Improved nonlinear optimization in the storage ring of the modernsynchrotron radiation light source
- Received Date: 2008-04-08
- Accepted Date: 2008-04-23
- Available Online: 2009-01-11
Abstract:
In the storage ring of the third generation light sources, nonlinear optimization is an indispensable course in order to obtain ample dynamic acceptances and to reach high injection efficiency and long beam lifetime, especially in a low emittance lattice. An improved optimization algorithm based on the single resonance approach, which takes relative weight and initial Harmonic Sextupole Integral Strength (HSIS) as search variables, is discussed in this paper. Applications of the improved method in several test lattices are presented. Detailed analysis of the storage ring of the Shanghai Synchrotron Radiation Facility (SSRF) is particularly emphasized. Furthermore, cancellation of the driving terms is investigated to reveal the physical mechanism of the harmonic sextupole compensation. Sensitivity to the weight and the initial HSIS as well as dependence of the optimum solution on the convergent factor is analyzed.