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Abstract: We show that the traditional moments approach in lattice quantum chromodynamics based on operator

product expansion can be realized such that it utilizes derivatives in momentum rather than in distance. This avoids

power divergent mixings, and thus allows to extract moments order by order to all orders in principle. Further, by ex-

ploiting the symmetry of lattice matrix elements, we can determine the even and odd moments separately. As a

demonstrative example, we determine the first three moments beyond the tensor charge gr of the isovector quark

transversity distribution in the nucleon.
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I. INTRODUCTION

In high-energy scattering, the structure of hadrons is
characterized by quantities such as parton distribution
functions (PDFs), which describe the momentum distri-
butions of quark and gluon partons inside a hadron. Al-
though these functions are essential for interpreting ex-
perimental data in hadron-hadron or lepton-hadron colli-
sions, calculating them from first principles has been
challenging because of their intrinsic nonperturbative
nature and the fact that their definition involves lightcone
correlations.

Phenomenologically, PDFs are determined through
global fits to a wide range of experimental data from
high-energy collisions. As different fitting groups may
choose different data sets and PDF parametrizations, such
global fits can lead to ambiguities in the extracted PDFs,
especially in certain kinematic regions where experiment-
al data are sparse. On the other hand, lattice quantum
chromodynamics (QCD) offers a reliable first-principles
approach that can provide important complementary in-
formation about PDFs. Traditionally, PDFs are accessed
indirectly on the lattice through operator product expan-
sion (OPE), where lightcone correlators are expanded in
terms of local operator matrix elements that define the
Mellin moments of PDFs. Although these moments can
be computed on the lattice, only the first few orders are
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obtainable because of the potential power-divergent oper-
ator mixings at higher orders. Nevertheless, considerable
efforts have been made to calculate the Mellin moments,
and the results have had a valuable impact on phenomen-
ological analyses (see, e.g., Ref. [1] for a recent review).
A notable example is the global analysis of the quark
transversity PDF in the nucleon [2], which incorporates
the lattice result on the isovector tensor charge gr with
experimental data from semi-inclusive deep-inelastic
scattering. The inclusion of the former has significantly
reduced the uncertainty bands of the fit.

In addition to calculating moments, recent theoretical
developments [3—10] have enabled the direct calcula-
tions of the Bjorken-x dependence of PDFs from the lat-
tice. A commonly used quantity in these approaches is
the equal-time Euclidean correlation function, which can
be linked to PDFs either through a short distance factoriz-
ation in coordinate space [8]or through a large mo-
mentum factorization in momentum space [6, 7, 11],
where the latter has been formulated as the large-mo-
mentum effective theory (LaMET) [7, 11]. The LaMET
approach has shown promise in determining the Bjorken-
x dependence of PDFs in the moderate x region, whereas
the prediction is not reliable in the small and large x re-
gions because power-suppressed higher-twist contribu-
tions become important there and must be considered. As
a result, it is difficult to obtain moments in a reliable
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manner from the integration of extracted PDFs over the
momentum fraction x. In contrast, the short distance fac-
torization approach relies on a global fit of moments to
lattice matrix elements [12—14], which often used correl-
ations at large distances where factorization is expected
to fail. Furthermore, such a global fit suffers from similar
ambiguities as those encountered in phenomenological
fits to experimental data.

In this study, we show that, by leveraging recent the-
oretical developments, the traditional moments approach
based on OPE can be realized such that it utilizes the dif-
ference in momenta instead of distances. This also avoids
power divergent mixings, and thus allows to extract mo-
ments order by order, to all orders in principle. Moreover,
by exploiting the symmetry of lattice matrix elements, we
can determine the even and odd moments separately. This
approach avoids using long distance correlations and fo-
cuses on relatively small momenta. As a result, it signific-
antly reduces the computational cost of higher-order mo-
ments on the lattice, which greatly facilitates the recon-
struction of PDFs across the full kinematic range from
their Mellin moments and complementing ongoing ef-
forts to extract PDFs from LaMET.

II. TRADITIONAL MOMENTS APPROACH
BASED ON OPE

We briefly review the traditional approach for calcu-
lating moments on the lattice by taking the transversity
structure function as an example. The local operators
from OPE that measure the (n—1)-th moments (x*')
take the form

LKt = GO D - Dy ysp(0), (1)

where an antisymmetrization between y; and L indices is
assumed, and the bracket indicates that the enclosed in-
dices are symmetric and traceless. ¢,y denote the quark
fields, and the covariant derivative

—

D,=D,==(D,-D,) )

| —

is realized on the lattice as

— 1
Dyy(x) = % (U () (x +a) - U (x— app(x - ap)],

g ) _
PODy = - [ix+ U, (0) = (x = ap)Up(x = a)], - (3)

where U,(x) represents the link variable joining points x
and x+aj1 with g being a unit vector.

Although the operators in Eq. (1) belong to irredu-
cible representations of the Lorentz group in the con-

tinuum, they are reducible on the lattice and become lin-
ear combinations of irreducible representations of the hy-
percubic group, and therefore, they lead to operator mix-
ings. For higher dimensional operators, the mixing coeffi-
cient can be power divergent, making the calculation of
moments beyond the first few orders very challenging
[15].

III. MOMENTS FROM NONLOCAL
CORRELATORS

In this section, we outline our proposal in which we
use the difference in momenta rather than distances as a
leverage to extract moments at a given order. The discus-
sion below is based on the so-called quasi-light-front
(quasi-LF) correlations, which are equal-time nonlocal
quark and gluon bilinear operator matrix elements used in
LaMET and short distance factorization. However, the
same strategy can be applied to other correlations used,
e.g., in current-current correlations [4] and lattice cross
sections [9], provided that a similar factorization formula
exists. In the following, we take the isovector quark trans-
versity PDF as an example. The discussion can be read-
ily extended to other nonsinglet quark PDFs, as well as
singlet quark and gluon PDFs, with minor modifications.

We consider the following quasi-LF correlation

(2, A = zP°) = NCPS 162y v ys Wz O (0)PS 1), (4)

where ¢, represent quark fields, W(z,0)=Pexp
[-ig [, dun-A(un)] represents the gauge link along the z
direction with »* =(0,0,0,1), |PS ,) represents an extern-
al hadron state with momentum P*=(P',0,0,P%) and
transverse polarization S,, and A=zP* is the so-called
quasi-LF distance. N =1/(2P") is a normalization factor.
The nonlocal quark bilinear operator defining / has been
shown to renormalize multiplicatively [16—18]. There-
fore, i can be nonperturbatively renormalized by divid-
ing by the same correlation in a zero-momentum hadron
state

h(2, )

hr(? ) = ——— |
r(Z°, ) 2.1=0)

)

which is known as the ratio scheme [8]. As long as z is
within the perturbative region, this is a legitimate renor-
malization scheme, and it has been used in many lattice
calculations of PDFs. For recent examples, see, e.g.,
[19-23]. The renormalized quasi-LF correlation at small
z can then be factorized into the LF correlation defining
the leading-twist PDF, denoted as 4, as [8, 24—26]
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h(ud, )

1
D)= | duCu,zu>)——" +pec.,
r(z7,A) [1 u (uw)hu:o,#)wc

(6)

where u represents the renormalization scale in the MS
scheme, and p.c. represents power corrections. Using
OPE, the above equation can be turned into an equation
for the moments of PDFs [25, 27]

X (il
WD =ND %C(’"”(zzuz)
n=1 :

y (PS L|n, nyy ...y, O3 (W) PS L)
81

-1
Z( 1zP1))' C‘”’”(zz,uz)ﬂ +pc, (1)
8T

+p.c.

where

1
(x"_l)z/ dxx"'8q(x, 1),
-1

1
C(n—l)(ZZMZ) — / duun—lc(u’ZZMZ) (8)

1

are the (n— 1)-th moments of the isovector quark trans-
versity PDF 6q(x,) and perturbatlve matching kernel
C(u,7*u?), respectively; gr = f dxdq(x, 1) represents the
the tensor charge, and C© = 1. The power correction p.c.
in Eq. (7) consists of target mass corrections and genuine
higher-twist contributions. Both have less powers in P*
than the leading term as they arise from trace terms. Al-
though the leading target mass corrections have been cal-
culated to all orders for unpolarized, helicity, and trans-
versity quark PDFs in Ref. [28], genuine higher-twist
contributions can be kept small by requiring z*Agq, < 1.

Our proposal is based on the observation of different
momentum dependencies in moments of different orders,
as well as in the leading and subleading power terms in
the expansion above. Furthermore, the symmetry of real
and imaginary parts of the quasi-LF correlation /i
provides a practical advantage that considerably simpli-
fies the calculation.

To show how to extract the moments order by order,
we separate the real and imaginary parts of /i as

» b (_iZPZ)Zk <x21<>
Rehg = L C(HA) L +pec.,

g ; 2K)! K% TP

5 had (—iZPZ) ( 2k+l>
Imh, = 7c(2k+1) 2.2 . 9
mhg /Zo: ZEr D! @)= +pe. ()

They are even and odd functions of P?, respectively.
Therefore, we can define a new variable ¢ = (P%)?. Then,

the even and odd moments are given by the following de-
rivatives w.r.t. {at a fixed z

() @kt 1 d -
= — Reh <.,
er k!(=z2)k Ch(2u?) dok € R£:0+Pc
(2 2k+1)! 1 d Imhy
= p +p.c., (10
gr kI(=22)k COHD(2p2) dZ* —ia <o p-c., (10)

where p.c. denotes O(z>M?,zAdp,) corrections that can
be kept small by keeping the distance z < 1/Aqcp. In ad-
dition, these power corrections will be further suppressed
by extra combinatorial factors at each order, and there-
fore, they will only have a minor impact on the extrac-
tion of the moments at a given order. One great advant-
age of using Eq. (10) is that by using symmetry of the
renormalized matrix elements and defining the new vari-
able ¢, the even and odd moments can be determined sep-
arately, and therefore, it is considerably easier to go to
higher orders.

Following the same spirit, the even moments can be
extracted with a reduced number of derivatives:

() (24201 e
gr k!( Z2)1+k C(2+2k)()u2 2) dk§ =0

+p.c., (11)

where k > 0. A special case is the extraction of the second
moment, which is free from taking derivatives:

() 2 1 Rep-1
gr  —2COW?) ¢ e

+p.c.. (12)

We use the combination Refz—1 in (11) to subtract the
mass corrections of O(°) in Rehy following Ref. [28] so

Rehp -1
that d ————

. /d*{ is regular at £ = 0.

IV. NUMERICAL TESTS

Using the approach above, we extract the first three
moments beyond gr of the isovector quark transversity
PDF in the nucleon based on the renormalized matrix ele-
ments at a single lattice spacing a = 0.094 fm with a pion
mass 358 MeV and various momenta in Ref. [19]. All
moments presented here have been normalized by gr.
The next-to-leading order Wilson coefficients needed in
Eq. (9) have also been given in Ref. [19] as

2.2 2yp+l Nl 1

C(")(Zz,uz) — 1+ aCr {lnz H Z ; .
n 1 2 n 1
(2 -2 E (13)
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where a, represents the strong coupling constant and yg
represents the Euler constant.

In our approach, the derivatives of lattice matrix ele-
ments are taken w.r.t. the momentum square . Data at
different perturbative distances z can be combined togeth-
er to determine moments at a given order. This is also the
strategy we adopt here due to the limited data quality.
Taking the extraction of (x?)/g; as an example, we start
from the following formula based on OPE:

-2 dRely _ (x?) ,C® ,C©
ZZC(Z) dé’ = ;w>+ﬁ @b(ﬂ)*‘/l @C(ﬂ)
d(w) e(w)
+Z2A(22CDW +ZZAéCD/lzﬁ’ (14)

where we have truncated the expansion up to terms of
0% in the leading-twist OPE and included leading
higher-twist contributions as well. C™s are defined by
Eq. (8), and their dependence on p?z? is not shown for
simplicity. To extract (x?)/gr, an extrapolation to 2 =0
(or equivalently, to P, = 0) needs to be carried out, simil-
ar to the continuum extrapolation to a=0. We have
tested that including higher-order terms in Eq. (14) only
has a minor impact on the fitting result. Besides (x*)/gr,
b,c,d,e in the above equation are also free fitting para-
meters depending on the scale u, whose variation
provides an important source of systematic errors. For ex-
tractions of (x')/gr and (x*)/gr, we use formulas similar
to Eq. (14), including the first three (two) terms at the
twist-2 (twist-4) level.

We have selected lattice data at z = 2a,3a for our ana-
lysis, as z = a data suffer from discretization effects while
z>4a is too large so that the validity of factorization in
Eq. (6) becomes questionable [29]. We take the differ-
ence between including z =« data or not as part of our
systematic uncertainties. Our results are shown in Fig. 1
with

(x')/gr = 0.283(06)(20),
(¥*)/gr = 0.12029)(18),
(x*y/gr = 0.19(15)(01), (15)

where the renormalization scale has been selected as
i = V2 GeV, and the numbers in the two parentheses rep-
resent statistical and systematic errors, respectively. The
sources of systematic errors are composed of two parts:
1) Inclusion of data at z = a: The lattice data at z = a have
large discretization errors. We consider the difference in
our results with and without including these data as part
of our systematic uncertainties. 2) Perturbative running:
We change the renormalization scale to u=2 GeV and
include the difference in the results as systematic uncer-
tainties. This scale dependence reflects the impact of

1
X*)/
os (x*)Mor
—— Moment
¥ z=2a
0.4 Y z=3a
0.3 T = T -
0.24
0.19
0.0 B
-0.11
-0.2 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
A
2
Xx“)/
05 (x“)ar
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¥ z=2a
0.44 Y z=3a
0.39
0.29
TI T =yl
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~0.14

T T T T T T
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A
3
(x*Vgr
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A

Fig. 1.
charge gr of the isovector quark transversity PDF in the nuc-

(color online) First three moments beyond the tensor

leon. All results are normalized by gr. The renormalization
scale is u= V2 GeV. The blue stars and green inverted tri-
angles represent the raw data for joint fit lines of z=2a and
z=3a, respectively, while the black line and gray band show
the results of (x")/gr.

missing higher-order perturbative corrections. Our final
results for (x!) and (x?) are slightly larger; however, they
are still consistent within 1 ~ 20~ with those extracted in
Ref. [19] through global fits. In Ref. [19], the trans-
versity PDF was fitted (at 4= V2 GeV) based on the
OPE of hy using lattice data ranging from from z = 0.188
fm to z=0.94 fm. Then, the first and second moments
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beyond gr were obtained through the fitted transversity
PDF. This yields slightly different numbers and the ap-
pearance of smaller uncertainties in their results.
However, when z > 0.2 fm, the errors of Wilson coeffi-
cients become large under scale variation, and the OPE
cannot be trusted when z 0.4 fm. Our (x*) has relat-
ively large errors because of the limited data points and
quality, which can be improved in future by increasing
statistics and collecting more data points at small mo-
menta. Note that our approach does not require using lat-
tice data at large distances, as done in [12—14, 19], and
our results do not suffer from ambiguities of global fits.

V. PROSPECT FOR LATTICE CALCULATIONS

In contrast to the traditional moments approach, our
method offers several advantages. First, by leveraging the
multiplicative renormalizability of equal-time nonlocal
bilinear operators, the potential power divergent mixing
between higher- and lower-order moments operators is
avoided. Second, the usual differentiation w.r.t. distance
is replaced by a differentiation w.r.t. momentum, which is
computationally much cheaper. Third, by using the sym-
metry of the lattice matrix elements, the even and odd
moments can be computed separately, making it consid-
erably easier to go to higher orders. Fourth, there is no
need to use long distance correlations where factoriza-
tion is expected to fail, and the determination of higher-
order moments is independent of the lower-order ones.

To facilitate lattice calculations using the presented
method, we need lattices with a large box size L so that
the step in momentum AP = 2x/L is small, and we can fo-
cus on the small A region (2 < 1). We can reliably take the
derivatives and extrapolate to zero momentum, whereas a
small lattice spacing is less important. In practical calcu-
lations, we can combine matrix elements at different per-
turbative distances to determine moments at a given or-
der.

VI. UNIVERSALITY CLASS OF CORRELATORS

In the discussion above, we focused on quasi-LF cor-
relators employed in LaMET and short-distance factoriz-
ation. However, the methodology we outlined can be ap-
plied to other types of nonlocal correlators such as cur-
rent-current correlations and lattice cross sections, where
a factorization similar to Eq. (6) holds. These nonlocal
correlators form a universality class of operators, whose
matrix elements can be combined together to compute the

same moments effectively.

VII. CONCLUSION AND OUTLOOK

In conclusion, we showed that the traditional mo-
ments approach based on OPE can be realized such that it
utilizes derivatives w.r.t. momentum rather than distance.
This is computationally much cheaper and avoids power
divergent mixings, enabling moments calculations to be
performed order by order, to all orders in principle. Tak-
ing the isovector quark transversity PDF of the nucleon as
an example, we illustrated how its first three moments
beyond gr can be computed through differentiating
renormalized quasi-LF correlations w.r.t. the momentum
square. Furthermore, we showed how the real and ima-
ginary parts of the correlations can be used to separately
extract even and odd moments. We also outlined the main
advantages and requirements for the lattice setup in our
proposal. It will be intriguing to explore the extent to
which we can extend the computation of moments to
higher orders using the proposed approach. The results
will provide valuable complementary insights into the
partonic structure of hadrons along with other ap-
proaches.

NOTE ADDED

After this paper was submitted, we noticed that simil-
ar strategies (taking differentiation of iz w.r.t. 1) were
also discussed in Ref. [30], whereas our proposal to take
differentiation w.r.t. £ = (P%)* rather than A = zP* enabled
faster convergence in the extrapolation to zero mo-
mentum and more efficient determination of higher mo-
ments. Moreover, the authors of Ref. [30] discussed ex-
tracted moments as a function of z2, ranging from z = a to
nonperturbative z. In contrast, we only used data points at
z=2a and z=3afor our joint fit, which avoids heavy
contaminations from discretization errors and higher-
twist effects. We leave a more detailed analysis (with re-
summed Wilson coefficients) using data points generated
by lattices with a larger box size to future work. Further,
we discussed the universality class of operators in our pa-
per.
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