Approximate solutions of Dirac equation with a ring-shaped Woods-Saxon potential by Nikiforov-Uvarov method

  • An approximate analytical solution of the Dirac equation is obtained for the ring-shaped Woods-Saxon potential within the framework of an exponential approximation to the centrifugal term. The radial and angular parts of the equation are solved by the Nikiforov-Uvarov method. The general results obtained in this work can be reduced to the standard forms already present in the literature.
      PCAS:
  • 加载中
  • [1] MAO G. Phys. Rev. C 2003,67: 044318[2] Alberto P,Lisboa R,Malheiro M et al. Phys. Rev. C,2005,71: 034313[3] Furnstahl R F,Rusnak J J,Serot B D. Nucl. Phys. A,1998,632: 607[4] WEI G F,DONG S H. Phys. Lett. A 2008,373: 49[5] WEI G F,DONG S H. EPL,2009,87: 40004[6] WEI G F,DONG S H. Phys. Scr.,2010,81: 035009[7] Zarrinkamar S,Rajabi A A,Hassanabadi H. Ann. Phys. (New York),2010,325: 2522[8] Hassanabadi H,Maghsoodi E,Zarrinkamar S et al. Mod. Phys. Lett. A,2011,26(36): 2703-2718[9] WEI G F,DONG S H. Eur. J. Phys. A,2010,46: 207[10] WEI G F,DONG S H. Phys. Lett. B,2010,686: 288[11] DONG S H. Phys. Scr. 2001,64: 273[12] CHEN T,LIU J,JIA C. Phys. Scr. 2009,79: 055002[13] DONG S H,CHEN C Y,Lozada-Cassou M. Int. J. Quant. Chem.,2005,105: 453[14] Agboola D. Chin. Phys. Lett.,2010,27 (4): 040301[15] Aydoğdu O,Sever R. Few Body Sys.,2010,47: 193[16] CHEN T S,Lü H F,MENG J et al. Chin. Phys. Lett.,2003,20: 358[17] QIANG W C,DONG S H. Phys. Scr.,2009,79: 045004.[18] GUO J Y,ZHOU F,GUO F L et al. Int. J. Mod. Phys. A,2007,22: 4825[19] QIANG W C,ZHOU R S,GAO Y. J. Phys. A: Math. Theor.,2007,40: 1677[20] Setare M R,Nazari Z. Acta Physica Polonica B,2010,41(11): 2459[21] WEI G F,DONG S H,Bezerra V B. Int. J. Mod. Phys. A,2009,24: 161[22] Yasuk F,Durmus A. Phys. Scr.,2008,77: 015005[23] Victoria Carpio-Bernido M,Bernido C C. Phys. Lett. A,1989,137: 1-3[24] DONG S H,SUN G H,Lozada-Cassou M. Phys. Lett. A,2004,328: 299[25] CHEN C Y,DONG S H. Phys. Lett. A,2005,335: 374[26] ZHANG M C,SUN G H,DONG S H. Phys. Lett. A,2010,374: 704[27] Arda A,Sever R. J. Math. Chem.,2012,50: 1484[28] DONG S H. Wave Equations in Higher Dimensions. Netherlands: Springer,2011[29] DONG S H. Lozada-Cassou M. Phys. Scr.,2006,74: 285[30] SUN G H,DONG S H. Mod. Phys. Lett. A,2010,25: 2849[31] Bakkeshizadeh S,Vahidi V. Adv. Stud. Theor. Phys.,2012,6: 733-742[32] Nikiforov A F,Uvarov V B. Special Functions of Mathematical Physics. Bassel: Birkhauser,1988[33] Miranda M G,SUN G H,DONG S H. Int. J. Mod. Phys. E,2010,19: 123[34] Tezcan C,Sever R. Int. J. Theor. Phys.,2009,48: 337[35] Schiff L I. Quantum Mechanics. New York: McGraw-Hill,1968[36] Berkdemir C. Nucl. Phys. A,2006,770: 32[37] Aydoğdu O,Sever R. Eur. Phys. J. A,2010,43: 73[38] GUO J Y,FANG X Z,XU F X. Phys. Rev. A,2002,66: 062105
  • 加载中

Get Citation
E. Maghsoodi and S. Zarrinkamar. Approximate solutions of Dirac equation with a ring-shaped Woods-Saxon potential by Nikiforov-Uvarov method[J]. Chinese Physics C, 2013, 37(11): 113104. doi: 10.1088/1674-1137/37/11/113104
E. Maghsoodi and S. Zarrinkamar. Approximate solutions of Dirac equation with a ring-shaped Woods-Saxon potential by Nikiforov-Uvarov method[J]. Chinese Physics C, 2013, 37(11): 113104.  doi: 10.1088/1674-1137/37/11/113104 shu
Milestone
Received: 2013-01-17
Revised: 2013-05-08
Article Metric

Article Views(1344)
PDF Downloads(217)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Approximate solutions of Dirac equation with a ring-shaped Woods-Saxon potential by Nikiforov-Uvarov method

Abstract: An approximate analytical solution of the Dirac equation is obtained for the ring-shaped Woods-Saxon potential within the framework of an exponential approximation to the centrifugal term. The radial and angular parts of the equation are solved by the Nikiforov-Uvarov method. The general results obtained in this work can be reduced to the standard forms already present in the literature.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return