuthal angle. These results provide a theoretical reference for the energy scan program of the RHIC-STAR experiment.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return