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Abstract: The present study uses the minimal geometric deformation scheme within the paradigm of f(R, L, T)

gravity to model anisotropic compact stars using class-1 embedding spacetime. We introduce deformation of radial

component of metric tensor which results in the decoupling of Einstein field equations and introduces an additional

gravitational source. The involved constants are then evaluated by adopting the data of seven realistic star candid-

ates through matching of inner region with outer Schwarzschild line-element. A comprehensive investigation of three

compact stars is done graphically to examine the impact of coupling parameter f and the deformation parameter n,
revealing positive well-behaved energy densities and pressures, satisfying energy conditions. The study finds that

negative coupling parameter f values allow more mass accumulation while maintaining the crucial physical charac-
teristics such as stability through Herrera's cracking condition and the extended Tolman-Oppenheimer-Volkoff equa-

tion. This study emphasizes the importance of gravitational decoupling for mass, redshift and compactness, provid-

ing vital insights into the internal structure of stellar bodies within this new generalized gravity framework.
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I. INTRODUCTION

In 1916, Albert Einstein introduced the theory of gen-
eral relativity (GR) which revolutionized our current un-
derstanding of gravitational phenomena and explained
various critical astronomical events, including the
curvature of spacetime and the formation of stellar as
well as galactic structures. One of the most significant
predictions of GR 1is the existence of black holes and
compact stellar configurations, all of which result from
the gravitational collapse during the eventual stages of a
star's life. In 2005, numerous compact objects with high
densities were discovered [1]. The theory of GR has con-
tinued to demonstrate its accuracy, as evidenced by the
precise prediction of gravitational waves by Mercury's
perihelion precession, which are recently detected by the
Laser Interferometer Gravitational-Wave Observatory
and Virgo collaborations [2]. Additionally, the first pic-
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ture of the shadow of a black hole, captured by the Event
Horizon Telescope project, further validated the theory of
GR [3]. Despite these remarkable successes, GR has en-
countered challenges in addressing certain theoretical and
observational cosmic issues, such as the unexpected ac-
celeration of cosmos [4—7], non—renormalizability [8],
the cosmological constant problem [9], and the mysteries
of dark terms of cosmic distribution [10].

To address the limitations of GR, numerous extended
gravitational frameworks have been put forwarded in lit-
erature. These theories serve as candidates for DE, which
is often believed to be a possible source of accelerated
cosmic expansion because of its negative pressure. Many
of these extended theories involve geometric modifica-
tions of GR, providing essential frameworks to support
observational cosmic data. For example, F(R) gravity
modifies the gravitational theory by introducing a Lag-
rangian that is a function of the Ricci scalar [11, 12]. An-
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other significant theory is teleparallel gravity in which the
curvature R is substituted by torsion 7, defined through
the Weitzenbdck connection in place of the Levi-Civita
connection [13, 14]. Initially, this framework was ap-
plied to BTZ black hole solutions [15]. Later, it was
shown [16] that F(7") theory is fails to comply with the
first thermodynamical law of black holes. Examples of
other remarkable modified theories of gravity include
fR.RS.®) [17-19], £(G) gravity [20], f(R,T) gravity
[21], f(7.B) gravity [22], f(T,T) [23-26], f(Q.T) [27,
28] and f(R, L,,) theory [29].

A particularly important class of modified theories in-
volves coupling matter and geometry, such as f(R,T),
fR,L,), and their unification in f(R,L,,T) gravity.
These frameworks allow the energy-momentum tensor to
influence spacetime geometry directly, leading to richer
phenomenology and the emergence of non-conserved
matter fields. Recent studies have applied such theories to
model anisotropic compact stars, explore deviations in
hydrostatic equilibrium, and test energy conditions under
strong gravity. Additionally, the Minimal Geometric De-
formation (MGD) technique has been increasingly util-
ized to generate exact or semi-analytical anisotropic solu-
tions within these extended frameworks, demonstrating
compatibility with astrophysical observations. These ad-
vancements collectively indicate that modified gravity
continues to be a fertile ground for addressing outstand-
ing questions in theoretical and observational cosmology.
This theory considers the gravitational Lagrangian as a
generic function of three fundamental quantities: the
Ricci scalar R, the matter Lagrangian £,,, and the trace
of the energy-momentum tensor 7, that is,
Loy = f(R, L,,T) [30-32]. Recent developments have
shown that such frameworks can accommodate more
realistic compact star models, account for anisotropic
matter distributions, and generate modified equilibrium
conditions consistent with astrophysical observations.
Motivated by these advances, the present study explores
anisotropic compact stellar configurations within the
fR,L,,T) gravity framework using the Minimal Geo-
metric Deformation (MGD) technique under the gravita-
tional decoupling approach. This allows us to construct
physically viable solutions while incorporating non-min-
imal matter-geometry coupling that reflect the current dir-
ection of research in gravitational modeling.

In recent years, the quest for exact spherically sym-
metric solutions to the dynamical field equations has be-
come increasingly challenging, primarily due to the pres-
ence of numerous non-linear terms, especially in the con-
text of modified gravity theories. A substantial body of
literature is available wherein compact star solutions have
been constructed under various gravitational frameworks.
Nashed and El Hanafy [33] investigated spherically sym-
metric dynamical configurations in f(R) gravity using a
quadratic model defined by f(R) = R+ eR?. For the interi-

or spacetime geometry, they adopted the Krori-Barua
metric and considered anisotropic matter distributions.
Utilizing observational data of PSR J0740+ 6620 from
NICER and XMM-Newton observations, they determ-
ined viable values of the parameter ¢ and demonstrated
that the resulting structure is stable and satisfies all essen-
tial physical conditions. Extending this study, Nashed and
Capozziello [34] employed an exponential model,
F(R) = Ref®, in combination with observational data from
the pulsar SAX J1748.9-2021, yielding significant res-
ults. In another investigation, Nashed [35] obtained exact
solutions for anisotropic, perfect-fluid spheres within the
f(R,T) framework, adopting a linear form of the func-
tion as f(R,T) =R+BT, where f is a dimensional para-
meter. The resulting solutions were found to be in hydro-
static equilibrium, with all relevant physical quantities
expressed in terms of f and the compactness parameter

C=

Re?
thor further derived solutions by introducing specific as-
sumptions on anisotropy as well as radial metric compon-
ent, leading to compelling physical conclusions.

In the framework of conformal f(R,T) gravity, the
modeling of compact stars has been explored by Das et
al. [36], where solutions were generated to describe the
interior geometry of compact objects by employing a
barotropic equation of state (EoS). A detailed graphical
analysis demonstrated that the obtained solutions are
physically consistent and correspond to radiating com-
pact stars. Kumar et al. [37] constructed stellar models
with isotropic matter distributions in curvature-matter
coupled gravity, assuming a linear functional form of
f(R,T). Their analysis confirmed the stability of the pro-
posed configuration through various physical criteria. The
pursuit of anisotropic and non-singular compact star mod-
els was further carried out in [38], where the barotropic
EoS was applied within the f(R,T) framework. The res-
ults indicated that the energy conditions are satisfied and
the models exhibit stable behavior. In another recent
study [39], compact stellar configurations were investig-
ated by employing the Krori-Barua metric as the interior
geometry within the context of «(R,T) gravity. Utilizing
observational data from three compact stars —4U
1820-30, SAX J1808.4-3658, and Her X—1—the physic-
al acceptability and stability of the models were ex-
amined through graphical methods.

The technique of gravitational decoupling through
Minimal Geometric Deformation (MGD) offers a novel
strategy that facilitates the derivation of acceptable solu-
tions for spherically relativistic configurations. This
method introduces various new elements that contribute
to the pursuit of solutions for spherically symmetric ob-
jects by incorporating more complex gravitational
sources into the existing energy-momentum tensor while
preserving spherical symmetry. The MGD approach was

. Within the same theoretical context, the au-
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first presented by Ovalle within the framework of the
Randall-Sundrum brane-world scenario [40, 41]. It was
later extended to deform the standard Schwarzschild solu-
tion [42], leading to the formulation of new black hole
models [43]. Initial applications of this technique were
primarily developed in the context of brane-world mod-
els [44, 45], black hole acoustics [46], and studies on the
Generalized Uncertainty Principle (GUP) and Hawking
radiation involving fermions [47]. Additionally, it was
applied to purely anisotropic matter distributions [48, 49]
and the anisotropic Einstein-Maxwell system [50, 51].
Subsequently, this technique has been employed in vari-
ous theories, such as in [52], where the MGD approach
was used to extend the Buchdahl solution, and in [53],
where it was applied to obtain an anisotropic static BTZ
model in a (2+ 1)-dimensional spacetime. Other applica-
tions can also be found in the literature [54—56], and par-
ticularly, within the context of f(R,T) theory, one can see
references given in [57, 58]. In the context of F(R,T) the-
ory, researchers [59] have modeled some new anisotrop-
ic compact stars based on decoupling approach. For
achieving this target, they have assumed linear choice of
F(R,T) function, a well-known ansatz for metric poten-
tial namely modified Durgapal-Fuloria model and
Pseudo-Isothermal dark matter as a new source to the an-
isotropic seed solution. It was seen that the obtained solu-
tion is non-singular and agrees with all necessary physic-
al conditions. In the context of GR, authors [60] adopted
the decoupling method to focus on the strange star model,
and it is argued that through mass-radius analysis conduc-
ted for neutron star mergers and huge pulsars, the model
parameters can be effectively constrained. It is concluded
that their outcomes exceeded the observed masses of
compact stars and also showed a correlation of recent
findings from gravitational wave events like GW190814
and GW200210.

Folowing the work of Nashed et al. [33—35], the
primary target of present paper is to utilize the radii and
masses of some known pulsars located within globular
clusters and constrain different involved model paramet-
ers. By performing graphical analysis, we will try to as-
sess whether the proposed MGD-based model in realm of
fR,L,,T) gravity remains physically valid for the ob-
served compact star candidates with known radii and
masses. To this end, we shall select some well-known
stars and test our model against their properties. Specific-
ally, we shall perform the complete physical analysis (in-
cluding energy conditions, stability, etc.) for one repres-
entative star. For other known stars, we will include the
relevant numerical results in tabular form to show how
the values of different parameters (c, B,A) vary under dif-
ferent configurations which further can change the beha-
vior of all physical properties. This dual approach allows
us to validate the model across multiple realistic scenari-
0s.

We construct anisotropic compact star models within
the framework of f(R,L£,.T) gravity using the gravita-
tional decoupling approach via Minimal Geometric De-
formation (MGD) and embedding class-I spacetime. By
deforming the radial metric component, the field equa-
tions are decoupled into isotropic and anisotropic sectors,
enabling the construction of physically viable models
consistent with observed stellar data. This work aims to
explore how the generalized theory, which unifies previ-
ous models such as f(R,T) and f(R,L,), influences the
key physical features of compact stars like stability, en-
ergy conditions, = and mass-radius behavior. The
manuscript is organized as follows: Section II outlines the
theoretical framework of this modified gravity; Section
IIT discusses the metric and matching conditions; Section
IV presents the detailed physical analysis; and Section V
concludes our main findings.

II. BASICS OF f(R,£,,T) THEORY

Since our primary objective is to study compact star
models beyond the paradigm of GR, specifically within
the framework of f(R,L,,,T) theory, this section provides
an overview of the fundamental mathematical structure of
this modified gravity theory, along with the necessary as-
sumptions needed to achieve the outlined goal. Haghani
and Harko proposed [30] a novel framework that unifies
both the f(R,T) and f(R,L,) theories. This innovative
approach leads to a new Lagrangian density incorporat-
ing the Ricci scalar, the trace of the energy-momentum
tensor, and the Lagrangian of ordinary matter, defined by
the following gravitational action:

5= / FR Lo T) NG+ / L, Vgd'x

B / £,z d'x. (1)

Herein, f(R,L,,T) is a generic function of geometrical
and gravitational quantities, and thus leads to the viola-
tion of the principle of minimal interaction between mat-
ter and geometry [30]. Consequently, unlike to GR, the
dynamical equations can no longer be written in the con-
ventional form where spacetime geometry equals ordin-
ary matter, and hence the standard conservation of en-
ergy-momentum tensor is not guaranteed. Furthermore,
the quantities £,, and £y correspond to the matter sector
and an additional gravitational source sector (commonly
referred to as the 9—sector), respectively. A dimension-
less constant S, representing the coupling parameter, is
introduced. In the metric formalism, variation of the ac-
tion with respect to g yields the following field equa-
tions:
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1
fRR,uv - E[f_ (f[ + 2fT)Lm]g/tv + (g,uvD - V,uvv)f‘R

= [82G + %( e+ 2f0)| Ty + 827G + fr Ty @)

where Jr=0f/0R, fr =0f/0T, fr=0f/0L and
o =g"V,V,. Here the covariant derivative is symbolized
by V,. Further, the terms 7, the extra source 9, and 7,
are, respectively, given as follow

TI‘V = g}lV‘Lm - 28-£m /6g,w» (3)

ﬂ,uv = g,uVLﬂ - 26£17/agﬂv’ (4)

Ty = 8P6T 5/ 68" 6)

Equation (2) can be re-arranged as follows
1 1 1
Gyv =L (87TG + (fT + 7f-C))T/1v + 7(f_RfR)g,uv
Sz 2 2
1
_(fT+ EfL)ngpvJ"(Vva_gva)fR+fTT;1v:| . (6)

In this setup, we assume the spherically symmetric
metric written in below form:

(7

ds? = —e"Ddf + &V dr? + 12 (d62 +sin? ed¢2).

The distribution of stellar matter is assumed to be an an-
isotropic fluid, which is defined by the following equa-
tion:

T/lv = (p""pt)vyvv+ptg,uv+(pr_pt)/\/u/\/v, (8)

where p is energy density, p, is radial while p, denotes
the transverse stress. The four velocity is symbolized by
V, and y, to be the radial four vector satisfying:

Vi=e2ss, V'V,=1, x'=e?d&, x'x.=-1

For the sake of simplicity in equations (6), we shall as-
sume the well-motivated forms of Lagrangian matter £,
and f(R,L,.T) function. In this study, we suppose the
Lagrangian matter form as £, = (p, +2p,)/3. Also, we as-
sume a simple form of f(R,L,,T) function which is giv-
en by

SR,L,y,T)=R+yT +AL,, 9

where y and 1 are coupling constants. The primary reason
for choosing this model (9) is that it results in a minimal
coupling between matter and geometry, avoiding the
complications of high order derivatives and enabling the
successful implementation of either the MGD or e-MGD
scheme. Earlier research has also employed similar func-
tional forms to produce regular and physically feasible
stellar models, such as in f(R,T) [61] and f(R,L,) grav-
ity [62]. While there are fewer examples in
f(R,L,,T)gravity where it was demonstrated to preserve
central regularity and enable a physically consistent an-
isotropic extension, our work expands on this strategy
and demonstrates-that it'is still efficient and consistent in
this larger context. Interestingly, since the model (9) is
linear in all variables, i.e., R, £, and T, thercfore the
right hand side of Eq.(6) is similar to the one obtained in
GR theory as fgx =1. Contrarily, on the left hand side,
quantities £,, and T alter the anisotropic fluid distribu-
tion via the dimension-less interaction constants. Introdu-
cing this form of f(R, L,,T) in Eq.(6), one can obtain the
following generic expression:

1
Gy = 87GT,, +87GBD,, + ('y N 5) T,

1 A
+ 5(7T+/l-£m)guv_ <7+ 5) ngyv- (10)

III. MGD AND EMBEDDING CLASS-1 SPACE
TIME

In this part, we will introduce the concept of minimal
geometric deformation, which introduces anisotropy into
the set of field equations. This method incorporates an
additional gravitational source, 9,,, into the energy-mo-
mentum tensor through gravitational decoupling. We in-
troduce the following transformation:

¢V — OB ),

(11)

et 5 WO +B ().

(12)

Here, the notations 7(r) and y(r) denote the deformation
functions introduced for the temporal and radial compon-
ents of the spacetime metric, respectively. According to
the MGD approach, one of these functions can be set to
zero, i.e., either n(r) =0 or ¥(r)=0. In this study, we
choose n(r) = 0, thereby introducing deformation exclus-
ively in the radial component. The constant § serves as a
free coupling parameter, and by setting 8 =0, the origin-
al field equations of f(R,L,,T) gravity are recovered.
Based on this framework, the resulting deformed func-
tion is expressed as follows
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et — VO 4 Bu(r).

(13)

Now, we introduce the additional gravitational source 9,
into the original energy-momentum tensor, resulting in
the effective energy-momentum tensor for f(R,ZL,,T)
gravity. The standard dynamical equations, expressed in
terms of MGD, can then be written as

= 8aGT:!!

w o

1
Ryv_ Engv (14)

where

A A
T;{f = 87TGTHV + SﬂGﬁﬂ#V = 87TGTI“, + (7+ 5) Tyv

1 A
+ 5 (YT + /LEm)guv - <7 + 5) nguv + SﬂGﬂﬁuw
(15)

Here, the original energy-momentum tensor is given by
T,, = diag(p,—p,,—p:;,—p;), while the additional gravita-
tional source is represented as ¥, = diag(d),9},93,93).
The components of ,, introduce anisotropies into the
self-gravitating system, thereby transforming the field
equations into a set of quasi-Einstein field equations. This
transformation is achieved through the deformation of the
metric, and the resulting expressions for the effective en-
ergy density and pressures under gravitational decoup-
ling are obtained as follows:

p:

(3r2(27 +167G + )4y + 167G + /1)),

P =ppo, pY = p—pol p =pi-po (16)
with
N 1
p=87er+f(3y+/l)p—Zp,—Zp,, (17)
2 6 3
R Yy (T /l) 4
= -5 —+z = 1
Pr=81Gp,—5p+ ( ¢ to)Prr3pe (18)
A 4y A
pr=87Gp- Yo+ Lps (24 0) . (19)
The anisotropy parameter is defined as
A= S =p) = A+, (20)

These relations effectively decouple the original dynam-
ical equations into two distinct systems: one governing
the seed isotropic matter distribution and the other char-
acterizing the new anisotropic configuration arising due
to gravitational decoupling. By substituting Eq. (13) into
the field equations (17)—(19), two separate sets of equa-

tions can be obtained, where A= E(pt_pr) and

,
Ay = Eﬁ(ﬂ%—ﬂg). The first system corresponds to the

standard field equations governed by the energy-mo-
mentum tensor T, in the limit 8 =0, and is supplemen-
ted by a conservation equation. These governing equa-
tions are expressed as follows:

(e‘a(” (ra'(l’) (16 +961G + 64— yrv/ () +2 (¢ = 1) 8y + 481G +30) + 2yr*v" (r) +yr*v' (r)* + 47”'(”) ) /

21

pr= (e‘“(’) (ym’(r) '(r)+8)-2 ( (e"“) - 1) 8y +48nG +34) + 7r2v"(r)) +2r(10y + 487G

+3V () +y (_rz) v,(r)z) ) / (3r2(27 + 167G + ) (4y + 167G + /l)) ,

(22)

P = <e"’(’) < —rd' (r)By +r(10y + 487G + 32)V'(r) + 967G + 61) + 2)/(86“(’) +512 (2v”(r) + v’(r)z)

+8rv'(r)—8) +3r(167G + 1) (2rv"(r) + 1V (r)* +2v' (1)) )) (6r2(27 + 167G + ) (4y + 167G + /1)>

and the conservation equation is given by

(23)
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dp. H(r)
Cdr 2
P I S

dr L6(8nG+y+1/2)

o+

2 — FPr
o)+ (ptr pr)

(30-p-200)| =0.

The spacetime solution for the aforementioned set of

equations can be expressed by the below metric:

8=

ds* = e"Vdi? — VO dr? — r*(d6* + sin’ 0d?). (25)

The quasi-Einstein equations are the second set of
equations, which apply to the source 9,,. These are de-
rived by using the relationships defined by Eq.(16) and
the deformed metric supplied in Eq.(13), where g #0.
The resulting quasi-Einstein equations, along with the
conservation equation, are described as below

(r(p’(r) (yrH'(r)=2(8y + 487G + 32)) + y(r) (yr QrH"(r)+ H'(r)(rH'(r) +4))=2(8y + 487G + 3/1)) ) /

(3r2(2y+ 167G + ) (4y + 167rG+/l)), (26)
9] = (yr(rH’(r) +8) ' (r)—y(r) ( 16y +r(H'(r)(20y + 967G = yrH' (r) + 61) = 2yrH" (r)) + 967G + 6/1)) /
(3r2(2y+ 167G + ) (4y + 167rG+/l)), (27)
9= - (r;b’(r) 8y +r(10y + 487G + 30)H' (r) + 961G + 6) + Y (r) (r(2r(107 +48r7G +3)H" (r)
+H'(r)(16y + r(10y + 487G +3)H' (r) + 967G + 6.0) ) — 16y) ) / (6r2(2y +167G + ) (4y + 167G + /l)) , (28)
H(r) o a1 d9i 2 ., d Y 0, gl 2 }
- —hy - L D9 — e 2 =0. 2
R e Ut VR Frrere ey vy (309 +9]+20%) | =0 (29)
[
At this juncture, it is pertinent to note that two sets of  metric potential is given by
equations are decoupled, exhibiting no exchange of en-
ergy between them and interacting solely through gravita- . -
tional effects. e’ =l+cre™ (30)

A. Class-I Solutions and Minimal Geometric Deforma-
tion Scheme

To solve the two sets of field equations involving un-
known functions W(r) and H(r), we select a metric poten-
tial that meets the key criteria: it must be finite, monoton-
ically increasing with », and reach a minimum at r=0,
ensuring regularity. These conditions, as outlined in [63],
are essential for deriving physically viable static spheric-
ally symmetric perfect fluid solutions. In this work, we
adopt the following form for the metric potential, which
satisfies the necessary mathematical conditions and facil-
itates the derivation of physically viable expressions for
the effective energy density and pressures. The chosen

where ¢, n, and a are arbitrary constants. This specific
form has been widely utilized as an ansatz, particularly in
the construction of class-I solutions [64, 65]. It is interest-
ing to mention here that this metric is consistent with the
criteria of being regular at the center, exhibiting mono-
tonically increasing trend with minimum at =0, and
" =1+ 0(?). Therefore, it is a valid choice to consider
for modeling of compact stars within this theory. For a
spacetime to be categorized under embedding class-1, it is
imperative that Eq.(25) satisfies the Karmarkar condition,
originally formulated by Karmarkar in 1948 [66]. This
condition is expressed as
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Ri212R3434 + R1224R1334

Risa = R
2323

G

By incorporating the condition specified in Eq.(31), and
given that Ry3; # 0 as noted in [67], we derive the fol-
lowing equation that establishes a relationship between
the two spacetime functions W(r) and H(r), as outlined
below

W' H'

. W:W/H/_ZH//_H&,
—e

(32)

where " % 1. By integrating the first equation, we de-
rive the subsequent equation, which illustrates the man-
ner in which the four-dimensional spacetime, as de-
scribed by Eq.(31), is embedded within a five-dimension-
al pseudo-Euclidean space. This corresponds to solutions
of embedding class-1. It is defined as

2
SO = (A+B/ \/eWV)—ldr) , (33)

where A and B are constants due to integration. Substi-
tuting Eq.(30) into the above equation permits us to de-
termine the value of the metric "), as provided below

2
22 panr?
o0 = (A+B Vere ) . (34)

anr

The constants A, B, and ¢ can be evaluated through the
application of the matching condition. In the subsequent
section, we will fix the constants 1 and a. It is noted that
the metric potential ¢ is a radial dependent monotonic-
ally increasing function and exhibits positive, finite, and
regular trend with " — 1 as r— 0, thus ensuring the
absence of singularities. Therefore, this metric potential is
suitable for modeling a relativistic compact object within
the framework of f(R,T,L,) gravity via MGD approach.
Below line element can then be used to describe the field
equations given by Egs.(21) through (23):

-1

2

B Ver2eanr? 2

AP+ 1+ dr?
,

ds*= - (A+
an

+ 7 (d6 +sin” 0dg? ). (35)

To obtain the complete solutions for our model, it is
necessary to calculate the components of ,,. This re-
quires determining the deformation function y(r). Sever-
al methods can be employed to find (r), including:

e Mimicking the density constraint (¢4 = p);

e Mimicking the pressure constraint (9} = p,);

e Relating the components of #,, through various
equations of state, such as polytropic, barotropic, or lin-
ear equations.

However, the determination of deformation function
Y(r) often becomes mathematically intricate, especially
when aiming to maintain physical acceptability and ana-
lytic solvability. To address this, we adopt a deformation
function that is free from singularities, exhibits a non-de-
creasing behavior, and has been extensively utilized in
previous studies for constructing physically viable aniso-
tropic models [68—70]. The chosen form is not arbitrary;
it is carefully selected to be fully compatible with the pre-
scribed  seed solution, ensuring that the resulting field
equations  remain analytically tractable and physically
consistent. While alternative functional forms for y(r) are
theoretically permissible, they frequently introduce signi-
ficant non-linearities or yield unphysical features, such as
singularities or negative pressures. Moreover, the selec-
ted function has also been successfully employed in con-
junction with the same seed metric in earlier works, fur-
ther justifying its use in the present analysis. This form is
given by

(36)

The complete spacetime structure related to the energy-
momentum tensor 7/ can be explicitly defined as fol-
lows

B Verzear \
R P

ds* = - (A
anr

( (1 cr-e )(Cj 1) > 2
2 r
(Crz I ) Bnch( crzemlr )

+12(d6 +sin’ 6dg? ), (37)
where
2
\/ 2 panr?
o0 = <A+ BW) ’ (38)
anr

2 nar? 2

ot — (I+cre™ )(cr-+1) (39)

T (err+1) +Bncr2(1 +cr2enr’y’

In the subsequent computations, below characteriza-
tion of total state quantities, i.e., the energy density, radi-
al and tangential pressures will be implemented:
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where density and pressures are provided by Egs.(21)-

p(total) =p+m90, (40)
(23). These relations involve additional geometric quant-
P = p —ad, (41)  ities which are interacted via coupling parameter .
The quantities p®#, along with pt°) and p{“Y for
p(total) =p,- ad? (42) .
! ! E completing the system, can be expressed as follows
|
oral 1 ( 1 <4a2B27kzn2 rt , 4aByn (kor)? (aAnr (anr? +1) + B vVkor)
T 3k Qy+k) \kor+1 K K
2anr’ +2
2 _ 2
2aBykonr < kzr w1 At 2> 4y (anr? +1) (8y + 487G +32)
+ + + 2k, r(8y +48nG +32)

total __

r

total __

© 3k Qy+ky)

t

where

ki=s2y+ 167G+, k =cre™, k; =aAn\/kr+Bk.

kor+1

Zﬁcnr 20 i i .
(Cl"2+l) (( a”A’n’r(8y +32) (cr’ +3) +2aABn Vikar(y(r ?(c (anr® (anr* +3) —8)
)
)-

+an (anr +4 ) ) 31 (cr + 3) ) +B%, (Zy(rz (anr2 + 4) (acnr2

van—c)~12) ~31 (e +3))) /@) +487G (e +3).) ).

1 ( 1 ( 4a’B2ykin*r* _ 4aByn(kor)*? (aAnr (anr2 + 1) +B \/kzr)
3k Qy+k) \kpr+1 i3 k3
2
) _anr + 1 5 ) )
2aBk,nr (27 ( for t 1 +anr 411 ) +961G + 61 16yk (anr2 N 1)

—2o(8
ks lor+ 1 2r(8y

+487G + 3/1)) + ( cnr’ ( <2(aAn (s:r2 + 1) \ kyr(8y +481G + 31) + Bk, (487rG (Cr2 + 1) (Zanr2 + 1)

+2y (* (c (anr* (9—anr®) +4) +an (8—anr’)) +4) +32 (cr* +1) (2anr* +1) )))/(k3)— 167))

/(ere1))).
2re” a?A%k,n® | —48G (ﬂanr2 + 7r) +7? dvk, —an(4y+32)
((orer (st (2

+aBn \/kor (=3(167G + k2 (anr® +2) +an (487G (anr® +2) +anr? (107+3/l)+6(3y+/l))+8yk2)

“B%, (kz (4aynr? — 487G -32)
r

+an (487rG (anr2 + 2) +anr*(10y +32) +6(3y + /1)) + 47/{%) )

/ (k3 (kor + 1)2> + ( n ( (2k2 (crr+1) <a3ABn3r4 Vkor(10y + 487G +32) + aznzr( —4A%y

+6ABr \/kar(3y + 167G + A) + B*, P (10y + 487G + 34)) +2aBn (3Bkor*(3y + 167G + 1) - 44y \/kor )

2
—4E27k2>)/<k§) 4 2Bk (IOZMS”G’LM) + 87+9671G+6/1)>/( (cr?+ 1)2)), 43)
3

B. Boundary Conditions and Determination of Con-
stants: Israel-Darmois Matching

Matching conditions are crucial for understanding the
physical characteristics of any gravitational model by
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aligning the interior and exterior geometries across a hy-
persurface. This process is governed by two primary con-
ditions:

e Continuity of metric coefficients: The metric
components of both spacetimes must be continuous at the
hypersurface. This constraint ensures that there is no dis-
continuity in the metric across the boundary.

e Extrinsic curvature matching: The extrinsic
curvature of both spacetimes must be equal at the hyper-
surface. This requirement, further, leads to the condition:
pe™ =0, which means that there is no difference in the
tensor components of the stress energy across the bound-

ary.

These conditions are essential for ensuring a smooth
transition and consistency across the interior and exterior
geometries of any gravitational model. For this study, we
choose the exterior Schwarzschild spacetime as given below

1

ds* = — <1 - %>dt2+ (l - %) dr?
r r

+r2(d6? +sin® 0dg?). (44)
Ao B VeR2e R + an YR VR =2 M
a anR ’

By equating the above exterior spacetime metric with
Eq.(37) and applying the continuity conditions for the
metric potentials, we derive the following two relations:

2M

e =1- ?, (45)
e =1- 20 (46)

where the terms M and R, respectively, refer to total
mass and radius of the compact star. The second form of
continuity, in which the pressure vanishes at the bound-
ary and hence allows stability in a true vacuum, is presen-
ted below:

pt;)tal(r)'r:R - (pr _ aﬁi) |=g = 0. (47)

By utilizing Eqs.(45)-(47) and re-arranging them with the
appropriate substitutions, the values of the random con-
stants A, B, and ¢ can be found as follows

B = ((c VRVR=2M(cR2* (8y (Bc?nR' - (cR? +1)7) +487G (R + 1) (cR*(Bn—1)-1)

+32(cR2+1) (cR*Bn—1)—1) ) +e“% (8ayn (cR® +R)” + 168yc’nR* + 487G (cR* +1)

5 (cRA2Bn—1)—1) +34 (cR*+1) (cRA2pn—1)=1) ) +n (48G (R + 1) + cR2 8y +31)+31) ) )
/(2 VeR2 e (1 (R2(c (BRI (R (c (anR - 9) +an) —8) +cR2(Bn+ 1) (anR> —9)

+26"% (BenR? (R (c (anR® - 9) +an) —8) =5 (cR? + 1)) +anR¥(fn+2) - 86n — 18) +an) —9)

—487G (R +1) (cR%™™ +1) (cR? (Bn (cR2™™ +1) +1) +1) =32 (cR2+1)

)
(R 1) (R (g (R +1) +1) +1))) ).

c= (4/\/() / ( —2MR (&% +1) + \/ R ((~(R=2M)en® +2M+pnR)” ~ 8 Me™® 2 M+ R(Bn — 1))

+R3 (e"”R2 —ﬁn) )

Random constants A, B, and c are then evaluated by tak-
ing B=0.2 and 8=-0.2, and the summary of resulting
values is provided in Tables 1 and 2 where the data of
seven selected stellar models has been utilized. In both

(48)

instances, the fixed parameters are: A1=1x10"'2,
a=0.03, and y = 0.009, while the coupling parameter can
assume any non-zero real value, as illustrated in the
tables.
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Table 1. Synopsis of computed values of constants based on the data of seven stellar candidates for MGD case
(B=02,1=1%10"'2,a=0.03,y = 0.009).
Star Models Mass M/ Mo Radius R(km) Mass-radius( %) c B A
Her X-1 [71] 0.85+0.15 8.1+0.41 0.154 0.00339865 —0.0279575 —0.289412
LMC X-4 [72] 1.04+0.09 8.301+0.2 0.184 0.00403809 —0.029791 —0.165948
Cen X-3 [73] 1.49+0.08 9.178+0.13 0.239 0.00454612 —0.0306402 —0.0403881
4U 1608-52 [74] 1.74+0.14 9.528+0.15 0.269 0.0049576 —0.03128 0.0445229
Vela X-1 [75] 1.77+0.08 9.56+0.08 0.273 0.00502456 —0.0312868 0.057035
PSR J1614-2230 [76] 1.97+0.04 9.69+0.2 0.300 0.0056665 —0.0324197 0.166191
PSR J0740+6620 [77] 2.07+0.04 12.34+0.2 0.247 0.00214646 —0.02322001 —0.3364949

Table 2. Synopsis of computed values of constants based on the data of seven star models for MGD case
(B=-02,4=1%10""2,a=0.03,y = 0.009).
Star Models Mass M/ Mg Radius R(km) Mass-radius( %) c B A
Her X-1 [71] 0.85+0.15 8.1+0.41 0.154 0.00325493 —0.028568 —0.289414
LMC X-4 [72] 1.04+0.09 8.301+0.2 0.184 0.0038583 —0.0304771 —0.165951
Cen X-3 [73] 1.49+0.08 9.178+0.13 0.239 0.00432607 —0.0314096 —0.0403919
4U 1608-52 [74] 1.74+0.14 9.528+0.15 0.269 0.00470364 —0.0321131 0.0445179
Vela X-1 [75] 1.77+0.08 9.56+0.08 0.273 0.00476514 —0.0322297 0.0570297
PSR J1614-2230 [76] 1.97+0.04 9.69+0.2 0.300 0.00535511 —0.0333488 0.166184
PSR J0740+6620 [77] 2.07+0.04 12.34+0.2 0.247 0.00205513 —0.0237099 —0.364951

Utilizing the listed constant values for the selected
stellar candidates, we have generated the plots of the met-
ric potentials in Figures (1(a)) and (1(b)). These figures
illustrate the trend of the metric potentials as functions of
the radial coordinate » for two distinct constant values
across four different stellar models. In both cases, the
metric potentials exhibit regular, monotonically increas-
ing, and finite behavior throughout the stellar interior,
without any indication of singularities.

IV. PHYSICAL ANALYSIS

In this part, we will analyze the stability of our solu-
tions by exploring various physical characteristics that are
crucial for validity as well as stability of celestial objects
in any gravitational framework. This include the illustra-
tion of energy density, pressures (p,,p;), and their gradi-
ents, anisotropy, velocities, equation of state (EoS), mass,
compactness, and redshift. All of these measures will be
explained in detail in the following subsections.

A. Energy Density, Pressures and Gradients

In self-gravitating bodies, particularly highly dense
objects such as compact objects, the matter components
including energy density and pressures are anticipated to
exhibit a specific conduct. The energy density and pres-
sures are expected to be maximum at the core of the star

showing finite, positive, and singularities free behavior
which decrease towards the surface. This behavior sup-
ports the stability of the model within the theoretical
framework proposed. Figures (2) and (3) illustrate the ra-
dial profiles of energy density, as well as tangential and
radial pressures, throughout the radius of the compact star
models. It is noticed that the tangential pressure vanishes
at the boundary. Furthermore, we have analyzed the
gradients of energy density and pressures, which are es-
sential for the construction of a compact star model. It is
argued [78] that these gradients must exhibit negative be-
havior. We have conducted this analysis by taking two
specific cases: first, by varying the parameter n while
keeping the coupling parameter S constant, and second,
by varying £ while maintaining a constant value for n.
This examination ensures the consistency of our model
with the below conditions under both scenarios:

dp;
— <0
dr <

dp,
dr

d£
dr

<0; <0; (49)

Figures (3(b)) and (3(c)) illustrate the behavior of all
gradients under both scenarios. It is observed that the
gradients are in accordance with the essential conditions,
exhibit a decreasing trend, and vanish at the stellar core,
i.e., at r = 0. This behavior is consistent with the physical
expectations for a compact star model, where the energy
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Fig. 1.  (color online) For the compact star Her X-1 (M/My =0.85, R=8.1)(m), Cen X-3 (M/Me =149, R=9.178)(=), Vela X-1
(M/Mo =177, R=9.56)(m) and PSR J0740+6620 (M/Ms =2.07, R = 12.34)(m), the variations in metric functions against » are shown.
All plots use 1= 1x107"2,
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Fig. 2. (color online) For the compact star Cen X-3 (M/My = 1.49, R =9.178), the variations in energy density and pressures with the
radial coordinate » are shown. Subfigures (a) and (b) depict energy density and pressures (p; & p,) for n=0.1 with g=0 (m), 3=0.5
(m), =1 (m), =15 (m), and B =2.5 (m). Subfigure (c) shows energy density for 3=0.01 with n=0.5 (=), n=1 (m), n=2 (m), n=3 (m),
and n=4 (m). All plots use 1=1x 10712,
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Fig. 3. (color online) For the compact star Cen X-3 (M/ My = 1.49, R =9.178), the variations in pressures and gradients with the radi-
al coordinate r are shown. Subfigures (a) and (b) depict pressures (p; & p,) and gradients for 8=0.01 with n=05 (®), n=1 (m), n=2
(m), n=3 (m), and n =4 (m), Subfigure (c) shows gradients for n=0.1 with =0 (m), =05 (»), =1 (m), =15 (m), and =25 (m).
All plots use 1=1x10712,
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density and pressures reach their maximum at the center
and decrease outwards.

dp:
dr

dp

= 0,
dr

r=0

:0,

r=0

=0

r=0

(50)

dr

B. Anisotropy, Energy Conditions and Equilibrium
Forces

Pressure anisotropy is a crucial factor in assessing the
stability of a compact obejct, as it provides valuable in-
sights into the interior stellar structure. For a stable com-
pact star, the anisotropy denoted by A, should be non-
zero. When the tangential pressure p; exceeds the radial
pressure p,, the anisotropy A is positive (A >0) and ex-
hibits a repulsive (outward-directed) force. Conversely, if
p, 1s greater than p,, the anisotropy is negative (A <0)

and refers to an attractive (inward-directed) force [79].
Figures (4(c)) and (5(c)) demonstrate the behavior of an-
isotropy as a function of radius. It is found that aniso-
tropy is zero at the core and becomes positive, increasing
towards the boundary in both cases as shown graphically.
This trend confirms the repulsive trend of anisotropy and
the necessary anti-gravitational behavior of the anisotrop-
ic force for maintaining the stability of stellar structures.

Energy conditions represent some mathematical con-
straints on the energy-momentum tensor of self-gravitat-
ing bodies and form the root cause of singularity theor-
ems [80] as well as entropy bounds [81]. These condi-
tions are pivotal in assessing the feasibility of a relativist-
ically stable model. The primary energy conditions in-
clude the strong energy condition (SEC), weak energy
condition (WEC), null energy condition (NEC), and dom-
inant energy condition (DEC). Mathematically, these are
provided as below:
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Fig. 4.

(color online) For the compact star Cen X-3 (M/Mo = 1.49, R =9.178), the variations in energy conditions and anisotropy with

the radial coordinate » are shown. Subfigures (a) and (b) depict energy conditions and (c) depict anisotropy for g =0.01 with n=0.5 (=),
n=1(m),n=2(m), n=3 (m),and n=4 (m). All plots use 1=1x10712,
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(color online) For the compact star Cen X-3 (M/Ms = 1.49, R =9.178), the variations in energy conditions and anisotropy with

the radial coordinate r are shown. Subfigures (a) and (b) depict energy conditions and (c) depict anisotropy for n=0.1 with 3=0 (m),
B=05(m),8=1(m), =15 (m),and g=2.5 (m). All plots use 1=1x10712,
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NEC : p“7 >0,

WEC : p“/ + p7 > 0, o+ plt > 0.

(51
SEC : p/f +2p¢T + pIf > 0,

DEC : p*// - |p*/!| > 0, P =1p7| 2 0.

For a physically captivating model, the associated in-
equalities must be satisfied, ensuring that these energy
conditions reach their maximum at the core of the star
and remain positive throughout its structure. As showed
in Figures (4(a)), (4(b)), (5(a)) and (5(b)), all specified

energy conditions are met under both scenarios: when
varying the parameter n while keeping the coupling para-
meter f constant, and when varying f while maintaining
n constant. This consistency across both cases further val-
idates the stability of presented models.

Next, we analyze the equilibrium conditions through
the involved forces namely the gravitational force (F,),
the hydrostatic force (F},), the anisotropic force (F,) and
the modified force (F,,) due to our modified f(R,T,L,)
gravity model. By incorporating the effects of the MGD
approach, the extended Tolman-Oppenheimer-Volkoff
(TOV) equation for our model is formulated as follows

H(rY dp, do 2
_HO {p+pr+ﬁ(ﬂ8—ﬁi)} —(dpr —ﬁd—rl) +;{pr—pr—ﬁ(ﬁ8—0i)}
Fg Fy Fq
d 0% o 0, gl ) —
*E{mw P 2pt>+ﬁ<3ﬁo+01+2ﬂz)}) =0. (52)

Fin

To ensure the stability of our model within
fR,T,L,) gravity, the total impact of all forces, i.e.,
gravitational (F,), hydrostatic (F},), anisotropic (F,), and
the modified force (F,), must be zero, indicating that
these forces are in equilibrium. This balancing effect en-
sures the stability of any configuration. Figures 6(a) and
6(b) demonstrate the behavior of these forces in two dis-
tinct scenarios. In the first scenario, the parameters are
held constant while the forces are plotted as functions of
varying n as depicted in Figure 6(a). The figure shows

[
that the gravitational force is counteracted by the com-
bined hydrostatic and anisotropic forces, which act in the
opposite direction. This equilibrium prevents the gravita-
tional collapse, while the modified force remains con-
stant and exerts only a small impact on the hydrostatic
balance. In the second scenario, the forces are plotted for
varying values of the coupling parameter f as illustrated
in Figure 6(b). This figure confirms that even with differ-
ent values of f, all forces balance each other, further af-
firming the stability of our model. These findings valid-

F; km®

variations
v = 0.0009, a = 0.0003

(color online) For the compact star Cen X-3 (M/Mo = 1.49, R =9.178), the variations in forces with the radial coordinate » are

(a)[For n

Fig. 6.

Fi km?

with (b)For § variations with v = 0.009, a =
0.03

shown. Subfigures (a) depict forces for g=0.01 with n=0.5 (u), n=1 (m), n=2 (m), n=3 (m), and n =4 (m), Subfigure (b) shows forces
for n=0.1 with =0 (m), 3=0.5 (w), =1 (m), =1.5 (m), and g=2.5 (m). All plots use 1= 1x 10712,
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ate that our model is not only stable but also represents a
physically viable relativistic system.

C. Equation of state and stability analysis

Equation of state represents a dimensionless con-
straint on the parameters governing the radial and tangen-
tial pressures. These limitations play a pivotal role in es-
tablishing the relationship between state variables as ex-
pressed by the following equation:

_pt _pr
W= —, Wy=—.

P o (53)

It is argued that both these parameters must lie
between 0 and 1 to ensure the physical stability of a re-
lativistic model and confirm the non-exotic nature of the
internal fluid distribution [82]. Figures 7(a) and 7(b) de-
pict the trend of these parameters along the radial direc-
tion, with w, vanishing at the star's boundary for two
scenarios: varying n and varying f, as labeled in the fig-
ures. The results clearly demonstrate that both EoS para-
meters fall within the aforementioned limits, thereby con-
firming that the solutions are physically viable and con-
sistent referring to stable relativistic star models.

To evaluate the physical stability of anisotropic com-
pact star models, the pressure components must be con-
strained by the speed of light [83]. This is achieved using
Herrera's concept of cracking [84], which defines the ex-
pressions for tangential and radial velocities, as outlined
below. Both velocities must lie within the range [0,1], a
requirement termed as the causality condition.

> _dp: » _dp,
v, = , V===
dp dp

(54)

0.06
0.05,
3004/
o
5008
002
00

0.00}

The concept of cracking has been further extended by
Abreu [85] and Andreasson [86] to assess the stability of
stellar structures. This extension is represented by the fol-
lowing equations and inequalities. For a model to be
physically promising and potentially stable, it must ad-
here the conditions outlined below

B { -1<v?—v?<0 Potentially stable 55)

0<v*—v?<1  Potentially unstable

Figures (8(a)), (8(b)), (8(c)), and (9(a)) illustrate the
radial and tangential velocities (v? and v?) and their dif-
ferences. As shown, the velocities remain within the spe-
cified regions for both scenarios: varying £ and varying n,
which confirm the stability of our models. These results
reinforce the physical viability and consistency of the
model, further validating its capacity to represent a stable
relativistic system.

D. Adiabatic Index

The adiabatic index, which describes the stiffness of
the EoS by measuring the change in pressure in response
to slight variations in matter density, is a critical factor in
analyzing the stability of stellar structures, both relativist-
ically and non-relativistically. Chandrasekhar noted in his
paper [87] that the adiabatic index should adhere to
I'>4/3, a criterion that has been extensively examined
by various authors for both isotropic and anisotropic stel-
lar models [88, 89]. The adiabatic index corresponding to
the radial and tangential components is provided below

:p+pr(dpr):p+pr

T,
pr “dp Pr

v; (56)

w, & wy

with

variations
v = 0.009, a = 0.03

(color online) For the compact star Cen X-3 (M/My = 1.49, R =9.178), the variations in EoS with the radial coordinate r are
shown. Subfigures (a) EoS(w; & w,) for g=0.01 with n=0.5 (»), n=1 (m), n=2 (m), n=3 (m), and n=4 (m), Subfigure (b) shows
EoS(w, & w,) for n=0.1 with 5=0 (m), 5=0.5 (»), =1 (m), B=1.5 (m), and g =2.5 (m). All plots use 1=1x10712,
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Fig. 7.
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(color online) For the compact star Cen X-3 (M/ M, = 1.49, R =9.178), the variations in velocities difference and adiabatic in-

= 0.009, a=0.03

dex (T,) with the radial coordinate r are shown. Subfigures (a) and (b) depict the velocities difference (v? —v? & v2—v?) and adiabatic
index for =0.01 with n=0.5 (»), n=1 (m), n=2 (m), n=3 (m), and n =4 (m), Subfigure (c) shows adiabtic index for n=0.1 with g=0
(w),3=0.5(m),8=1(m),3=1.5 (m), and =2.5 (m). All plots use 1=1x 10712,
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Figures (9(b)) and (9(c)) illustrate the conduct of the adia-
batic index I',, demonstrating that its value consistently
exceeds 4/3 in both scenarios when varying £ and vary-
ing n. This result confirms the stability of the model un-
der these conditions. The adiabatic index T, is not plotted,
as this index does not lead to any significant physical in-
sight in this context. Additionally, Moustakidis [90] dis-
cusses the critical value of the adiabatic index I', emphas-
izing its strong dependence on the mass-to-radius ratio
(M/R). As shown below, the critical values of I" for sev-
en different stellar candidates are provided in Tables 3
and 4. In these tables, it can be observed that for all stel-
lar candidates, I'.; exceeds 4/3. The calculation of T'.;

incorporates the modified mass resulting from gravita-
tional decoupling. These findings further affirm the sta-
bility and physical consistency of our models.

4 192M

T =3+ 2%

(58)

E. Mass function, compactness factor and redshift
function

In this section, we will talk about the inter-connec-
tion between the mass function, compactness, and red-
shift, as these quantities are inherently related. It is a
well-famed result that mass function must exhibit posit-
ive increasing behavior and consistent with the radial co-
ordinate limit, i.e., r = 0, M(r) — 0. The mass reaches its
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Table 3.
(B=02,1=1%10"'2,a=0.03,y = 0.009).

Synopsis of total mass along with compactness factor values by utilizing the MGD contribution for parameters

Star objects Mo/ Mq R(km) uy = Mo/R Zs M/ Mg u=M/R z;(MGD) I'it(MGD)

Her X-1[71] 0.85 8.1 0.155 0.203153 0.839975 0.152772 0.19999 1.47156
LMC X-4 [72] 1.04 8.301 0.185 0.259026 1.02773 0.182395 0.254704 1.49836
Cen X-3 [73] 1.49 9.178 0.239 0.384532 1.47275 0.236397 0.377241 1.54722

4U 1608-52 [74] 1.74 9.528 0.269 0.471337 1.71993 0.265932 0.461549 1.57394
Vela X-1 [75] 1.77 9.56 0.278 0.483339 1.74958 0.269611 0.473173 1.57727
PSR J1614-2230 [76] 1.97 9.69 0.300 0.579186 1.94716 0.296032 0.565684 1.60117
PSR J0740+6620 [77] 2.07 12.34 0.247 0.406152 2.04937 0.244662 0.399352 1.55469

Table 4.
’B=— 2,A=1%x10""%,a=0. 3,y =0. .
0.2 1%1071%2,4=0.03 0.009

Synopsis of total mass along with compactness parameter

values by taking the MGD contribution for parameters

Star objects Mo/ Mg R(km) up = My/R Zs M/ Mo u=MJ/R z;(MGD) I'erit(MGD)

Her X-1[71] 0.85 8.1 0.155 0.203153 0.859676 0.156355 0.206229 1.4748
LMC X-4 [72] 1.04 8.301 0.185 0.259026 1.05183 0.186672 0.263238 1.50223
Cen X-3 [73] 1.49 9.178 0.239 0.384532 1.50664 0.241837 0.391676 1.55214

4U 1608-52 [74] 1.74 9.528 0.269 0.471337 1.75935 0.272028 0.480962 1.57945
Vela X-1 [75] 1.77 9.56 0.278 0.483339 1.78969 0.275792 0.493341 1.58286
PSR J1614-2230 [76] 1.97 9.69 0.300 0.579186 1.99201 0.302851 0.59253 1.60734
PSR J0740+6620 [77] 2.07 12.34 0.247 0.406152 2.08997 0.249509 0.412826 1.55908

maximum value at the boundary when r=R. However,
as previously discussed, gravitational decoupling intro-
duces an additional gravitational” source, which influ-
ences the mass function. Therefore, the modified mass
function for the current theory is given by

M(r) = 47r/ o (ryr 2 dry = 4n / [p(r1) + B9 (r)r > dry
0 0
(59)

or

M) = 2 (1= ) = (1= —py).  (60)

This modification to the mass relation reflects the impact
of the supplemental gravitational contributions resulting
from the decoupling process, which further affects the
structure and dynamics of the compact object. The re-
vised equation can be expressed as follows, with the first
component representing the mass at r =R derived solely
from f(R,L,,T) gravity:

M= M,- ﬁ?g//(?{), where M, = %(1 -0y, (61)

This formulation set forth the contributions from stand-

ard f(R,L,,T) gravity from those introduced by the grav-
itational decoupling. The compactness factor [91] for
SR, L, T) gravity due to MGD approach can be written
as

M M,
uelt = R =W —’gzp(R), where uy = ?0 (62)

Due to the impact of compactness #°%, the surface gravit-
ational redshift z, is also influenced by the decoupling
process. Thus, the modified surface redshift z; in the con-
text of MGD for f(R,L,,T) gravity is expressed [92] as
follows:

2= (1-2u+u®) " -1, (63)

Following the discussion on mass, redshift, and compact-
ness under the gravitational decoupling effect, a few key
points can be outlined form the graphical analysis:

e First, it is possible to achieve mass expansion using
MGD technique [93] within f(R,L,,T) gravity. As seen
from Eq.(61), if the second term is positive, the overall
mass increases. In our case, this is possible for negative
values of the interaction parameter . As the mass in-
creases, both the redshift (z;) and compactness () also
increase. Various authors have previously achieved simil-



Stellar Configurations in R, L,,, T) Gravity: Probing Anisotropy and Stability...

Chin. Phys. C 50, (2026)

ar results, as seen in [94], where mass expansion is ob-
served for negative S, while in [95, 96], the authors repor-
ted mass expansion for positive coupling parameter val-
ues. Tables 3 and 4 displays the values of mass, redshift,
and compactness with and without the coupling effect for
both negative and positive f values across seven star can-
didates, respectively. It is noted that mass increases only
for positive f values, whereas for negative £, the modi-
fied mass is less than the original. Additionally, the critic-
al values of the adiabatic index using Eq.(58) for modi-
fied mass using the MGD approach are shown in the ta-
ble for all stars, and it is observed that the value is great-
er than 4/3 in both cases (positive and negative f values),
confirming the stable trend of the proposed model within
the realm of f(R,L,.T) gravity. Moreover, Figures (10)
and (11) show the plots of modified mass, redshift, and
compactness for both cases.

e Secondly, the modified compactness due to MGD

results in greater compactness compared to the compact-
ness without this effect. Our findings are also consistent
with the Buchdahl limits [97] for isotropic fluids
(1 <4/9) and anisotropic fluids (u < 0.30), which is cru-
cial for establishing a physically acceptable model.

Table 5 presents a clear comparative analysis of vari-
ous anisotropic stellar models developed within different
modified gravity frameworks. It highlights the distinct
features of each model and illustrates how the present
study based on Class-I solutions within the Minimal Geo-
metric Deformation (MGD) approach relates to and ex-
tends previous works. By adopting a more generalized
gravitational theory, namely f(R,L,,T), which encom-
passes earlier special cases, and by utilizing realistic val-
ues of mass and radius of compact stars, the model offers
a physically consistent anisotropic extension of an ini-
tially isotropic seed solution. This comparative frame-
work emphasizes the novelty and physical viability of the
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Fig. 10. (color online) For the compact star Cen X-3 (M/ Moy = 1.49, R=9.178), the plots show how the mass function, compactness,

and redshift vary with the radial coordinate r. The variation is considered for some variations of 8: g=-0.1 (m), 3=-0.2 (n), 8=-0.3
(m), B=-0.4 (m), and 8 =—0.5 (m). In all plots, the parameters are set to =0.01, a =0.03, y =0.009, and 1= 1x 10712,
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Fig. 11.  (color online) For the compact star Cen X-3 (M/Mes = 1.49, R=9.178), the plots show how the mass function, compactness,
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Table 5.

omparison of anisotropic stellar models in various modified gravity frameworks.

Gravity theory Metric Anstaz

Matter Configuration

Stability & Features

f(R,T)[98] Krori-Barua metric

F(TH[99] gravity Krori-Barua metric

Anisotropic quark matter; MIT

SR, Ly, T)=R+aTL,[100] Numerical (non-KB)

FR,. L., T)

Present Work approach

bag model

Physically acceptable; matched with Schwarzschild

Anisotropic fluid

exterior; consistent graphs for real stars
Regular and stable; consistent with 4U 1820-30, Her X-1,

and SAX J1808.4-3658; surface redshift analyzed
Mass—radius relation, adiabatic index, sound speed; a

Anisotropic fluid

constrained using observational data
Well-behaved energy density/pressures; negative f yields

Class-1 embedding; MGD Anisotropic fluid; radial metric

higher mass; stability via TOV and Herrera cracking

deformation

condition

present model within the broader context of modified
gravity theories.

It is important to note that mass—radius (M—R) curves
provide the most direct diagnostic of stellar configura-
tions. In the present analysis, we have fixed the stellar
mass and adopted assumed radii to examine physical be-
haviour. However, previous works in GR [101], f(R)
gravity [102—104], and f(R,T) gravity [105—110], as well
as more recent studies in f(R,L,,T) models [111, 112],
have shown that matter—geometry couplings significantly
shift M—R relations. The compactness and redshift trends
we obtain are qualitatively consistent with these results.
Our approach differs by employing the generalized
fR,L,,T) framework together with the Minimal Geo-
metric Deformation technique.

Unraveling the true mass and radius of pulsars re-
mains one of the central challenges in compact star astro-
physics. Despite notable obseryational progress, these
parameters still involve uncertainties due to the extreme
physical conditions and complex matter interactions in-
side such objects. In this work, we propose a refined
modeling strategy within the extended f(R,ZL,,T) grav-
ity framework to better capture the structure of pulsars
under modified gravitational dynamics. To connect our
theoretical model with observational reality, we have
benchmarked it against reliable data from well-studied
pulsars, including Her X-1 [71], LMC X-4 [72], Cen X-3
[73], 4U 1538-52 [74], Vela X-1 [75], PSR J1614-2230
[76], and PSR J0740+6620 [77]. These compact objects
span a wide mass range and provide a robust testing
ground for assessing the predictive power and flexibility
of our model.

In future work, we plan to extend this analysis by nu-
merically constructing explicit M-R sequences in
f(R,L,,T) gravity and benchmarking them directly
against GR, f(R), and f(R,T) predictions, thereby offer-
ing deeper insights into the physics of ultra-dense stars.

V. CONCLUSION

In this research, we employed the Minimal Geomet-
ric Deformation (MGD) approach for gravitational de-
coupling within the framework of f(R,L,,T) gravity to

construct anisotropic compact star models based on a
class-1 embedding spacetime. In the literature, this meth-
od has proven highly effective for developing interior
solutions of self-gravitating systems, enabling the invest-
igation of gravitational effects from various perspectives
within~ spherically symmetric configurations. In the
present work, ‘we utilized Ovalle's gravitational decoup-
ling technique [96] along with the MGD approach in the
context of f(R,L,,T) gravity to formulate physically vi-
able models of compact stellar objects with anisotropic
pressure. Within this framework, one of the metric poten-
tials was deformed, introducing an additional gravitation-
al source that decoupled the original field equations into
two separate systems. The first system corresponds to the
standard perfect fluid Einstein equations described by
T,,, while the second governs the anisotropic source 9,
forming a quasi-Einstein system. Notably, these two
sources interact solely through gravitational interaction,
without any direct energy exchange. We introduced the
deformation by modifying the radial component of the
metric through an appropriate choice of the function y(r)
[70, 94], ensuring the regularity in the metric functions
and all essential physical parameters throughout the stel-
lar interior. It is important to note that setting the coup-
ling parameter 8 =0 recovers the original field equations
of the theory. Additionally, the constants A, B, and ¢
were determined by matching the interior solution to the
exterior Schwarzschild geometry.

The effective radial pressure p" =0 at the boundary,
derived from the second fundamental form of the junc-
tion conditions, incorporates both the isotropic pressure
p, and the deformation function (r), which arises due to
the additional source ,,. Using realistic observational
data, we have determined the constants 4, B, and ¢ for
seven compact stellar candidates: Her X-1, Cen X-3,
LMC X-4, Vela X-1, PSR J1614-2230, 4U 1608-52, and
PSR J0740+6620, with the corresponding results presen-
ted in Tables 1 and 2. The compact star Cen X-3 has been
chosen for graphical examination because its radius
(R=9.178) lies in an optimal range that allows compre-
hensive illustration of all physical parameters, including
energy density, pressure profiles, anisotropy, energy con-
ditions, and equilibrium forces. Larger radii were re-
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quired to exhibit the full behavior of these quantities,
making Cen X-3 a suitable candidate. For graphical ana-
lysis, we evaluated the physical behavior of the model
under two distinct scenarios: one involving variations in
the coupling parameter f, and the other involving changes
in the deformation parameter n, both using Cen X-3 as
the reference model. In the following, we summarize the
key conclusions derived from this study:

e Figures (1(a)) and (1(b)) showed how gravitational
decoupling affects the metric potentials for both scenari-
os, using Cen X-3 star's observational data and constants
A =-0.0403881, B=-0.0306402, and C =0.00454612.
The metric potentials have clearly indicated positive and
monotonically decreasing behavior within the star before
diminishing at the boundary, fostering our model's regu-
larity and stability.

e Figures (2(a)), (2(b)), (2(c)), and (3(a)) have shown
positive, non-singular, and monotonically decreasing be-
havior of energy density and pressures inside the stellar
structure. It has been noticed that radial pressure van-
ishes at the star's surface, validating the model's physical
consistency.

e Figures (4(c)) and (5(c)) depicted the trend of an-
isotropy profile, which is positive increasing function of »
and turns out to be zero at the boundary (indicating that
the radial and tangential pressures are equal there).

e Figures (3(b)) and (3(c)) have illustrated negative
and monotonically declining gradients of energy density
and pressures, which satisfied the required constraint of
vanishing at r = 0 given in Eq.(50), and hence assured the
model's physical validity.

e Furthermore, Figures (4(a)), (4(b)), (5(a)), and
(5(b)) have shown the energy condition inequalities,
which demonstrated that all energy bounds (NEC, SEC,
DEC, and WEC) have been validated throughout the stel-
lar interior given in Eq.(51).

e Figure (6) has depicted the model's hydrostatic
equilibrium given by Eq.(52), which is derived from the
balancing of hydrostatic force (F)), gravitational force
(F,), anisotropic force (F,), and the modified force (F,,)
due to f(R,L,,T) gravity. This ensures that the forces
counter balance one another, preventing the gravitational
collapse and confirming the model's stability.

e The EoS, as shown in the Figures (7(a)) and (7(b)),
indicated that all values are between 0 and 1.

e Also, the speed of sounds (v & v?) remained
lower than the speed of light throughout the stellar interi-

or as shown in Figures (8) and (9(a)). This clearly meets
the criteria for causality and stability.

e Furthermore, the adiabatic index surpasses the es-
sential value of 4/3, guaranteeing the static stability. Fur-
thermore, Herrera's cracking condition has been met.

Clearly, the TOV equation has held true in the re-de-
signed framework, indicating that our solutions reflect
physically viable, stable, and equilibrium compact star
models. Tables (III) and (IV) show the mass, redshift, and
compactness values, with-and without minimal geomet-
ric deformation. Notably, we have observed that negative
values of the coupling parameter f allow for greater mass
packing, as evidenced by the increased values of mass,
redshift, and compactness compared to the un-deformed
case. Figure (10) clearly demonstrated that these values
rise monotonically with 7, reaching a highest value at the
star's surface for g = —0.5. Figure (11) showed how vary-
ing n affects these parameters, with the maximum values
occurring at n =3 for g =-0.2.

This work concludes by highlighting the important ef-
fects of gravitational decoupling via the MGD technique
on the compactness (u = M/R) and total mass of compact
star models. When S takes negative values, the additional
gravitational source induced and governed by the coup-
ling parameter S enables higher mass confinement within
the stellar structure. This realization underscores the flex-
ibility and strength of the MGD approach in constructing
stable and physically consistent compact star solutions
with anisotropic pressures and extended gravitational in-
fluences.

In particular, our findings differ from previous stud-
ies in other modified gravity models, as shown in the
comparative Table 5, where such significant variation in
mass due to deformation and coupling has not been repor-
ted within the context of f(R,L,,T) gravity. Specifically,
the simultaneous increase and decrease in mass and com-
pactness with different § values is a novel result in this
theory, revealing new physical insights that have not been
previously explored. Table 5 presents a comparative sum-
mary of our model with other recent works, clearly em-
phasizing the theoretical and physical advancements
achieved. In f(R) theory, Sharif and Aslam [113] ex-
plored anisotropic spherical symmetric solutions through
extended gravitational decoupling approach. By consider-
ing Starobinsky model of f(R) gravity along with Krori-
Barua metric potential, two sorts of solutions have been
presented. It has been shown that one of the two de-
veloped models exhibited locally unstable conduct when
different values of coupling parameter are used. In anoth-
er study [58], authors investigated the construction of an-
isotropic static spheres by using the metric potentials of
Tolman V solution and minimal geometric deformation
scheme in f(R,T?) gravity. Solutions were obtained by
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imposing three different constraints, it has been found
that first two models are physically viable and stable only
when small choices of decoupling parameter are taken. In
present work, we have considered linear f(R,L,,,T) mod-
el and it has been found that for all choices of § paramet-
er, the obtained model exhibited stable and physically
valid behavior. In a recent work, Singh et al. [65] have
explored anisotropic compact star configurations for self-
gravitating structure through minimal geometric deforma-
tion scheme along with of embedding class-1 spacetime
in GR framework. They performed the graphical analysis
by considering different variations of coupling parameter
a and n. It is shown that all physical characteristics are
satisfied when positive values of o are considered. Our
work is an extension of this work by involving curvature-

matter coupling and the results obtained are quite similar.
Using same metric potential along with gravitational
coupling approach, Hira et al. [64] modeled some com-
pact stellar structures in Rastall theory. Through graphic-
al analysis of different measures, physically valid models
are obtained when positive coupling parameter values are
taken, and our obtained results are also in agreement with
their findings.

The effective implementation of this technique with-
in the framework of f(R,L,,T) gravity offers promising
new directions for the study of compact stars in alternat-
ive gravity theories and enhances our understanding of
the internal composition and evolution of dense astro-
physical objects.
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