Relativistic particle scattering states with tensor potential and spatially-dependent mass

  • We investigate the relativistic equation for particles with spin 1/2 in the q-parameter modified Pöschl-Teller potential, including Coulomb-like tensor interaction with spatially-dependent mass for the D-dimension. We present approximate solutions of the Dirac equation with these potentials for any spin-orbit quantum number κ under spin symmetry. The normalized wave functions are expressed in terms of the hyper-geometric series of the scattering states on the k/2π scale. We also give the formula for the phase shifts, and use the Nikiforov-Uvarov method to obtain the energy eigen-values equation.
      PCAS:
  • 加载中
  • [1] Saad N, Hall R L, Ciftci H. Cent. Eur. J. Phys., 2008, 6: 717[2] Eshghi M, Mehraban H. Few-Body Syst., 2012, 52: 41[3] Jia C S, de Souza Dutra A. Ann. Phys., 2008, 323: 566[4] Arda A, Sever R, Tezcan C. Chin. Phys. Lett., 2010, 27: 010306[5] Galler M R, Kohn W. Phys. Rev. Lett., 1993, 70: 3103[6] Serra L I, Lipparini E. Europhys. Lett., 1997, 40: 667[7] Bastard G. Wave Mechanics Applied to Semiconductor Heterostructures, Les Editions de physique, Les Ulis, 1988[8] De Saavedra F A et al. Phys. Rev. B, 1994, 50: 4248[9] Puente A, Gasas M. Comput. Mater. Sci., 1994, 2: 441[10] Barranco M et al. Phys. Rev. B, 1997, 56: 8997[11] Puente A, Serra L I, Casas M. Zeit. Phys. D, 1994, 31: 283[12] Schmidt A G M. Phys. Lett. A, 2006, 353: 459[13] Wannier G H. Phys. Rev., 1937, 52: 191[14] Slater J C. Phys. Rev., 1949, 76: 1592[15] DiVincenzo D P, Mele E J. Phys. Rev. B, 1984, 29: 1685[16] Baym G, Pethick C J. Landau Fermi Liquid Theory: Concepts Applications, New York: Wiley, 1991[17] Plastino A R, Casas M, Plastino A. Phys. Lett. A, 2001, 281: 297[18] Tanaka T. J. Phys. A: Math. Gen., 2006, 39: 219[19] Quesne C. Ann. Phys., 2006, 321: 1221[20] GANG C. Phys. Lett. A, 2004, 329: 22[21] Dekar L, Chetouani L, Hammann T F. J. Math. Phys., 1998, 39: 2551[22] Alhaidari A D et al. Phys. Rev. A, 2007, 75: 062711[23] Panella O, Biondini S, Arda A. J. Phys. A: Math. Theor., 2010, 43: 325302[24] Dombey N, Kennedy P, Calogercos A. Phys. Rev. Lett., 2000, 85: 1787[25] Kennedy P. J. Phys. A, 2002, 35: 689[26] Rojas C, Villalba V M. Phys. Rev. A, 2005, 71: 052101-4[27] DONG S H, Lozada-Gassou M. Phys. Lett. A, 2004, 330:168[28] Arda A, Aydogdu O, Sever R. J. Phys. A: Math. Theor., 2010, 43: 425204[29] Movahedi M, Hamzavi M. Int. J. Phys. Sci., 2011, 6: 891[30] Alhaidari A D. J. Phys. A: Math. Theor., 2005, 38: 3409[31] Gincchio J N. Phys. Rep., 2005, 414:165[32] MAO G. Phys. Rev. C, 2003, 67: 044318[33] Alberto P et al. Phys. Rev. C, 2005, 71: 034313[34] Furnstahl R J, Rusnak J J, Serot B D. Nucl. Phys. A, 1998, 632: 607[35] Moshinsky M, Szczepaniak A. J. Phys. A: Math. Gen., 1989, 22: L817[36] Eshghi M, Hamzavi M. Commun. Theor. Phys., 2012, 57: 355[37] Akcay H, Tezcan C. Int. J. Mod. Phys. C, 2009, 20: 931[38] Aydogdu O, Sever R. Few-Boby Syst., 2010, 47: 193[39] Eshghi M, Mehraban H. Chin. J. Phys., 2011, 50: 533[40] Hamzavi M, Rajabi A A, Hassanabadi H. Few-Body Syst., 2010, 48: 171[41] Ikhdair S M, Sever R. Appl. Math. Com., 2010, 216: 911[42] Pschl G, Teller E. Z. Physik, 1933, 83: 143[43] Aktas M, Sever R. J. Mol. Struct. THEOCHEM, 2004, 710: 223[44] Zuniga J et al. Int. J. Quntum. Chem., 1996, 57: 43[45] De Rocha R, Capelas de Oliveira E. Rev. Mex. Fis., 2005, 51: 1[46] Iachello F, Oss S. Chem. Phys. Lett., 1993, 205: 285[47] Iachello F, Oss S. Chem. Phys. Lett., 1993, 99: 7337[48] Landau L D, Lifshitz E M, Quantum Mechanics. third edition. New-York: Pergaman, 1965. 73[49] Agboola D. arXive: 0811.3613v3[50] Hassanabadi H, Yazarloo B, LU L L. Chin. Phys. Lett., 2012, 29: 020303[51] JIA C S, SUN Y, LI Y. Phys. Lett. A, 2002, 305: 231[52] Bender C M, Boettcher S. Phys. Rev. Lett., 1998, 80: 5243[53] Mostafazadeh A. J. Math. Phys., 2002, 43: 205[54] Nikiforov A F, Uvarov V B. Special Functions of Mathematical Physics, Birkhauser Verlag Basel, 1988[55] DONG S H. Wave Equations in Higher Dimensions, Springer, Dordrecht Heidelberg, London, New-York, 2011[56] ZENG J Y. Quantum Mechanis, third edition. Vol. II, Beijing: Science Press, 2000[57] Agboola D. Phys. Scr., 2009, 80: 065304[58] CHEN C Y et al. Commun. Theor. Phys., 2011, 55: 399[59] Agboola D. arXiv:1011.2368v1[60] DONG S H. Factorization Method in Quantum Mechanics, Springer Dordrecht, the Netherlands, 2007[61] MENG J et al. Phys. Rev. C, 1999, 59: 154[62] MENG J et al. Phys. Rev. C, 1998, 58: R628[63] JIA C S, CHEM T, GUI L G. Phys. Lett. A, 2009, 373: 1621[64] ZHANG L H, LI X P, JIA C S. Phys. Scr., 2009, 80: 035003[65] XU Y, HE S, JIA C S. Phys. Scr., 2010, 81: 045001[66] JIA C S et al. Int. J. Mod. Phys. A, 2009, 24: 4519[67] Greene R L, Adrich C. Phys. Rev. A, 1976, 14: 2363[68] Arai A. J. math. Anal. Appl., 1991, 158: 63[69] CHEN C Y, SUN D S, LU F L. Phys. Lett. A, 2004, 330: 424[70] Gradshteyn I S, Ryzhik I M. Tables of Integrals, Series, and Products. five edition. New York: Academic Press, 1994[71] Abramovitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1970[72] WANG Z X, GUO D R. Introdaction to Special Functions, Beijing: Science Press, 1979
  • 加载中

Get Citation
M. R. Abdi. Relativistic particle scattering states with tensor potential and spatially-dependent mass[J]. Chinese Physics C, 2013, 37(5): 053103. doi: 10.1088/1674-1137/37/5/053103
M. R. Abdi. Relativistic particle scattering states with tensor potential and spatially-dependent mass[J]. Chinese Physics C, 2013, 37(5): 053103.  doi: 10.1088/1674-1137/37/5/053103 shu
Milestone
Received: 2012-07-03
Revised: 2012-11-29
Article Metric

Article Views(1791)
PDF Downloads(385)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Relativistic particle scattering states with tensor potential and spatially-dependent mass

Abstract: We investigate the relativistic equation for particles with spin 1/2 in the q-parameter modified Pöschl-Teller potential, including Coulomb-like tensor interaction with spatially-dependent mass for the D-dimension. We present approximate solutions of the Dirac equation with these potentials for any spin-orbit quantum number κ under spin symmetry. The normalized wave functions are expressed in terms of the hyper-geometric series of the scattering states on the k/2π scale. We also give the formula for the phase shifts, and use the Nikiforov-Uvarov method to obtain the energy eigen-values equation.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return