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Abstract: In this paper, we present the CPT-violating (CPTV) Maxwell equations in curved spacetime using the

Newman-Penrose (NP) formalism. We obtain a semi-analytical solution to the Maxwell equations in Schwarzschild

spacetime under the assumption that the CPT-odd (ksr)*term exhibits spherical symmetry in the Schwarzschild

background. By retaining only terms up to the linear order in the (ks )} coefficient, we obtain perturbative solutions

by treating the solutions of the Lorentz-invariant Maxwell equations as the zeroth-order approximation and incorpor-

ating the (kqr)*terms jointly as an additional source term alongside the external charge current. Each resulting NP
scalar field can be factorized into two components: the radial component, expressed in terms of hypergeometric
functions, and the angular component, described by spin-weighted spherical harmonics.
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I. INTRODUCTION

Lorentz symmetry (LS) is a fundamental symmetry in
both general relativity (GR) [1] and the Standard Model
[2] of particle physics. Some candidate theories of
quantum gravity, such as certain formulations of loop
quantum gravity [3, 4] and modifications of string theory
[5, 6], allow for small deviations from exact Lorentz in-
variance at very high energies. In some scenarios, this
could lead to extremely small Lorentz-violating effects at
lower energies. However, Lorentz-violating signals at en-
ergy scales accessible in high-energy astrophysical obser-
vations (~ 10''GeV [7]) are expected to be extremely
small and are generally suppressed by a small ratio in-
volving the Planck scale 1.22x 10°GeV, as suggested by
dimensional analysis and observational constraints.

Extremely small Lorentz violation (LV) effects may
accumulate over long distances and at high energies in
certain models, making them potentially detectable
through terrestrial observations. Additionally, some ex-
periments and astrophysical observations can test pro-
cesses that are strictly forbidden in standard Lorentz-in-
variant (LI) physics but may occur in LV scenarios, such
as vacuum birefringence [8, 9], photon decay [10], and
photon splitting [11]. These observations have estab-
lished stringent constraints on LV with high precision,
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particularly through high-energy observatories such as
Pierre Auger and LHAASO [12, 13]. Moreover, most of
these observatories primarily rely on multi-wavelength
observations and long-distance photon propagation to
study astrophysical events.

As a comprehensive framework of effective field the-
ory, the Standard Model Extension is capable of describ-
ing both small deviations from LS in flat spacetime [6,
14] and violations of local LS in gravitational contexts
[15], thus encompassing both high-energy phenomena in
flat spacetime [6] and gravitational effects or particle mo-
tions in curved spacetime [16, 17]. In recent years, there
has been increasing interest in probing LV in astrophys-
ics through observations of CMB photons [18, 19], neut-
rinos [20], and gravitational waves [21]. A natural ques-
tion is whether interesting LV effects manifest in intrins-
ically curved spacetime. Regarding the constraints on LV
from studying the cosmological propagation of GRB or
CMB photons, a key assumption is that spacetime is de-
scribed by the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric, which is curved but conformally flat.
Here, we investigate LV electrodynamics in the simplest
non-conformally flat curved spacetime: the Schwarz-
schild metric.

There has been a growing number of studies on
photon behavior in curved spacetime, particularly follow-
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ing the successful capture of black hole (BH) images by
the Event Horizon Telescope (EHT) Collaboration [22].
The photon sphere and subrings at the edge of the black
hole shadow may encode crucial information about po-
tential new physics beyond GR [23]. This highlights the
necessity of studying photon behavior in curved space-
time near BHs.

As a first attempt, we aim to investigate the asymptot-
ic behavior of CPT-violating (CPTV) photons in the
Schwarzschild geometry using the null formalism. Intuit-
ively, employing the null formalism to study massless
particles is, in some sense, analogous to describing the
motion of massive particles — such as a gyroscope — us-
ing an orthonormal tetrad in its instantaneous rest frame,
even though massless particles do not possess a rest
frame. However, the underlying principle remains the
same: null tetrads naturally accommodate massless
particles that follow null trajectories. Moreover, the null
formalism offers unique advantages in analyzing the
asymptotic behavior of massless particles, particularly
photons in this context. It significantly simplifies the de-
scription of both the tangent of the null geodesic for
photons and gravitons, as well as their polarization states
[24]. Consequently, it provides a coordinate-independent
framework for studying photon dynamics with a clear
geometric interpretation, especially in highly curved
spacetimes. Notably, it also offers a physically transpar-
ent decomposition of the Faraday tensor into ingoing,
outgoing, and Coulomb modes.

In the presence of CPT or Lorentz violation, contrary
to conventional expectations, the asymptotic behavior of
photons may be qualitatively altered [25]. For instance,
vacuum birefringence can be understood in terms of the
modified topology of the light cone structure, where dif-
ferent helicities of CPT-odd photons experience distinct
causal cones [26].

Pioneering studies on exact solutions for LI photon
fields as perturbations in given background geometries
include vacuum solutions for photon fields in the Kerr
spacetime [27] as well as solutions for a point charge near
a Schwarzschild BH [28] and a Kerr BH [29]. Bicak et al.
studied photon fields in curved spacetime within the
Newman-Penrose (NP) framework [30], including the
Schwarzschild [31], ReissnerNordstrom (R-N) [32], and
Kerr [33] BH backgrounds. As a preliminary attempt,
here we study the behavior of CPT-odd photons in the
Schwarzschild geometry following a similar approach.

In Sec. II, we review the Newman-Penrose (NP)
formalism and discuss some earlier studies on the LI
Maxwell equations in curved spacetime using the NP
framework. Then, we examine the CPT-violating Max-
well equations within the NP formalism in curved space-
time. Next, we present a method to solve the coupled
Maxwell equations and provide special solutions in Sec.
III. In the last section, we summarize our results and

provide a short conclusion. In this paper, the signature of
the metric tensor g,, is chosen to be (+,—,—,—), and we
use geometric units with ¢ =go=c=G=h=1. The
notation conventions are as follows: spacetime indices are
represented by Greek letters such as y,v,p, while null tet-
rad indices are represented by Latin letters such as a,b,c.

II. FIELD EQUATIONS AND SOLUTIONS

We study LV (more specifically CPTV) photon beha-
vior within the photon sector of the minimal SME [6].
The action is given by

1 .
S = / d*xv—g [—ZFHVF"V+(kAF)aAﬁF"ﬁ -JAL, (D

_ 1
where F% = EfﬂmﬁFuv, and (kar), isthe CPTV coeffi-

cient [6] [34]. The coefficients (k4r), are real and have
mass dimension one. The equation of motion is

VP 4 2(kap) B2 = " )

Using the null tetrad e/ = (*,n*,m",m"),a = 1,2,3,4, cor-
respond respectively to I,n,m,m, and the electromagnetic
field tensor F,, can be decomposed into three complex
Newman-Penrose (NP) scalars,

Oy =F3=Fyeltes” = F,l'm’,
1 1
D, = §(F12+F43) = iF#y(€1”€2V+€4ﬂe3v)

1
= =F,,(Fn"+m'm"),

2

(D2 = F42 = FMV64#€2V = F#yﬁ’lﬂf’lv. (3)

Conversely, the electromagnetic field tensor F*” can be
expressed as

Fﬂv =2 {(D] (l’l[ylv] +m[},ﬁzv]) + (Dzl[”mv] +q)oﬁ/l[ﬂi’lv]} + c.c.,

4)

1
where ay.by ;= E(aybv —a,b,), and "c.c." denotes the com-

plex conjugate.

This paper primarily focuses on photon fields
propagating in the vicinity of a Schwarzschild BH, with
the line element

ds® = g(rd® — g7\ (nNdr* = (d6° +sin’ 6dg*),  (5)

2M
where g(r)=1- — - The corresponding null tetrad basis
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vectors are given by

F=(gn",1,0,0), n*= La

2 ’_g(r)70’0)7
1 1
m = \/Er(O,O, licsc), m'= 7(0,0, 1,—icsc) (6)

with their corresponding covariant components given by

l#:(l,—g(r)_l,o’o)’ n, =

m, = %(0,0,—1

1
E(g(r)7170’0)7

’
—(0,0,-1,isin@), (7
\/E( ), (7)

,—isinf), m, =

In terms of the null contravariant vectors, we project the
derivatives into null directions:

D=FV,=g(r"'0,+08,, 6=m'V,= \/_ (8 +icscbd,),
r
A=n'V, = fa —7g(r)6,, 6=m'V, = \/_ (8p—icschd,),
r
(®)

following Ref. [30]. To simplify the calculations, we as-
sume that the CPTV coefficient is spherically symmetric,
consistent with the Schwarzschild background, and re-
strict our analysis to stationary electromagnetic fields.
Consequently, the directional derivatives reduce to D = 9,

and A= —Eg(r)ar. In other words, we focus on the beha-

vior of static electric and magnetic fields in the presence
of the CPT-odd term.

Similarly, we define the spin coefficients as
Yave = €lepuve,.’, following the conventions in Ref. [35].
In the Schwarzschild metric, the nonzero spin coeffi-
cients are given by

1 1 2M
P=EViu=——, U=yuz=——|1-—],
r Zr r
1 Yot +73) = o ( +Y34) = L cote
= — = —, a=— =———Co
Y ) Y212 Y342 272 Y214 t Y344 > \/Er
1 1
B= 5 (Y213 +Y343) = T@COW.

©

It is important to note that the NP formalism employed
here may not be fully applicable within a generic
Lorentz-violating theory. In this paper, we implicitly ad-
opt the test particle assumption, wherein the background
metric is assumed to remain unaffected by the Lorentz-vi-
olating matter fields — specifically, the electromagnetic
fields under consideration. Within this framework, the
use of a complete and quasi-orthonormal null tetrad re-
mains appropriate, given that it effectively captures the

essential features of the quasi-null wavefront associated
with CPT-violating electromagnetic fields. This is be-
cause the null tetrad can be regarded as a natural choice
for describing massless particles.

However, for a more rigorous treatment — particu-
larly when the back-reaction of matter fields on the
spacetime metric is taken into account — the standard
null tetrad may no longer suffice. In such cases, it may be
necessary to generalize the framework, for example, by
employing a quasi-null tetrad, as used in the analysis of
gravitational wave polarization [36].

A. CPTV Maxwell equations in the NP formalism

The LI Maxwell equations in the NP formalism have
been derived in the appendix of Ref. [30] and in Chapter
1.8 of Chandrasekhar’s textbook [35]. For the CPTV con-
tribution, the term (kar),F*” in Eq. (2) can be projected
onto the null tetrad basis as (kar)F®, where F® =
%eabch“’ and (kar), = (kar)ue/ (a=1,2,3,4), which are
tetrad components of the CPTV coefficient (k4r),. For

simplicity, we define (ksr)*=k*. As an example,
forb =1, we obtain
2(kAF)aﬁal = (kAF)aealchCd
=2i [-kX(D - D) - KDy +k*'Dp] . (10)
Here, we use €534 = i, which follows from the definition

of the complex null tetrad given in Eq. (6). The CPTV
Maxwell equations in NP form are then given by

(D=2p)®; — (6 + 71— 2a)Dg + kD,
1 - -
=5 di+i (K@ — Dy -k (0 - D) ],
O0-21)0,—(A+u—-2y)0y+ 0D,
1 - -
= 5T ti [ (D1 + @) + 2D, + k' Dy |,
(D-p+28)D, — (5 +210)D; + AD,
1 - -
= 5Jn-i [ (@) + D)) + 2Dy + k' Dy,
(6 =7 +2B8)®, — (A +2u)D, +vD,
1 - -
=§Jn+i[k4q>2—k3q>2+k‘ (@ -®)]. (11)
where J, =1,j*, J, = n,j*, etc.

Given that we assume that the CPTV coefficient k* is
spherically symmetric, a simple example is to consider
only k' # 0. Given that k' = k'I' + k*n’ ;t 0 this implies that
k' and k? cannot be zero, while k* = k* = 0. By substitut-

ing the spin coefficients from Eq. (9) and the differential
operators from Eq. (8), Eq. (11) simplifies to
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0 2 1 . _
<ar )(D1+ v_réq)o—zjl—lkz(q)]—q)]),

_Laq)l_,_l K]_ZiM)g_,_l} @,
r

\2r 2 r /J or

1 -
= Ejrn+ik2q)2+iqu)0’

0 1 . 1 i s

(a + - )CI)2+‘/_ 2Jﬁ1—1k2c1>2—1k‘c1>0,

502 (G +0)
— CDI
2],1+1k1 (D -D), (12)

where the differential operators & and 8 are defined as

0 i 0
on = —(sinf)* {6«9 ;6%} (sin®)~’n, (13)

(sin6)°n. (14)

0 i 0
(sin6)™ {09 sinf dy

The eigenfunctions of & and & are the spin-weighted
spherical harmonics ,Y,,. Here, s = 1,0,—1 correspond to
the spin weights of @, ®;,®,, respectively. For s=0,
oY =Y, are the standard spherical harmonics, and the
indices s,l,m satisfy |m| <[ and |s| <[. For further details
on the definition and properties of spin-weighted spheric-
al harmonics, see Appendix A or Ref. [37].

III. SOLUTIONS FOR A GIVEN SOURCE

To solve Eq. (12), we adopt the Teukolsky approach
[38]. The key is to leverage the commutation relations
[30] between differential operators (Eq. (8)) and spin
coefficients (Eq. (9)) to decouple the four coupled Max-
well equations. Acting with a combination of the operat-
ors on Eq. (12), we obtain a set of partially decoupled
equations:

(D = 3p)(A +u—2y)Dy — 6(6 — 2a) D
5J0 —i[K6 (@) - D)) +(D-3p)k*D, + (D -3p)k' Dp] ,
(15a)
(D =2p)(A +2u)®; — (5 +2B)6D,
= %Jl —i [(6+2B)K* Do +(6 +2B)k' By + (D-2p)k' (D-Dy)],
(15b)
(A+3u)(D )@, — 5(6 +2B)D,
= %Jz —i [ (A+30)®; + k' (A +3u)D + 0k' (01— Dy)].
(15¢)

Here,
Jo:=0J;—(D=3p)J,
Ji = (6+2B)J; —(D-2p)J,, (16)
= (A+3u)Jy -5,

For later convenience, we define 57, =57, 5> _,, and
given that spherical symmetry is preserved in at least a
special preferred reference frame, we expand the three
complex scalars using spin-weighted spherical harmon-
ics:

D, = ZRoum(V) 1Yi(6, ),

Im

o, = ZRlllm(r) 0¥in(0:0) + Rijoo(r) 0 Yoo (0 0),  (17)

Im

D, = ZRzum(’”) ~1Y1(6,).

Im

Inspection of Eq. (15) reveals that in the absence of
CPTV coefficients, the three equations are decoupled.
Given that the CPTV coefficients are experimentally con-
strained to be extremely small, say |ksr| < 107%GeV,
[39—40], we may treat the CPTV terms on the right-hand
side of Eq. (15) as perturbations.

Thus, the radial functions can be expanded in powers
of CPTV coefficients k' and & as

Ry = RS, + RS, + R, ++++, a=0,1,2,  (18)

allm allm
where the superscripts "(0)," "(1)," etc., indicate the cor-
responding order of k' and &?. For example, Rf,?l)mcorres—
ponds to the zeroth-order function without LV correction.
The expansions of the NP scalars are thus given by

0 1 0 !
(D0:®6>+q)8)+...:Z(Rgu)m'f—Ré‘l)m‘l‘”')lYlm’
— 50 . HD - O )
(Dl_q)l +(I)I +-~-_Z R1\1m+Rl|lm )OYlm’ (19)
Im
0 1 0 !
Dy =P + 0+ =D (R + R, +++) 1Y
Im

Keeping only the linear-order terms in the CPTV coeffi-
cients, Eq. (15) can be separated into two sets: the zeroth-
order LI equations,

1
(D=3p)(A+p—2y)0 - 66 —2a)0 = 570
_ 1
(D=2p)(A+ 2D — (5 +2B)50" = 30 @0

1
(A+3u)(D—p)dY - 5(5+2B)DY = 37

and the first-order equations with linear CPTV corrections,
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(D-3p)A+u=29)8 66 - 2@, = ~i [6 (0" = B)") + (D= 3p)K’P, +(D-3p)k' D],

(D-2p)(A+ 2@~ (6+28)60" = ~i [(5+28)K°0P + (5 +28)k' D) + (D - 2p)k' (0" - }")],

(A+3u)(D - )@ 56+ 20D = —i [B(A+ 3@ + k' (A+ 3u)®, + k! (o - 6‘10’)] . Q1)

The zeroth-order equations indicate that the external
charge and current act as sources for the zeroth-order NP
complex scalars, which are linear combinations of the
components of the Faraday tensor. Similarly, the first-or-
der equations show that the zeroth-order Faraday fields
act as sources for the first-order CPTV corrections to the
Faraday tensor.

We begin by solving the zeroth-order decoupled
equations given in Eq. (20). By leveraging the orthogon-
ality relations of spin-weighted spherical harmonics (Eq.
(51)) and substituting Egs. (8), (9) and (17) into Eq. (20),
we obtain the following radial equations:

r(r—2M)RS),” +4(r— M)RS),/
— (= DI+ 2R, = =Jojm:
” 3 ’
r(r=2M)R\),” +4(r— E1\/1)R<1‘|);m
— (=) + 2R, = =Tijm:
r(r—2M)RS), +4(r—2M)RS)
2|im 2lim
4M
- [U=D+-— RS, = —Jojim (22)
Here, R(r)” and R(r)’ denote the second- and first-order

derivatives with respect to r, respectively. The source
terms are given by

Jom = /JO(V,G,SO) 1Y 1(6,0) *dQ,
Jim = / 11(6.0) o Fin(6,0) P, 23)

Jojim = /]2(7,9,90) 1Y 1(0,0) FdQ.

In the absence of source terms in Eq. (22), by introdu-
cing the variable transformation x=r/(2M), the homo-
geneous equations can be rewritten in the standard form
of hypergeometric equations:

x(x= DR, +@x=2)RG) —(I- 1)1 +2)R{), =0,
(24a)

x(x= DRy, +(@4x=3)Ry, = (1= DI+ 2Ry, =0,
(24b)

2
x(x= DR, +(@dx— RS, ~ [(1 - 1)(I+2)- ;} Ry, =0.

(24c)

The general solutions of the hypergeometric equa-
tions are

©) _ _0)pD (0) pAIn
Ry = @y Royy + by Roy s
©) _ (0)pd (0) p(1D)
Ry = i Ry +di Ry s

Im

) _ O pd (0) p(ID)
Ry = €1 Ry + i Ry - (25)

m

For 1+0, the linearly independent solutions for R,
(a=0,1,2) are

Ry = F(1-1,1+2,2;x),

Ry = (—0)"PF (1+ 1,142,201+ 2;x7"), (26)

Ry =F(1-1,1+2,3;x),
R = (072 F (1L1+2,21+2:07), @7

Ry =x""F(=1,1+1,2;x),
Ry = (0" F (I+ 1,121+ 2;x7"). (28)

For /=0, given that Ry, and Ry correspond to spin-
weight s =+1 and the spin-weighted functions are only
defined for />]|s|, R,y is not defined except for a=1,
which corresponds to spin-weight s = 0. The linearly in-
dependent solutions of Ry, are

Rip=x"In(x-D+x7", Rl =x7 (29)

To fully characterize the solutions, we examine their
asymptotic behaviors at both spatial infinity and near the
event horizon. The asymptotic expressions of the solu-
tions in the far-field regime are

Ri~x R ~x a=0120 G0)

Given that RS& diverges for />0, only Ri,lﬁ) remains well-
behaved at spatial infinity, ensuring an appropriate phys-
ical decay. The asymptotic expressions of the solutions
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near-horizon regime are

Ry, Ry ~ const., Ry ~ (x—1); (31a)

Rgﬁ) ~(x=-17", R(ll‘?,ln(x— 1), R(;'? ~ constant.

(31b)

Thus, only Rf}ﬁ solutions are regular near the event hori-
zon. For /=0, only Ry exists, and among its solutions,
only Ri‘,ﬁ} remains well-behaved in both the far-field
(x > o) and near-horizon (x— 1) limits. In short, to
have physically acceptable solutions, we have to ensure
that the general solutions (Eq. (25)) exhibit proper and
reasonable asymptotic behaviors both at infinity and near
the horizon, namely Rilﬁ) and Ry are chosen, respectively.

Next, we consider the non-homogeneous case of Eq.
(22) in the presence of source terms. We assume that the
source is localized within the finite region r <r<r,,
where 2M < r; < r, < co. In this range, we may let r; be
sufficiently larger than the Schwarzschild radius of the
compact object, say, r; = 10rs =20M, and r, far from in-
finity, i.e., r, << 0. This ensures that essential non-linear
or curvature effects do not become dominant. More pre-
cisely, given that our analysis is primarily based on the
test particle assumption, any back-reaction of electromag-
netic perturbations on the background spacetime metric,
as well as potential instability issues, are beyond the
scope of this work. While these topics are indeed interest-
ing and important, they are significantly more complex
than the current study and are worth exploring in future
research.

Based on the previously analyzed asymptotic behavi-
ors, we use the fundamental solution set {RSIB,RS‘P} for
a=0,1,2 to construct the general solution of Eq. (22).
The radial solutions in different regions are provided
next.

For [+ 0, the solution takes different forms depend-
ing on the radial range:

* In the region 2M < r < r;, where the solution is near
the source but outside the event horizon, the general form
is

I
Rallm = ulmR( )

ar 4= 0,1,2, (32)
where the coefficients u;, correspond to ay,,cp, e, re-
spectively.

* In the region r > r,, far from the source, the solu-
tion takes the form

Ra\lm = vlmR(“)

all »

a=0,1,2, (33)

where the coefficients v, correspond to by, dy,, fin, Te-
spectively.

This piecewise formulation ensures that the solutions
satisfy the appropriate boundary conditions at both spa-
tial infinity and the event horizon while maintaining
mathematical consistency across the defined radial do-
mains.

There exists a special case for [ =0, where the radial
function takes the form

Riw=E,R), for 2M<r<r, (34)
and

R1|00—E1;R]I‘g, for r>r,. (35)

Here, E, and E, are constants that, along with the previ-
ously introduced coefficients u;, and v;,, will be determ-
ined using the method outlined below.

For the case of given sources in Eq. (22), we apply
the method of variation of constants [41] (see also Ap-
pendix C). The corresponding particular solutions are ob-
tained as follows:

n Jam( @R €)
= RIS )

(n)( ) / a\lm(f)R%m(f)
Ko EE=DW (RS, Rip.€)

dé

d¢,  (36)

where a=0,1,2. The function W(RS&,RE,L ,f) represents
the Wronskian determinant of the two fundamental solu-
tions R and RY; evaluated at & By comparing Eq. (36)
with Eq. (25), we obtain the following integral expres-
sions for the expansion coefficients:

o_ [ JoumIRG ) q
7 e - DW (RGRG )
X1—€ 0\1’ ol ’

ot Joum(ORG)(x)
Bl == / (%l a 9% (37a)
x-e X(x—DW (RO\I’ROII ,x)
O _ / wre Ji um(x)R(11|})(x) .
" Jue 2= W (RLRY.x)
x+e Ji Vm(x)R(I)(x)
dy) == / (Hl a 4% (37b)
x-e X(x—1DW (R1|1’R1|l ,x)

o _ [ Jzum(X)R(zﬁ)(x)
€ = O
x-e X(x—DW (Rzu’Rzu ,x)
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o _ / ke J2|,m(x)R(21|;(x)
Im —
e Xx— DHW (RD, RS, x)

dx, (37¢)

where ¢ is an infinitesimal positive constant and
x, =r,/2M) , with a=1,2 , specify the external source
region in radial direction. After performing explicit calcu-
lations, we find that the Wronskians are approximated as
follows:

o pm o CI+D! 2
W(ROV’ROU "x) ~ l‘(l+ 1)')6' (x_ 1) 5 (383)
221+ 1)! _ B
O pdh N\
W(RW,R”[ ,x) =~ mx 3()(— 1) l’ (38b)
O D) - (21+ 1)' 4
W (Roys Ry ) Tnaen’t (38¢)

The detailed derivation of these expressions is provided
in Appendix B. By substituting Eq. (38) into Eq. (37), we
obtain the final expressions:

aly) = l(gll: 11 )) : / 2= 1) Ty RO (0dx,  (39)
o _l('z(;:;)): / ]X:gx(x— 1) JomRY(0dx,  (39b)
Ch = [2((151)1'12' / 2 TR (x)dx, (39¢)
i = _[2((12-;7131!12! X]X:S  JymRY)(x)dx, (39d)
=G, (x’f S (9
=iy [ g R oo

For coefficients E, and E,, we refer to Eq. (12), from
which we obtain E, =0 and E, = /re, where e is the ele-
mentary charge obtained from integrating the charge as-
pect @ of the Coulomb mode @,. Next, we consider the

gy, = |- —=R[I+ DIV (RN, = Ry (= D"™) +(D = 30)k* RS, (=1)~' ™"+ (D-3p)k' R}, | .

1
Var

first-order correction, i.e., Eq. (21). By substituting the
right-hand side of Eq. (19) into Eq. (21) and utilizing the
properties of spin-weighted spherical harmonics (Eq.
(51)), we obtain

D (D =3p)(A+pu=2y) -6 -2a)] RY}), 1Y

Im

. 1 _
= —1%; {—ﬁr [+ D12 (R, Vi = RO (=1 1 Yii )

+(D = 3p)k* RS}, (= 1) Vi + (D = 3p)k" RG, 1 Y]
(40)

> (D —2p)(A+2u) — (6+2B)5] R}, Yo

im

i 1 R m
=—iy — [+ D" (RS0 ViK' RS, (=D (Yim)
Im \/ir

+(D-2p)k" (R, oY — (=1 RY) 0¥iem)
(41)

D L(A+3u)(D—p) =56 +28)] Ry, 1 Yim

Im

=—i) (A+3KR), 1 Yy + (A+3k' RE) (=D ¥y
Im

1 _
+ e 0+ DIPK! (Rigy, 1Yo = (1" Rig, -1 ¥icem) -
(42)
Using the orthogonality of spin-weighted harmonics (Eq.

(52)), we obtain the following equations for the radial
components:

[(D=3p)(A+p—2y) = 66— 2a)] RGy, = Jaji (43a)
[(D—20)(A+2p) = (5+2B)3] RY}), = Jii (43b)
[(A+3)(D —p) =55+ 2B)] Ry, = Tiis (43¢)

where we define a set of effective source terms JaLl}fn
(a=0,1,2) induced by LV as follows:

(44a)
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1

. ] D —-m m p
5y, = {——[(1 +D0'?K RS, - —2[(l+ DIk RO, (=D ™" +(D=2p)k" (R, — (1) Rﬁ?,}_m))} ,
r

Var V2

[Im =

WA {(A + 3k RS, + (A+3k' Ry, (=D +

From Egs. (26)-(28), we observe that RS&) are functions of
x'. As x— o, we have x!'—0, implying that
Ry = (=) for a=0,1,2. Consequently, we approx-
imate

) 1,0 -2-1 pO) _ 40) -2-1 pO) _,
R0|1m~b (=0~ Ry, = d, (=) s Ry &

(0) —2-1
Im 1lim m (—X) .

(45)

By substituting these approximations and the spin coeffi-
cients into Eq. (44) and setting r =2Mx, we derive the
governing radial equations (Eq. (43)) up to the lowest or-
der approximations of Ri,?fm and their complex conjugate
Ri,?,)m, where a =0,1,2.
Similar to the zeroth-order case, we express the gen-
eral solution as
RO, = ah RY + b R,

im im

() _ (1) p (1) pdl)
Ry, = ¢ Ry +d,, Ry,

1im

) _ () pd (1) p(D)
Ry = €y Ry + Ry .

Im Im

(46)

For the given LV sources J}), (a=0,1,2), following the
procedure used in Eq. (36), we obtain the particular solu-

tion:

R

I ERS(©)
(1) _ p allm all
anl2) = R“"(x)/ EE- )W (RORE)

I ERGE)
_ (11) allm all
R (x)/ £&E-DW (RG.RY).€) %

(47)

Comparing Eq. (47) with Eq. (46), we determine the fol-
lowing coefficients:

l!(l+1)!/"2+8
1) LV (11
a,) = x(x=1) Jgp,,(%) Ry, (x)dx, (48a)
Tl /L o o

N(I+1)! [
b = - / x(x—1) Jg,(x) Ry (x)dx, (48b)
: ei+n /.., o o
w_ [+DIP /ms 2 Ly (11
Cipp = = x° I (%) Ry (x)dx, (48¢)
LT TN TTI M "

1
V2

(44b)
[+ 1K' (R, —Rﬁ?&_m)(—l)‘)"”)} : (44c)
[+1)I]2 (=
diy, = e / 2 T () Rij(0dx, (48d)
! 2020+ 1) J, ., © "
I+ 1)! / x
1) LV (1D
eV = - Joim (R, (x)dx, (48e)
I (2l+1)| e (.x_l) 2|0 21
nA+D 28 v
70 = / J5) ()RS (x)dx. (481)
I (21+ l)' e (x_ 1) 2|l 20l

It can be seen that if the CPTV term is treated as an ef-
fective source term, the LV effect may be characterized
by the effective currents Jy .a=0,1,2. In the case of
point charges or other sources (see Ref. [31]), as x — oo,
the two quantities &) and £, corresponding to the spin-
weight —1 and +1 modes, respectively, exhibit nearly
identical asymptotic behavior. The primary difference
between these spin-weight ¥1 modes arises from the LV-
induced effective currents Jgy, and J3), , which is consist-
ent with expectations.

The analytical solutions obtained in this section re-
veal that CPT-odd corrections induce significant mixing
between different spin-weight modes of the electromag-
netic field in the far-field regime (r > 2M), even though
the electromagnetic field produced by static currents de-
cays rapidly in this region. In the classical LI case, the
zeroth-order solutions exhibit radial dependencies gov-
erned by the expansion of hypergeometric functions
Rf,?l)(x), while the angular components are precisely de-
scribed by spin-weighted spherical harmonics ,Y,. The
degeneracy in the behavior of different spin-weight
modes is a direct consequence of the underlying space-
time symmetry. However, the introduction of the LV
term breaks this symmetry, manifesting as perturbations
to the original solutions through the equivalent source
terms Jy .a=0,1,2. Specifically, the radial behavior
Rfl};m still follows the power-law decay x'2 (where
x=r/2M), reflecting the suppression of electromagnetic
multipole radiation. Notably, in the lowest-order case

(= 0),R2},)m o x| leading to
firms the absence of net energy-momentum flux in the
far-field region for electromagnetic fields generated by
external static currents [42]. Furthermore, the linear rela-
tion RE,:I)m oc k¢ -RE,?,)M (for a =1,2) in the far-field solutions

2
(1) —4 .
Rallm’ ~ 1™, which con-
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indicates that LV effects could be extremely small, yet
their cumulative impact might become significant in
high-energy astrophysical environments, such as active
galactic nucleus (AGN) jets.

Moreover, it is interesting to note that in time-depend-
ent scenarios where radiation is present, the two helicity
+ modes correspond to different polarization states, mak-
ing helicity-dependent effects particularly pronounced for
higher multipole moments (! > 1). This suggests that LV
effects may be more significant in radiation from higher
multipole moments and could be constrained through cu-
mulative effects in long-baseline photon propagation,
such as polarization angle evolution in gamma-ray bursts
(GRBs). Furthermore, the study of far-field behaviors in
radiative cases reveals distinct deviations from LI electro-
dynamics [25]. For instance, logarithmic correction terms
may arise owing to the absence of an additional derivat-
ive in the CPT-odd ks term compared to the LI Max-
well theory [25, 43]. Additionally, a form of energy flux
cancellation between lower and higher frequency modes
may occur to ensure the absence of net radiation for a
charged particle moving at constant velocity [44]. For
time-dependent situations, a nonzero net energy flux is
expected, just as for conventional electrodynamics. A
nontrivial example is provided by dipole radiation [45],
though its polarization structure is non-perturbative in
terms of the CPTV coefficients. In fact, a closer examina-
tion of Egs. (12) reveals that the presence of the imagin-
ary part of @, in the first equation obstructs the separabil-
ity of time and radial variables, u and r (for further de-
tails, see Eqs. (54c) in Ref. [25]). This issue may stem
from the strong assumption of a constant radial compon-
ent k. A more physically plausible assumption —
namely k" cc O(1/r) — could resolve this difficulty. Un-
der such a decay, the standard separability of u and r is
recovered at sufficiently large radii, such as at null infin-
ity. Then, the compatibility of asymptotic flatness with
test particle assumption is ensured.

However, note that current constraints on dimension-
3 CPTV coefficient k,r are extremely stringent and have
already reached |kxp| < 107 GeV. For a more detailed
summary of the constraints, please see tables S3 and D16
in Ref. [46]. It is also important to distinguish between
Lorentz violating constraints in curved spacetime from
those in flat (or conformal flat) spacetime. The former
may be subject to screen effect due to the minuscule
nature of gravitational couplings [47]. While the existing
constraints are so tight that further improvements through
astrophysical observations may be impractical, this study
still provides semi-analytical solutions to the CPTV Max-
well field equations in curved spacetime, which may be
valuable from a theoretical standpoint.

IV. SUMMARY

In this paper, we investigate analytical solutions of
the CPT-odd Maxwell equations in Schwarzschild space-
time using the NP formalism. By employing a perturbat-
ive approach, we treat the LI Maxwell equations as the
zeroth-order approximation and incorporate the CPTV
coefficients (k p)* as first-order corrections. The electro-
magnetic field tensor is decomposed into three complex
NP scalars @y, ®;,D,, whose radial dependence is gov-
erned by hypergeometric functions, while the angular
components are described by spin-weighted spherical
harmonics. Specifically, the zeroth-order solutions pre-
serve the spherical symmetry of the Schwarzschild met-
ric, with multipole moments determined by hypergeomet-
ric radial functions. The introduction of CPTV coeffi-
cients (k4r)" induces anisotropic corrections by coupling
different angular modes (I,m), even assuming that the
CPTV coefficients are spherical symmetrically distrib-
uted. In the radiation case, this may also alter the polariz-
ation structure. If the radial behavior of radiation follows
a similar scaling (R;]U)m ~ X_H) with x=r/2M, it may in-
dicate the suppression of higher multipole radiation at
large distances.

Although this is a very preliminary study on CPT-vi-
olating electrodynamics in curved spacetime, it repres-
ents the first attempt within the NP formalism. The inter-
play between geometric and LV effects may not only
deepen our understanding of BH electrodynamics but also
open new avenues for exploring physics beyond classical
relativity. From a theoretical perspective, the results
presented here provide a foundation for further investiga-
tions into CPT-violating and LV effects in curved space-
time. Future research could explore more complex space-
time backgrounds, such as Kerr spacetime, where frame-
dragging and ergo-region dynamics may significantly in-
fluence LV effects. Extending this analysis to rotating
black holes could reveal novel phenomena, such as LV-
modified superradiance or potential imprints on BH shad-
ow substructures observable by the Event Horizon Tele-
scope. Moreover, the framework developed here is inher-
ently adaptable to arbitrary orders of electric and magnet-
ic multipole expansions. By extending the relation
Rfjl)m o X% to higher /, one could systematically analyze
LV corrections to higher multipole moments, probing
finer details of electromagnetic fields near compact ob-
jects.

ACKNOWLEDGMENT

We would like to acknowledge the valuable discus-
sions with Zhanfeng Mai, and H. Wang would like to ex-
press his gratitude to Tengfei Li for his assistance during
the calculation process.

095103-9



Hao Wang, Zhi Xiao, Bing Sun

Chin. Phys. C 49, 095103 (2025)

APPENDIX

A. Spin-weighted spherical harmonics

The spin-weighted spherical harmonics could be
defined in terms of the usual spherical harmonics as

[-s)!
$Yim = [+s)! = Al
s El+s;'(—1)‘6"Ylm, -1<s5<0 (AD
—s)!
0, [ <]s].

It could also be represented as

A+ml—m)2l+1) m(g) »
anl+s)li-sp T \2)¢ %

Xi(—l)r l—S l+S Cot2r+s—m (g)
— r r+s—m 2/

(A2)

s Ylm(gs ¢) :(_ l)l+m7X

From the definition above, the spin-weighted spherical
harmonics have some useful properties:

s Y[m =(- 1)m-*-s—sYl(—m),
1Yo = 1Yo+ 2m[I(+ 1)] 72 (sin @) 'Yy,

% sYim = 1mg Yy,

8 Vi == )+ 5+ 1)]" 1 Vi,

8 Vi =—[U+8)I=s+ D] Y,

B Y =—U=5)I+ 5+ 1)V,

88 Y =—(U+5)I=5+1),Ypn,, (A3)

The spin-weighted spherical harmonics obey the ortho-
gonality condition

2n n
/ / s Ylm (67 90)3 Y/’m’ (0, (;D)dQ = 6[/’ 6mm’ 5 (A4)
0 0

where dQ = cos6dfde.

B. Wronskian

The Wronskian is a determinant constructed from »
differentiable functions fi,...,f, along with their first
n—1 derivatives. Its explicit form is given by

W (fiseres ) ()
[ HE e fi
[ B e fi)

= det ) _ _ ) , (B
O T A €9 FD(x)

where £ is the (n—1)" derivative of f,. For a general
homogeneous differential equation

fP+af" 4+ +a,(0f =0, (B2)
there exists a useful relation known as Abel's identity,
which expresses the Wronskian of a set of solutions in
terms of a known Wronskian at a reference point and the
coefficients of the original differential equation:

W(ﬁ”f;’l)(x) = W(fl,---,fn)(xo)exp (_/ Cln—l(f)df) .
° (B3)

This identity is particularly useful in computing the
Wronskian of @y, ®,,®,. For @, using Eq. (24a), we ob-
tain

Y 4g-0
W (RS R2) = (R R e - [ =2 ]
X0
2 _1)2
— W (RO.RI ) 0 Fo= D7
(R Roy'» xo) 2x—1) -

By taking the limit x, — co and substituting Ry and R}/

from Eq. (26), we obtain

@ p(D (21+1)!
W(RO|I’R0\]’ 0) l'(l+1)' () 5
W (Roi-Rod>x) ~ 311 e 1 ®3)
For @, using Eq. (24b), we obtain
T 4£-2
W (R, R, x) = W (R, R} x0) exp |- dg}
w §E-1)
3
@ pl XoXo— 1) (xp—1)
W(Rl\l’Rlll » X 0) Bx-1) :
(B6)

By taking the limit x, — oo and substituting Ry iy and R(llﬁ)

from Eq. (27), we obtain
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2021+ 1)!
(D pdDh
W(Rl\l’Rlll’ 0) mxo ,
220+ 1)! 1
W (R, R, x) ~ ) B7
(R R %) = L D B (B7)
For @,, using Eq. (24c), we obtain
Y44
W (R..) = W (RSB ) exp [ [ 7% o]
w §E-1
(D) pID) x5
=W (Ry).Ry) . xo) -
(B8)

Taking the limit x, — oo, and substituting Rg& and R%)
from Equation (28), we obtain

@+
TN+ 1) X'
QI+D! 1

NI+ x4

(D) pdD ~
W (R, Ry, x0)

W (Ry. Ry x) ~ = (BY)

C. Solution of non-homogeneous equation

In this subsection, we introduce an approach [41] for
solving non-homogeneous differential equations. Con-
sider a general non-homogeneous ordinary differential
equation of the form

L) =y +a(x)y" ™V + -+ a,(x)y = b(x), (CI)

where L(y) represents a linear differential operator. The
general solution of Eq. (62) can be written as

Y=Yp eyt +Cayn, (C2)
where y, is a particular solution of Eq. (62). When
b(x) =0, the equation reduces to a homogeneous form,
whose general solution is given by ¢y, +---+c¢,y,, Where
ci,+,C, are constants.

To construct a particular solution y, with a structure
similar to the homogeneous solution, we assume the an-
satz

yP=u1y1+“'+unym (C3)

where u,,---,u, are functions rather than constants. These
functions satisfy the following system of equations:

wyyr+-+uy, =0,

upyy+--+uy, =0,

WP 4wy P =0,

/ (n— 1)

Uy ;,y;n e = b(x). (C4)

This system of equations can be solved using Cramer's
rule, yielding

W,
u(x) = /W()H {0

—TRY 4 (k=1,---.n),
BT R n. ()

where W(yi,---,y,)(t) denotes the Wronskian determin-
ant of the fundamental solutions. Consequently, the par-
ticular solution y,(x) can be expressed as

Wi(0b(o)
Y= ZW)/ Won oo €O
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