Solution of the Schrödinger equation for a particular form of Morse potential using the Laplace transform

  • In this paper, we have solved the Schrödinger equation for a particular kind of Morse potential and find its normalized eigenfunctions and eigenvalues, exactly. Our work is based on the Laplace transform technique which reduces the second-order differential equation to a first-order.
      PCAS:
  • 加载中
  • [1] Morse A P M. Phys. Rev., 1929, 34: 57[2] Pschl G, Teller E. Z. Physik, 1933, 83: 143[3] Sage M L. Chem. Phys., 1978, 35: 375[4] Matsumoto A, Iwamoto K. J. Quant. Spectrosc. Radiat. Transfer, 1993, 50: 103[5] Vasan V S, Cross R J. J. Chem. Phys., 1983, 78: 3869[6] Tipping R H, Ogilvie J F. J. Chem. Phys., 1983, 79: 2537[7] DONG S H, TANG Y, SUN G H. Phys. Lett. A, 2003, 320: 145[8] Klauder J R, Skagerstam B S. Coherent States, Applications in Physics and Mathematical Physics. Singapore; Word scientific, 1985[9] Twareque Ali S, Antoine J P, Gazeau J P. Coherent States, Wavelets and Their Generalization, Berlin: Springer, 2000[10] Gazeau J P. Coherent States in Quantum Physics. WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim, 2009[11] See the papers appeared in: J. Phys. A: Math. and Theor. 45 No. 24 Special issue on coherent states: mathematical and physical aspects 2012[12] Buzek V, Wilson-Gordon A D, Night P L et al. Phys. Rev. A, 1992, 45: 8079[13] Dayi O F, Duru I H. Int. J. Mod. Phys. A, 1997, 12: 2373[14] Aktas M, Sever R. Mod. Phys. Lett. A, 2004, 19: 2871[15] Schrdinger E. Proc. R. Irish Acad. A, 1940, 46: 9; 1941, 47: 53[16] CHEN G. Phys. Lett. A, 2004, 326: 55[17] Nikiforov A F, Uvarov V B. Special Functions of Mathematical Physics. Birkhauser, Basel, 1988[18] Szego G. Orthogonal Polynomials. New York: American Mathematical Society, Revised edition, 1959[19] Berkdemir C, Han J. arXiv:quant-ph/0502182[20] Bayrak O, Boztosun I. J. Phys. A, 2006, 39: 6955[21] Bayrak O, Boztosun I. J. Mol. Struct.: Theochem, 2007, 802: 17[22] Kandirmaz N, Sever R. Chinese J. Phys., 2009, 47: 47[23] Daoud M, Popov D. Int. J. Mod. Phys. B, 2004, 18: 325[24] Polyanin A D, Manzhirov A V. Handbook of Integral Equations. New York, Washington: CRC Press, 1998
  • 加载中

Get Citation
M. K. Tavassoly. Solution of the Schrödinger equation for a particular form of Morse potential using the Laplace transform[J]. Chinese Physics C, 2013, 37(4): 043106. doi: 10.1088/1674-1137/37/4/043106
M. K. Tavassoly. Solution of the Schrödinger equation for a particular form of Morse potential using the Laplace transform[J]. Chinese Physics C, 2013, 37(4): 043106.  doi: 10.1088/1674-1137/37/4/043106 shu
Milestone
Received: 2012-05-15
Revised: 2012-10-22
Article Metric

Article Views(1382)
PDF Downloads(385)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Solution of the Schrödinger equation for a particular form of Morse potential using the Laplace transform

    Corresponding author: M. K. Tavassoly,

Abstract: In this paper, we have solved the Schrödinger equation for a particular kind of Morse potential and find its normalized eigenfunctions and eigenvalues, exactly. Our work is based on the Laplace transform technique which reduces the second-order differential equation to a first-order.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return