Implications of the Daya Bay observation of θ13 on the leptonic avor mixing structure and CP violation

  • The Daya Bay collaboration has recently reported its first veve oscillation result which points to θ13 8.8°±0.8° (best-fit ±1σ range) or θ13 ≠ 0° at the 5:2σ level. The fact that this smallest neutrino mixing angle is not strongly suppressed motivates us to look into the underlying structure of lepton avor mixing and CP violation. Two phenomenological strategies are outlined: (1) the lepton avor mixing matrix U consists of a constant leading term U0 and a small perturbation term ΔU; and (2) the mixing angles of U are associated with the lepton mass ratios. Some typical patterns of U0 are reexamined by constraining their respective perturbations with current experimental data. We illustrate a few possible ways to minimally correct U0 in order to fit the observed values of three mixing angles. We point out that the structure of U may exhibit an approximate μ-τ permutation symmetry in modulus, and reiterate the geometrical description of CP violation in terms of the leptonic unitarity triangles. The salient features of nine distinct parametrizations of U are summarized, and its Wolfenstein-like expansion is presented by taking U0 to be the democratic mixing pattern.

      PCAS:
  • 加载中
  • [1] Nakamura K et al. (Particle Data Group). J. Phys. G, 2010,37: 0750212 Maki Z, Nakagawa M, Sakata S. Prog. Theor. Phys., 1962,28: 870; Pontecorvo B. Sov. Phys. JETP, 1968, 26: 9843 Fogli G L et al. Phys. Rev. D, 2011, 84: 053007; Schwetz T, Tortola M, Valle J W F. New J. Phys., 2011, 13: 1094014 Cabibbo N. Phys. Rev. Lett., 1963, 10: 531; Kobayashi M, Maskawa T. Prog. Theor. Phys., 1973, 49: 6525 Machado P A N et al. arXiv:1111.33306 Abe K et al. (T2K collaboration). Phys. Rev. Lett., 2011,107: 0418017 Adamson P et al. (MINOS collaboration). Phys. Rev. Lett.,2011, 107: 1818028 Abe Y et al. (Double Chooz collaboration). arXiv:1112.63539 WANG Y F. The News Release and Special Seminar at IHEP, Beijing, 8 March 2012; An F P et al. (Baya Bay collaboration). Observation of Electron Antineutrino Dis- appearance at Daya Bay, submitted to Phys. Rev. Lett. (arXiv:1203.1699)10 Fritzsch H, XING Z Z. Phys. Lett. B, 1996, 372: 265; Phys. Lett. B, 1998, 440: 313; Phys. Rev. D, 2000, 61: 07301611 Wolfenstein L. Phys. Rev. Lett., 1983, 51: 194512 Vissani F. hep-ph/9708483; Barger V, Pakvasa S, Weiler T J, Whisnant K. Phys. Lett. B, 1998, 437: 10713 Harrison P F, Perkins D H, Scott W G. Phys. Lett. B,2002, 530: 167; XING Z Z. Phys. Lett. B, 2002, 533: 85; Harrison P F, Scott W G. Phys. Lett. B, 2002, 535: 163; HE X G, Zee A. Phys. Lett. B, 2003, 560: 8714 Kajiyama Y, Raidal M, Strumia A. Phys. Rev. D, 2007,76: 117301; A slight variation of this golden-ratio mixing pattern has been discussed by Rodejohann W. Phys. Lett. B, 2009, 671: 26715 XING Z Z. J. Phys. G, 2003, 29: 2227; Giunti C. Nucl. Phys. B (Proc. Suppl.), 2003, 117: 24. The name of this avor mixing pattern was coined by Albright C H, Dueck A, Rodejohann W. Eur. Phys. J. C, 2010, 70: 109916 Fritzsch H, XING Z Z. Prog. Part. Nucl. Phys., 2000, 45:1. and references therein17 XING Z Z, ZHANG H, ZHOU S. Phys. Rev. D, 2008, 77:113016. arXiv:1112.311218 Fritzsch H, XING Z Z. Phys. Lett. B, 2006, 634: 514; Phys. Lett. B, 2009, 682: 22019 Rodejohann W, Tanimoto M, Watanabe A. arXiv:1201.493620 Fritzsch H. Phys. Lett. B, 1978, 73: 317; Nucl. Phys. B,1979, 155: 18921 XING Z Z. Phys. Lett. B, 2002, 550: 178; ZHOU S, XING Z Z. Eur. Phys. J. C, 2005, 38: 495; Fritzsch H, XING Z Z, ZHOU Y L. Phys. Lett. B, 2011, 697: 35722 XING Z Z. Phys. Lett. B, 2002, 530: 159; Frampton P H, Glashow S L, Marfatia D. Phys. Lett. B, 2002, 536: 79; XING Z Z. Phys. Lett. B, 2002, 539: 85; For a system- atic analysis. Fritzsch H, XING Z Z, ZHOU S. JHEP, 2011,1109: 08323 Froggatt C D, Nielsen H B. Nucl. Phys. B, 1979, 147: 27724 Grimus W, Joshipura A S, Lavoura L, Tanimoto M. Eur. Phys. J. C, 2004, 36: 22725 Friedberg R, Lee T D. High Energy Phys. and Nucl. Phys.,2006, 30: 591 (in Chinese)26 Altarelli G, Feruglio F. For recent reviews with extensive references. Rev. Mod. Phys., 2010, 82: 2701; Merlo L. arXiv:1004.221127 XING Z Z. Phys. Lett. B, 2011, 696: 23228 Rodejohann W, ZHANG H, ZHOU S. Nucl. Phys. B, 2012,855: 592; de Adelhart Toorop R, Feruglio F, Hagedorn C. Nucl. Phys. B, 2012, 858: 43729 XING Z Z. Phys. Rev. D, 2008, 78: 01130130 Antusch S, Kersten J, Lindner M, Ratz M. Phys. Lett. B,2002, 544: 1; Antusch S, Ratz M. JHEP, 2002, 0211: 010; MEI J W, XING Z Z. Phys. Rev. D, 2004, 70: 053002; Phys. Lett. B, 2005, 623: 227; MEI J W. Phys. Rev. D,2005, 71: 073012; LUO S, XING Z Z. Phys. Lett. B, 2006,632: 341; Phys. Lett. B, 2006, 637: 279; Goswami S, Pet- cov S T, Ray S, Rodejohann W. Phys. Rev. D, 2009, 80:053013; Araki T, GENG C Q, XING Z Z. Phys. Lett. B,2011, 699: 276; Araki T, GENG C Q. JHEP, 2011, 1109:13931 ZHANG H, ZHOU S. Phys. Lett. B, 2011, 704: 29632 LUO S, XING Z Z. submitted to Phys. Lett. B33 XING Z Z, ZHOU S. Phys. Lett. B, 2007, 653: 27834 XING Z Z, ZHANG H, ZHOU S. Phys. Lett. B, 2006, 641:18935 XING Z Z. Chin. Phys. C (HEP NP), 2012, 36: 101; arXiv:1106.324436 Fukugita M, Yanagida T. Phys. Lett. B, 1986, 174: 4537 XING Z Z, ZHOU S. Phys. Lett. B, 2008, 666: 16638 Jarlskog C. Phys. Rev. Lett., 1985, 55: 103939 Cabibbo N. Phys. Lett. B, 1978, 72: 33340 XING Z Z. Phys. Rev. D, 2001, 63: 07301241 MEI J W, XING Z Z. J. Phys. G, 2004, 30: 124342 Fritzsch H, XING Z Z. Nucl. Phys. B, 1999, 556: 4943 GUO W L, XING Z Z. Phys. Rev. D, 2002, 66: 09730244 XING Z Z. Phys. Rev. D, 2012, 85: 01300845 LUO S. Phys. Rev. D, 2012, 85: 01300646 XING Z Z. Int. J. Mod. Phys. A, 2004, 19: 1; ZHANG H, XING Z Z. Eur. Phys. J. C, 2005, 41: 143; XING Z Z, ZHANG H. Phys. Lett. B, 2005, 618: 13147 Fritzsch H, XING Z Z. Phys. Rev. D, 1998, 57: 594; Phys. Lett. B, 2001, 517: 36348 Feynman R P. The Nobel Lecture, reprinted in Science,1966, 153: 69949 Fritzsch H, XING Z Z. Phys. Lett. B, 1997, 413: 39650 XING Z Z. Phys. Lett. B, 2006, 633: 55051 Wolfenstein L. Phys. Rev. D, 1978, 17: 2369; Mikheyev S P, Smirnov A Yu. Sov. J. Nucl. Phys., 1985, 42: 91352 ZHOU Y L. Phys. Rev. D, 2011, 84: 11301253 Toshev S. Mod. Phys. Lett. A, 1991, 6: 45554 XING Z Z. Phys. Rev. D, 2002, 65: 11301055 Gerard J M, XING Z Z. arXiv:1203.0496. Gerard J M. Lectures given at the 2008 European School of High Energy Physics, Herbeumont, Belgium, June 2008. arXiv:0811.054056 HUANG M et al. arXiv:1108.390657 XING Z Z. Nuovo Cim. A, 1996, 109: 115; J. Phys. G,1997, 23: 717
  • 加载中

Get Citation
XING Zhi-Zhong. Implications of the Daya Bay observation of θ13 on the leptonic avor mixing structure and CP violation[J]. Chinese Physics C, 2012, 36(4): 281-297. doi: 10.1088/1674-1137/36/4/L01
XING Zhi-Zhong. Implications of the Daya Bay observation of θ13 on the leptonic avor mixing structure and CP violation[J]. Chinese Physics C, 2012, 36(4): 281-297.  doi: 10.1088/1674-1137/36/4/L01 shu
Milestone
Received: 2012-03-08
Revised: 1900-01-01
Article Metric

Article Views(2371)
PDF Downloads(529)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Implications of the Daya Bay observation of θ13 on the leptonic avor mixing structure and CP violation

  • Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract: The Daya Bay collaboration has recently reported its first veve oscillation result which points to θ13 8.8°±0.8° (best-fit ±1σ range) or θ13 ≠ 0° at the 5:2σ level. The fact that this smallest neutrino mixing angle is not strongly suppressed motivates us to look into the underlying structure of lepton avor mixing and CP violation. Two phenomenological strategies are outlined: (1) the lepton avor mixing matrix U consists of a constant leading term U0 and a small perturbation term ΔU; and (2) the mixing angles of U are associated with the lepton mass ratios. Some typical patterns of U0 are reexamined by constraining their respective perturbations with current experimental data. We illustrate a few possible ways to minimally correct U0 in order to fit the observed values of three mixing angles. We point out that the structure of U may exhibit an approximate μ-τ permutation symmetry in modulus, and reiterate the geometrical description of CP violation in terms of the leptonic unitarity triangles. The salient features of nine distinct parametrizations of U are summarized, and its Wolfenstein-like expansion is presented by taking U0 to be the democratic mixing pattern.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return