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Abstract: In this study, we used the gravitational decoupling method (GD) via minimal geometric deformation
(MGD) to analyze strange deformed stars (SS) within the modified f(77) gravity theory. By adopting the Buchdahl
ansatz and the quadratic polytropic equation of state (EOS), we derived deformed SS models by assuming that the
energy-momentum components of the deformed fluid satisfy p = ®8 and p, = @: . This approach leads to different
classes of exact solutions. The study of physical viability tests ensures that the proposed configurations adhere to
realistic constraints. Furthermore, we analyzed the impact of relevant parameters in three scenarios: GR, f(77), and
f(T)+MGD. In addition, observational constraints were used for comparison with GW190814 and neutron stars
(NSTRs) PSR J1614-2230 and PSR J1903 + 327, with mass ranges of 2.5-2.67My, 1.97+0.04My, and
1.667 +0.021 Mg, respectively. Remarkably, we observed from the M —R curves that NSTRs with masses ranging
from 2.4 to 3.5M¢ correspond to a range of radii from 9.80f8:8% to 13.01f8:8} km for different values of the para-
meters a, f3, y, and {;. Notably, for the p = ®8 solution, higher values of a produce NSTRs with smaller masses and
radii, while the p, = G)} solution yields larger masses and radii. This evidences the existence of massive NSTRs
within the modified gravity theory f(7).
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I. INTRODUCTION

The construction of gravitational modifications, spe-
cifically extended theories of gravity, is motivated by
both theoretical and observational factors. These modific-
ations aim to include general relativity (GR) as a special
case, but generally have a more intricate and expansive
structure [1]. One motivation is rooted in the non-renor-
malizability of GR. It is expected that by exploring more
intricate extensions of GR, the issue of renormalizability
could potentially be addressed and improved [2, 3]. An-
other motivation stems from the observed properties of
the Universe, particularly the need to account for its two
accelerated phases: one occurring during early times,
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known as inflation, and another during late times, re-
ferred to as the dark energy era. In constructing gravita-
tional modifications, the conventional approach involves
starting with the Einstein-Hilbert action and then extend-
ing it through various methods [4]. However, an alternat-
ive approach is to begin with the torsional formulation of
gravity, specifically the Teleparallel Equivalent of GR
(TEGR) [5, 6], and introduce modifications accordingly.
This leads to theories such as f(7) gravity [7-9],
f(T,Tg) gravity [10], f(7,B) gravity [11, 12], and scal-
ar-torsion theories [13—15]. By contrast, if we extend the
gravitational action by introducing terms of the form f(R)
or f(7), where f is a non-linear function, the resulting
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theories of gravity based on curvature or torsion exhibit
substantial disparities. These theories are all inspired by
the fundamental nature and principles of the gravitational
field (see Refs. [12, 16, 17] for detailed reviews).

The extensively studied f(R) gravity, which relies on
curvature, has been the subject of thorough examination
in the previous decades [18]. One of the standout fea-
tures of f(R)gravity is that its equations of motion in-
volve fourth-order derivatives of the metric, which makes
it fundamentally different from the second-order equa-
tions of GR. This difference is not simply mathematic-
al—it leads to modified versions of the Friedmann equa-
tions that can explain the accelerated expansion of the
universe without introducing dark energy [19]. When it
comes to how theory is developed, researchers follow dif-
ferent paths. The most common is the metric formalism,
where the equations are derived by varying the action
with respect to the metric alone [18]. Another approach is
the metric-affine formalism (also known as the Palatini
formalism), where both the metric and connection are
treated as separate variables [20]. There is also a more
flexible hybrid formalism [21, 22], which blends ideas
from both methods to create a broader framework for un-
derstanding how gravity might work beyond Einstein’s
theory. An extension of f(R) gravity is f(R,7) gravity,
where the Lagrangian depends on both the Ricci scalar R
and the trace of the EMT 7 [23]. The 7T-dependence may
stem from quantum effects or models of interacting dark
energy [24]. This coupling leads to non-conservation of
the EMT and introduces an extra force, causing test
particles to deviate from geodesic motion. For further in-
formation on its applications, see Ref. [25]. In cosmo-
logy, f(R,7) gravity has been applied to the reconstruc-
tion of various models [26], including those based on
holographic dark energy [27], and to describe both mat-
ter-dominated and accelerated phases [28]. Prior studies
have also addressed scalar perturbations [29], dynamical
systems [30, 31], and higher-dimensional scenarios such
as 5D models and thick brane solutions [32, 33]. A not-
able generalization involves including the contraction
R,,7*", which reduces to f(R) gravity when 7 =0 [34,
35]. Astrophysically, f(R,7") gravity and others have
been explored in the context of dark matter [36] and com-
pact objects [37—48].

In sharp contrast to f(R) gravity, the equations of mo-
tion in the torsion-based f(7) theory consist solely of the
standard second-order derivatives of the tetrad fields,
without the presence of higher-order derivatives. The
properties of the f(77) theory have been extensively ex-
plored in the cosmological domain, as evidenced in nu-
merous studies; see, e.g., Refs. [9, 49—55]. Constraints on
the theory have also been derived by analyzing the mo-
tion of planets in the Solar System, as indicated by relev-
ant studies; see, e.g., Refs. [56, 57]. However, investiga-
tions concerning static spherical symmetry, particularly in

relation to stellar structure, are comparatively less abund-
ant [58, 59]. The intrinsic characteristics of the theory of
f(7) have been thoroughly examined, as documented in
Refs. [60, 61]. Notably, an important challenge encoun-
tered in the early formulations of the theory is the ab-
sence of Lorentz invariance. This implies that the equa-
tions of motion generally do not exhibit invariance when
different metric-compatible tetrad choices are made. This
topic has been extensively discussed in the literature; see,
e.g., Refs. [62, 63]. Considerable efforts have been made
in recent years to address and understand this problem.
Several promising advances have been achieved through
various approaches, including the Hamiltonian formal-
ism [64], null tetrad approach [65], Lagrange multiplier
formulation [66, 67], and covariant formulation [14, 68].
These approaches have provided valuable insights and
solutions to resolve the issue of Lorentz invariance in the
f(T) theory.

In the theory of GR, the study of non rotating stars is
facilitated by employing static spherical symmetry and
solving the well-known Tolman-Oppenheimer-Volkoff
(TOV) equations. These equations provide the frame-
work for constructing models of such stars. To fully char-
acterize a star model, a matter model is also required, of-
ten assuming a perfect fluid subject to an equation of
state (EOS). The energy density and pressure of the fluid
can occupy the entire space. However, if they vanish
strictly outside a finite spherical radius, the models rep-
resent compact stars enveloped by a vacuum. The phe-
nomenology of these solutions is well understood within
the framework of GR, offering a comprehensive under-
standing of their properties and behavior. The most not-
able achievements encompass the establishment of exist-
ence proofs for solutions involving certain classes of
EOSs [69, 70], the derivation of upper bounds on the ra-
tio of stellar mass to surface radius, which serves as an
indicator of the compactness of compact objects [71, 72],
and the exploration of the relationship between the curves
describing the ratio of stellar mass to surface radius and
the dynamical stability of the models [73].

To consider f(7°) gravity as a more realistic frame-
work for modeling stars, despite the success of f(R) grav-
ity in explaining inflation and dark energy, a compelling
motivation arises from the unique features and implica-
tions of f(7") gravity, specifically concerning compact
objects. By incorporating torsion, which is a geometric
quantity associated with the intrinsic angular momentum
of matter, f(7") gravity introduces additional effects and
interactions that allow for a more accurate representation
of highly dense and strongly gravitating objects such as
stars. This inclusion of torsion enables f(77) gravity to
capture the intricate dynamics and behavior of stars with
greater precision than f(R) gravity. Consequently, the
modified field equations of f(7") gravity may yield dis-
tinct predictions regarding the structure, stability, and
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mass-radius relation of stars. Focusing on f(7) gravity
facilitates the exploration of torsion-related effects that
play a significant role in the behavior of stars, thereby of-
fering a more comprehensive and realistic description.
Moreover, the suitability of f(7) gravity in the modeling
of stars is further reinforced by its consistency with relev-
ant observational data, theoretical coherence, mathemat-
ical simplicity, and foundational aspects. These factors
strengthen the argument for adopting f(7) gravity as an
effective tool for understanding the properties and beha-
vior of compact stellar objects. Notably, modified theor-
ies of gravity that incorporate torsion have been investig-
ated in various applications. The study of relativistic stars
was initially conducted in [58], while compact stars with-
in a specific f(77) model for an isotropic fluid with a
polytropic EOS were studied in [74]. Subsequently, the
authors extended their analysis to boson stars [75]. These
studies exemplify the wide range of applications and the
potential of f(7")gravity for explaining the properties and
behavior of compact stellar objects. Building upon these
motivations, in this paper we present a groundbreaking
contribution based on the introduction of a novel exact
solution for an anisotropic spherical model within the
framework of f(7") gravity. To accomplish this, we ex-
ploit the well-known methodology of gravitational de-
coupling (GD) via the minimal geometric deformation
(MGD) approach. This approach, combined with the use
of a polytropic fluid source, allows accurately capturing
the intricate dynamics of the system. Additionally, we
employ a well-behaved ansatz known as the Buchdahl
metric ansatz for the radial component of the metric func-
tion. By incorporating these established techniques, we
derive a comprehensive and robust solution that signific-
antly enhances our understanding of the behavior and
properties of the system in the context of f(7") gravity.

Recent investigations have incorporated the concept
of GD into the Einstein-Gauss-Bonnet (EGB) framework.
Similarly to its role in the standard 4D classical gravity
theory, GD facilitates the anisotropization of seed solu-
tions, thus providing a mechanism to study the effects of
anisotropic stresses in compact objects. The MGD meth-
od [76] was employed to model a compact star in 5D
EGB gravity [77]. This approach demonstrated that the
combined effects of the decoupling parameter and EGB
constant result in higher neutron star masses. Building on
this, the extended MGD methodology [78] was applied to
derive an exact solution for a compact star within the 5D
EGB gravity framework [79]. Extensive research has
been conducted on modeling compact objects, such as
NSTRs and strange stars, using MGD and complete geo-
metric deformation (CGD). For a comprehensive over-
view of the applications of GD in astrophysics, the read-
ers are referred to Refs. [80—84] and the studies cited
within them. In particular, some pioneering studies on
GD are also highlighted in Refs. [85—89].

The paper is organized as follows. It begins with a
concise overview of the mathematical framework of f(77)
gravity with an additional source in Section II. Section III
addresses the minimally gravitationally decoupled solu-
tion in f(7)gravity. The expressions for the model para-
meter, derived from the smooth matching conditions at
the stellar surface, are discussed in Section IV. Section V
presents the deformed strange star models and their relev-
ance to astrophysics. The mass-radius relation for minim-
ally deformed strange star models and their astrophysical
relevance are explored in Section VI. The stability of our
constructed deformed strange star model is discussed in
Section VII via the adiabatic index and HZN stability cri-
terion. The measurement of the mass of a deformed an-
isotropic strange star via various planes is analyzed in
Section VIII. The paper concludes with final remarks
presented in Section IX.

II. MATHEMATICAL FRAMEWORK OF f(7)
GRAVITY WITH ADDITIONAL SOURCE

The fundamental assumptions associated with f(7")
gravity are discussed in this section. A vierbein field
ei(x*), i=0,1,2,3, which serves as an orthonormal basis
for the tangent space at every point x* within the mani-
fold, is used as the dynamical object in teleparallelism.
Every vector e; can be characterized in a coordinate basis
by its components ¢/, i.e., ¢; =¢/d,, where u=0,1,2,3.
We assume a particular convention and terminology: the
Greek indices represent the coordinates of the space-time
manifold, while the Latin indices indicate the compon-
ents of the tangent space corresponding to the manifold
(space-time). For any given space-time metric, we ex-
press the line element as ds* = g, dx*dx"=n;;e}ejdx*dx”,
where 7;;=(-1,+1,+1,+1) is known as the Minkowski
metric. Unlike GR, which employs the Levi-Civita con-
nection without torsion, teleparallelism uses the Weit-
zenbock connection *,, = e4d,¢’, [90], which possesses
a curvature-less torsion-based geometry. The torsion
tensor can be defined as

‘T/LV = ?ﬂm _ ?Lv =e) ((9ﬂef‘y - [)\,eﬁ) . (1)

GR is a metric theory of gravity and is torsion-free; that
is, 7%, =0. A common convention is to denote U, as a
four-dimensional space-time manifold equipped with
both metric and torsion. Manifolds possessing a metric
but lacking torsion are denoted as V, [91]. In many calcu-
lations, torsion often emerges in linear combinations, as
seen in the contortion tensor, defined as

1
Koy = =3 (T =T =T, 7). @
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We also introduce the skew-symmetric tensor S, * ,
which has the form

S, =

P

(Kw + 0n T — 6, 7). 3)

N =

The teleparallel Lagrangian, which serves as the tor-
sion scalar, can be formulated using these quantities as
[92]

T =877,

1
=2 (TP Ty + 2T T, = AT, T). (4)

In this framework, the torsion tensor 7, encapsu-
lates all the information of the gravitational field, similar
to how Riemann curvature tensor gives rise to the
curvature scalar R in GR. Consequently, the torsion scal-
ar 7 emerges from the torsion tensor in a parallel man-
ner. In TEGR, the action is expressed as 7. However, the
concept behind f(7) gravity is to extend 7 into a func-
tion f(7). This mirrors the approach followed in GR,
where the Ricci scalar R in the Einstein-Hilbert action is
generalized into a function f(R) that defines f(R) grav-
ity. The E-H action can be expressed as

A= [ VFElies M tur Llax )

where we have considered G =c¢ =1 in the geometrized
units and g =det(g,,). Lm denotes the Lagrangian dens-
ity governing matter fields, linked to the energy mo-
mentum tensor (EMT) T,,, while £, represents the Lag-
rangian density pertaining to the novel gravitational sec-
tor, often termed the "® gravitational sector" ®,,. This
additional gravitational contribution consistently facilit-
ates adjustments to matter fields within the f(7°) gravity,
and it can be integrated as part of the effective EMT
ijf =T, +a0,. Here, a denotes the coupling constant
that characterizes the interaction between the matter
fields and the gravitational sector ®. By varying the ac-
tion expressed by Eq. (5) with respect to the vierbein, we
obtain the equation of motion as

S LT frr +e 0u(eesS [ fr — e T8 " fr

1, 1y eff
+ZeAf(’7')=47reﬁ{Tp ja 6)
v eff v v 6f az‘f
Here, {Tp } =T, +®p,f7—=ﬁ,andf7'¢=377.2.

The equations of motion within f(7")-gravity can be
reformulated using the covariant derivative formalism as

T f .
Gonlr + 8y ViT frr+ 5 (= Igw =1 Ty ()

In this context, the Einstein tensor, denoted by G,,,
enables the reformulation of Eq. (7) within the frame-
work of GR and field equations associated with f(7)
gravity as

L

Gy =
! 167Tf7’

(TF+ T, (8)

where 771 represents a tensor incorporating adjustments
arising from the torsion scalar, which is expressed as

1
T = 4S8, Vifrr + Rfr =S, Vifrr +T)gy). (9)

Now, the effective EMT in an anisotropic fluid distri-
bution can be characterized as

v eff e e e o e
{Tp } = (p ff+p[ff)rLlV(Llp_p/ff§€+(prff_psz)(vv(vp-
(10)

In this context, p°T represents the effective energy
density, p°T denotes the fluid pressure along the radial
direction relative to the four-velocity vector of time like
U, (referred to as radial pressure), and p°" signifies the
orthogonal pressure to U” (known as tangential pre-
ssure). U, represents the four-velocity vector in the time-
like direction, while <V, indicates the unit space-like vec-
tor aligned with the radial coordinate direction. There-
fore, we characterize dense matter using an anisotropic
fluid, with the components of effective EMT given by
(—p, ™, e, ). The effective components in the
EMT can be expressed as

it =p,—a®], pf=p-a6;. (1)

o = p+a®,
Regarding the effective term, the appropriate anisotropy
factor is

A = g T = (p,— p) + (O = O2) = Ar +ahe. (12)

It is notable that within the current anisotropic compact
stellar system, there exist two distinct forms of anisotrop-
ies: T,, and ©,,.Furthermore, another form of aniso-
tropy, Ag, becomes relevant owing to GD, which plays a
distinct role in transformation processes. Let us emphas-
ize the interior of a spherically symmetric static fluid dis-
tribution, where the line element specifies the space-time
as
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dS? = =47 + eBVdr? + (A6 + sin’0de?). (13)
This expression yields the distance formula dS?=
gijdx'dx/, where x' = (1,r,0, ) represents the components
of four-dimensional space-time, and A(r) and B(r) de-
note the static metric potentials along the time and radial
coordinates, respectively. The expression for the torsion
scalar and its derivative, expressed in terms of the radial
coordinate, r, is given by

T(r)= g {ﬂ' + H , (14)

T'(r) = _8{5“"—%‘@‘/ l)(g+%)} (>

For the metric expressed by Eq. (44), the tetrad mat-
rix could be written as

el = (e%,eg,r,rsine). (16)

Substituting the aforementioned tetrad field (Eq. (16))
and incorporating the torsion scalar along with its derivat-
ive into Eq. (6), it is possible to explicitly calculate the
equations of motion for an anisotropic fluid in f(7°) grav-
ity as follows:

St = P e 1
pT= 2| {BO+AM}-T®|, (A7)

1
5" =L+ i [70)- 5], (18)

X (ﬂ’(r) —B’(r)) H .
(19)

The field equations discussed above (Egs. (17)—(19))
directly yield the equivalent field equations in GR when
considering f(7°) =7 . However, in the context of f(7")
gravity, an additional non-diagonal quantity emerges as
follows:

cot G)

5T frr =0. (20)
From Eq. (20), we obtaln.

eCasel: 7/=0 =7 =constant=7 , i.e., 7 is inde-
pendent of » and hence 7, fr+ remains constant.

* Case II: fr+ =0, which produces f'as a linear func-
tion of two model parameters ¢, and ¢,; that is, f(7) =
{17~+{2.

The linear functional mentioned above has been suc-
cessfully employed in various scenarios within f(7")
gravity. Our objective is to address the solution of the
f(T) gravity field given by Eqgs. (17)—(19) in the func-
tional form f(7)=7 +4. To achieve this goal, we
leverage the well-known methodology known as GD via
the MGD approach, employing a polytropic fluid source.

Inserting Eq. (14) and the form of f(7 )into Egs.
(17)—(19), we obtain the equations of motion:

-B(r)

Ampt = 647 [-20+€2000 + L) + 208 ()], @)
-8B(r)

drpett = [2{ e®Q2L + L) +24 rﬂ’(r)] ) (22)

 aB0)
4npi® = S [~ QA + DB ()= A1)

+ 24P A (r) = 26re™” | (23)

We can derive the conservation equation by requiring
the effective stress-energy tensor to exhibit continuity,
i.e., the divergence of the effective stress-energy tensor

equals zero (Vi 77 = 0) , which yields

' (S dpr 2 (S eff

=5 (P ===+ (- ) =0, 24)
dp,
(f—*(p pr+= ( -pr)
el A

+ad—r1— 5 01(@8—@})—;0/(@%—@}):0.

(25)

It is important to note that Eq. (24) corresponds to the
familiar Tolman-Oppenheimer-Volkoff (TOV) equation
governing the decoupling system [93—-95]. The TOV
equations, derived from gravitational theory, serve to
model the structure of spherically symmetrical objects
that are in hydrostatic equilibrium. We observe that the
perfect-fluid equations for f(7") gravity are formally re-
gained as @ — 0. Thus, we leverage the GD under the
MGD technique concerning the proposed compact star
model to obtain the solution for the system of equations
given by Egs. (21)—(23). Through this approach, the sys-
tem will transform such that the equations of motion
linked with the source ® will converge into an effective
"quasi- f(7°) system." Let us implement the geometric de-

1051010-5



Sneha Pradhan, S. K. Maurya, A. Errehymy ef al.

Chin. Phys. C 49, 1051010 (2025)

formation undergone by the perfect fluid geometry as fol-
lows:

A(r) — G(r) +aD(r), (26)

B(r) — —log[H(r) + ay(r)]. 27

Here, @ and y(r) represent the geometric distortions ex-
perienced by the temporal and radial metric components,
respectively. Among all the options outlined in Eqgs. (26)
and (27), there exists a particular one, known as MGD,
for which ®(r) — 0; thus, the metric expressed by Egs.
(26) and (27) is minimally deformed:

Alr) = G(r), (28)

B(r) = —log[H(r) + ay(r)]. (29)

It is important to emphasize that the expression in Eq.
(29) is a linear combination of the inverse radial metric
component g;; in terms of a pure ideal fluid sector along
with a contribution from the source ©,,. Let us now in-
sert the components of Egs. (28) and (29) into the field
described by Egs. (21)—(23). As a result, the system is di-
vided into two sets:

* Normal field equations for a perfect fluid (@ = 0) in
gravity f(7°), where the components of the systems are

{p.prpiG(r),H(r)}:

1
P = 55 [20 =200 H () + HN) + Lor’ ] (30)
Pr= S [~ 2 HOOG () + D)+ 2 +6r°) (31)
1
Pi= 55— |2rH(NG (1) +4(rG' () +2)

x (H(r)G'(r)+ H'(r) =241 (32)

* Another set of equations corresponding to the source
®,, that has the components {p, p,, p,, G(r), y(r)}:

0= -

lrz [(W(r) + wm)] , (33)

1 4
0, = Snr

[lﬁ(r)(rG () + 1)} (34)

e
32nr

X (NG () +y' ()] (35)

Under such circumstances, if we consider that there ex-
ists no transfer of energy-momentum between the perfect
fluid (7,,) and source ©,,, their interaction is solely grav-
itational, and Eq. (25) explicitly yields

0= 2rp(NG" (1) + (G (1) +2)

Ldp, A

2
i (pr+p)—;(pr—p,) =0, (36)

el A

—dr——(@)‘) o)) - ( 5-01) =0. (37

These are referred to as the improved TOV equations
for pure f(7°) gravity and the @ gravitational sector res-
ulting from V,7*" =0. and V,0" =0, respectively. Sev-
eral notable characteristics are related to the system de-
scribed by Egs. (33)—(35). The primary similarity be-
tween this system and conventional spherically symmet-
ric field equations in f(7") gravity for an anisotropic sys-
tem characterized by an EMT ©,,, {p=0{,p,=0],
p: =03}, and its conservation equation is that they exhib-
it significant similarity. Furthermore, the active gravita-
tional mass function for two systems may be expressed as

My(r) = / r47r7'2p(7’) dr;
0

Mo(r) = / g @27 dF. (38)
0

In the framework of f(7") gravity, the pertinent mass
functions for the sources 7,, and ©,, are denoted as
Mg(r) and Me(r), respectively. Subsequently, within the
context of minimally deformed spacetime, the interior
mass function can be represented as

L

M) = Mr(r) = ==y (). (39)

III. MINIMALLY GRAVITATIONALLY DE-
COUPLED SOLUTION IN £(7) GRAVITY

In this section, we examine the two sets of Egs.
(21)—(23) and (33)—(35) concerning the sources T, and
®,,. The EMT T, indicates an anisotropic distribution of
fluid matter; hence, ©,, might enhance the overall aniso-
tropy within the system, thereby facilitating the repulsion
against gravitational collapse. Furthermore, an analysis of
the second set of equations reveals that the resolution of
the ® sector is contingent upon the solution of the first
system of equations. Therefore, it is advisable to resolve
the original system first. The field equations expressed by
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Egs. (21)—(23) are significantly non-linear, comprising
three equations and five unknowns {p, p,, p,.G(r),H(r)}.
To ascertain precise answers, one may separately choose
any two of these variables. A method for obtaining pre-
cise solutions involves selecting one metric potential and
imposing an additional assumption (such as a particular
equation of state or embedding condition) to determine
another metric potential. In the present study, we ex-
amined the quadratic polytropic EOS defined as

pr=yp B p+x . (40)

Here, y, f, and y represent constant parameters possess-
ing appropriate dimensions, while » indicates the poly-
tropic index. It should be noted that the polytropic EOS
(Eq. (40)) can represent the EOS of the MIT bag when
specific parameters are assigned, such as y=0, 8=1/4,
and y =-48,/3, where B, represents a constant in the
bag [96]. Thus, the parameter y plays a significant role in
revealing the nature of the contribution within the MIT
bag model. Owing to the high non-linearity emerging
when it comes to finding an exact solution, we con-
sidered a polytropic index n = 1. Under this choice, the
EOS (Eq. (40)) becomes quadratic, and the quadratic
term yp? represents the neutron liquid in a Bose-Einstein
condensate form. Meanwhile, the linear terms, that is,
Bo+yx, come from the free-quark model inherent to the
popular MIT bag model for g§=1/4, and y =-48,/3.
Consequently, these NSTRs are likely characterized as
"hybrid stars."

Substituting the expression of density and radial pres-
sure from Egs. (21)—(22) into the EOS (Eq. (40)), we ob-
tain

AL P H(r)(rG (r)+ 1) + 484, r* (rH' (r) + H(r))
=% = 24(rH' (r) + H(P) + (or?)* = 285"
—2§2r4—4r4)(—4/3{1r2—4§1r2 =0. (41)

G(n) =

1 1
4A7, {23(1 +BP)y
log(—A — Br?)
2BA-1)

B+ 1) +4B*y; +8BL(2B+ 2yl + 1)+ v +4x) —4ABL(3B+ 6Byl + 3yl + 1) + 3632y§$} +

X {A4(2(ﬁ+ D& +y8 +4x) =247 2B+ D)o +2BL(B+yo + D +y4 +4y) +A%(2
1
A1

There are two unknowns in Eq. (41), namely G(r) and
H(r) , which correspond to g, and g,, components, re-
spectively. Consequently, there are two approaches to ob-
tain the exact solution, either by considering a suitable
metric potential along the temporal components or a radi-
al direction.

In the present study, we considered a well-known an-
satz Buchdahl metric for H(r) [97]:

A+ Br?

L Py 42
Al+Br)y - °4° (42)

H(r)

where 4 is dimensionless and B is a parameter without di-
mension of the metric function km™. The metric func-
tion and its radial derivative exhibit a non-singularity at
the center of the stellar structure, fulfilling the necessary
conditions:

HO)=1;  8,H(F),_=0. (43)

The most interesting characteristic of the Buchdahl
solution is that the inner Schwarzschild solution may be
retrieved for A =0; however, for A =1, the hypersur-
faces {t=constant} are flat. Moreover, assuming C =
—A/R? allows for the retrieval of the Vaidya and Tikekar
[98] solution, and for A = -2, one obtains the Durgapal
and Bannerji [99] solution. Numerous authors [100,
101-102] later demonstrated that it constituted a feasible
physical solution and illustrated its applicability in classi-
fying some previously established exact solutions.

For the known H(r) , we have a first-order non-linear
differential equation in G(r) (Eq. (41)) for which we can
obtain the solution for another metric potential G(r) as

{A%Br + 1) (L2B+y6+2)+4) - 8(A - DBy - 16(A- 2By} (Br + 1)}

1

{24110(Br? + 1) (A%(2B+ By{i +24) ~ 2A(B+Y(3BL + &) +9By() ) }} +G. (44)
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Here, G represents an arbitrary constant of integration.
By employing the expressions for G(r) and H(r), we de-
rive the expressions for p, p,, and p; as follows:

Pr= a1+ By

+A® ((23(3 +Br)( +(1+ Brr)'5)(2(1+ BrrY’B+2B3+ Bri)yyl + (1 + Br)Y vy ) +4(1 + Br2)4x)} :

_1{ A + Br?
Pr=g A2 A - 1)1+ By

+AQR(=1+A)B+(A=6)Byli +2(=1+A)y()) + AXA = D(1+ Br*)* X (L2 +28+75) +4x) + Pn(r)} ;

where

(A= 1)BZ,(Br? +3) g

{432(3 +Br)y{; —4AB3 + BrA); ((1+ Br*)’B+2B3+ Brr )yl + (1 + Br)yd)

F1(r) = <A2(§2(2ﬁ +yH+ 2+ B A + QU+ L)y + P QB+ YL +2) +4B (LB + ¥ +2)
+4x)+ 0 (5B+5yL + 1) + 6y ) + 2B (18y L] +3r (LB + vl +2) +4x) + 2077 (1B + Tyl — 1)
+4B( (3B +3yL — D)+ (LB + vl +2) +4x)) +4x) +4ABL (= (BrP + 1°(3B+(B+ 1)Br — 1)

—2By(i(Br’ +3)* = {yLo(Br* +3)(Br’ + 1)’ })) + 4B>y({ (B + 3)2) )

Egs. (45)—(46) provide the full spacetime geometry
for the initial solution. However, to address the © sector,
it is necessary to determine the solution for the second set
of Egs. (33)—(35). To solve this set of equations, we pro-
pose the application of well-established techniques, spe-
cifically (i) mimicking the density constraint, where
p =0), and (ii) mimicking the radial pressure constraint,
where p,=@!. These techniques are physically motiv-
ated and thoroughly elaborated in Ref. [76]. Furthermore,
there are a few other well-known recent techniques to
solve the second set of equations, such as mimicking the
seed density with the dark matter density profile, mimick-
ing the mass functions of the seed system and new
source, or imposing a linear equation of state between 6-
sectors. In this study, we propose the use of p =09 and
pr = O} to solve the 6-sector.

A. Mimicking the density constraints (o = GF)
To address the solution of the ®@-sector, we replicate

A(Br2 + 1) 2’ “45)
(46)
{ —16(A—1)B*(3 =24+ BrA(TA = 9) +3(=2+ A)B>r*)yl? —4B(~1 + Br*)(1 + Br**¢, (9By¢,
(47)
(48)

the seed density to @); i.e., p=0). From Egs. (21) and
(33), we obtain an ordinary differential equation in the
deformation function y(r) as

dy(r)  ¥(r) 1 ,
ar + - = 7{1 [2§l{rH (rn+H(r)— 1} —rzgz].

(49)

By using the known metric function H(r) from Eq. (42),
we can solve the above first order and first degree differ-
ential equation to obtain the deformation function as

_P(6(A=DBGL+ABLP +AG) | C (50)
2A%(3Br? +3) r’

Y(r) =

where C; is the integrating constant, which is set to be
zero to obtain a non-singular solution.

Using this deformation function (Eq. (50)), we can
obtain the solution of the ® sector from Eqgs. (34)—(35) as

0] = [4ABr2(1 +Br?) L +4(=1+ A B3+ Bri) ylt + 4(=1+ A)ABr* (1 + Br*)* £, (1 + 38+ 3y,

+Br*(1+B+yL) A (1 + Br))) {44 + 17 (B + 1) (L2 +vL +2) +4X)}] X

6(A - I)Bgl +AB§2}’2 +A§2
24724, (Brr+1)" (A+ Br2)

(S
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- 1 67;’2 ) ) _ _64(A -Dr*y(iB? _96(A - Dry(iB?
= 88 BL L) {AZ (Bor +£)(ABLr +6(A-DBG, +A§2){ (Br+1) B+ 1)

I6A-200B 16— 1y3B  (A-D :

A e I = e [P G OBy + AQUA = DB+ (A= 6)BYG + 24~ DY) B

A-1)"!
+ E B +)1) [4019ByG +AQA— DB+ (A-6)By{) +2(A - 1)y5)B] + @W)} . (52)

B. Mimicking the pressure constraints (p, = ©})

In this technique, we mimick the radial pressure p, as ®!; i.e.,p, = ©!. Therefore, from Egs. (22), (34), and (44), we
obtain the deformation function as

1
~A2(1+Br)
X {y(A+Br*)(2(A = 1)Bir(Br* +3) + Al r(Br* + 1)) 2} . (53)

Y(r) =

Tl(r) 2BAT'FP(Br* + 1)(A + Br*) (2B (1 - A)Y(Br* +3) = AL (Br* + 1))
3

where

Fo(r) = 447 (A= 1By (Br2 +3)° + 44, (B +1) (AB (38 + B (B+yL + 1)
+3y0 +2) +A—Br? (Brr +3)(B+v4)) + Ar (B + 1)4(42(2/3 +y5 +2) +4y). (54)

Using this deformation function (Eq. (53)), we can determine the other solution of ® components as ®) and @3 :

Q) = wi [40(Br + 12 { = 24721+ B (A= DB (Br + 5)(A + Br?) (A(B(Br* + 1) + 2By(y(Br* +3) + ya(Br* + 1)?)
11

- 2Byl i(Br* + 3)) {L +401(Br’ + ) (ABP*(3B+ Brr(B+yL + 1)+ 3yL +2) + A= Br(Br* + 3)(B+ 7)) + Ono(1)],
(35)

41
= 474;1 L// {8341 P (B2 +1)° (A+Br) (=N - Ny —)(1 + Br*)™* (- 16(A - 2) B

33

c5

yir* (Brr +1) =24B*y( x (A— ) —=2B(A-1)"' (Br’ + r)z(A(2(A —1B+(A-6)By; +2
(A=1)yH)+9Byl) +(A-1)7" x (B + 1)3(A(2(A —1DB+(A—6)By +2(A—1)ys,) +9B

AHA-1)!
YO +4A-2)ByL (B +1) +4(A- DBy x (B +1) ) + ﬁ (LQB+yL+2)

+4BL(B+Yo+ 1) +3BrA(GLQ2B+y0 +2) +4x) +4x) =AY (LQRB+yH +2) + B (4y4]
— (F(GQB+YL+2) +4x)) +40 P (B+yL +1)) +4B(L1 (4B + 4yl +2) + (LB +v4
+2)+4y)) +4x) + A’B(44 (3B+2Br 2B+ 2yl + ) +3yLH + 1) — (P (Brr = 1)(L(2B

+y5 +2)+4y)) +4By ] (Brf +6)) —4AB’( (P (3B + 6By i + 3yl + 1) +9y¢1) +36B v} rz} + @22(}')} ) (56)

For this long equation, we provide detailed expres-

) in the Appendix.
sions of P (r), O@xn(r), Y11, L, Ow(r), Y33, N, and O (r)
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IV. MATCHING CONDITION: EXTERIOR
SPACE-TIME

An essential phenomenon in the study of stellar distri-
butions involves the continuity conditions at the surface
of the star (at r = Rs) between the interior (where r < Ry)
and exterior (where r> Ry) regions of space-time geo-
metries. According to the analysis conducted in Ref. [58],
when considering the off-diagonal component as presen-
ted in Eq. (20), the viable solutions within the framework
of f(7°) gravity are confined to two scenarios, 7' =0,
Jfr= =0, which have been discussed in the previous sec-
tion. The authors examined the constrained scenario
where fr+=0 or 7’ =0, applying it to spherically sym-
metric static distributions with a diagonal tetrad as back-
ground formalism. Birkhoff's theorem states that within a
spherically symmetric vacuum, the Schwarzschild metric
represents the most general solution according to the Ein-
stein field equations. The Schwarzschild metric describes
the gravitational field surrounding a spherical mass, as-
suming that the mass has zero electric charge, zero angu-
lar momentum, and that there is no universal cosmologic-
al constant. Next, we briefly explain how an outer space-
time metric for f(7") gravity could be determined. For the
vacuum case, the EMT T7,,=0 ; in that case, p=0,
p,=0,p,=0. The first system of field equations (Egs.
(21), (22), and (23)) turns out to be

A +B =0, (57)
s :

4“1 ﬁ_fr, (58)
¢ a A 1

S he &{ (Gt -8))} =o. (59)

By integrating w.r.t » from Eq. (57), we obtain the
form of the metric potential as

A(r) = =B(r) + by. (60)

For the Schwarzschild solution, A(V), B(V) - as
r — oo, which represents the flat space-time, and con-
stants b, must be zero. For the anti De-Sitter space- tlme

2
2
metric (AdS,), " = 1+* and e®” =1/4/1+—.
a

2

1 r? r

Eln(l+;) and B(V)Z—EIH(I'FE),
r r

which imply that ﬂ(r)=ln(;) and B(r)z—ln(;) as

r — co; that is, in this limit, A(r) + B(r) = 0, which yields
constant =0 and a similar result to the previous case as
A(r) = =B(r). Using Eqgs. (57) and (58), we obtain

Therefore, A(r) =

L2 2P0,
tth (A0 +-). (1)
r (2 d _g8
1= — (r) ,
-2 dr<re )
e B 1y L const.,
651 r
2
{2 const. \ -1
rr = 62
— = (145 T, ) (62)

In the limit of small » values, the Newtonian approx-
imation yields a constant value equal to 2M, where M
represents the active gravitational mass. Furthermore,
note that the above space-time solution will represent the
Schwarzschild anti-De-Sitter solution if we consider the

cosmological constant A = —% and const.= -2M :
B 2M AP
8n = (grr) =1- T - T (63)

According to the preceding discussion, we set the
Schwarzschild anti-de Sitter (SAdS,) metric within the
framework of f(7°) gravity for describing the outer re-
gion of space-time as

dsi= -

+ r2(d6? +sin*6d¢?). (64)

Moreover, the following line element provides the in-
terior metric encompassing the geometric distortion as

dS? = —eCOd + [H(r) + ay(r)] 7 dr? + r2(d6* + sin*6d¢?).
(65)

According to the Israel-Darmois condition [103—104],
to ensure a stable configuration, it is necessary to sm-
oothly connect the inner manifold dS? (65) with the out-
er manifold dS2 (Eq. (64)) at the boundary X. This en-
tails employing a well-established continuity equation,
which ultimately determines the first and second funda-
mental forms across the surface £ by integrating both
geometries at this boundary. Regarding the first funda-
mental form, the representation of the inner geometry
through the metric tensor g,,, derived from dS? and dS?
on the interface, can be described as

g;‘"”:RE = gtﬂr:Rz ’ (66)

8rlr=rs = &1l%s - (67)
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Taking into account Eqs. (64) and (65), it takes an expli-
cit form as

2M ARE
H(Rs)+a y(Rs) = ( TR 32),

(68)

M AR

GRs) — (1
© ( R 3

). (69)

Alternatively, the second fundamental form assumes
the following expression:

P(nls = [p(r) —a®)(n)]; =0. (70)

To compute the numerical values of the constants, we
used Egs. (68), (69), and (70) to determine the unspe-
cified parameters, including the constant G, mass (M),
and polytropic constant y.

V. DEFORMED STRANGE STAR MODELS AND
THEIR RELEVANCE TO ASTROPHYSICS

In this section, our focus will be on examining the
physical viability of our deformed strange star models
and their significance in the context of astrophysics. Spe-
cifically, we analyze the behaviors of various thermody-
namic variables, including effective energy density, ef-
fective radial and effective tangential stresses, and effect-
ive anisotropic parameter. By carefully analyzing these
aspects, we aim to assess the relevance of these models in
explaining astrophysical phenomena for both solutions:
II A [®)=p] and IIT B [®! = p,]. The effective energy
density exhibits a consistent decreasing trend as a func-
tion of the radial coordinate, reaching its maximum value
at the center of the self-gravitating object. This observa-
tion is demonstrated in Figs. 1 and 5. Notably, both fig-
ures show that the effective energy density remains regu-

0.030
0.025
0.020

0.015

lar at every interior point of the configuration for all three
scenarios: GR (@=0.0, ¢ =10, & =00 [km™])-left
panel, f(7) (¢=00, =08, & =2x10"° [km™])-
middle panel, and f(7)+MGD (=02, { =08,
£ =2%10"° [km°])-right panel. The primary distinction
between Figs. 1 and 5 lies in the varying magnitudes of
the three scenarios, despite having the same fixed para-
meters. We observe that in the scenario of GR, a higher
core effective density is present with ¢;. However, in the
scenario of f(77), a decrease in the magnitude of ¢; and
the presence of ¢, lead to a lower core effective density.
Conversely, in the f(7°)+MGD scenario, the inclusion of
o enhances the effective density in the central regions of
the star, resulting in a concentration of matter in central,
concentric shells. However, as one moves away from the
center towards the surface layers of the star, variations in
a, {1, and £, have no noticeable impact on the stellar ef-
fective density. In Figs. 2 and 3 along with 6, and 7, we
present the distribution of effective radial and tangential
pressures with respect to the radial coordinates. These
figures allow us to analyze the variations in effective ra-
dial and tangential pressures among the three aforemen-
tioned scenarios. In solution III A (Figs. 2 and 3), where
the initial condition is ®) = p, we can clearly see that the
effective radial and tangential pressures in the central re-
gion are higher compared to the f(7") scenario. Further-
more, when the f(7)+MGDscenario is considered, in-
corporating MGD leads to even lower effective radial and
tangential pressures. This observation strongly suggests
that the presence of MGD has a confining and compact-
ing effect on the fluid particles, particularly in the central
regions of the star. In solution III B (Figs. 6 and 7), where
the initial condition is ®] = p,, we observe a similar pat-
tern for the effective density. Specifically, in the case of
GR, we find that the effective radial and tangential pres-
sures in the central region are higher compared to the
f(7) scenario. Furthermore, when we include MGD in
the f(7)+MGD scenario, the effective radial and tangen-

0.0225
0.025
0.0200

0.0175 0.020

0.0150

0.015
0.0125

. 0.0100

B 0010

Fig. 1. (color online) Density profile [p*(r)] in [km™] along the radial distance r of the stellar model for solution Il A [@f) = p] in the
context of GR (a=0.0, £1 = 1.0, & =0.0 [km™2])-left panel, £(7) (a=00, &1 =08, & =2x107° [km™?])-middle panel, and f(7")+MGD
(a =02, =08, 5H=2x10"° [km‘z]) -right panel. The fixed values of the constant parameters are A =-1.5, B =0.006, y = 10, 3 =0.33,

and R=11km.
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0.0075

0.0050

Fig. 2.

0.008
0.006
0.006
0.004

0.004

(color online) Radial pressure profile [p¢(r)] in [km™2] along the radial distance r of the stellar model for solution III A

[0 =p] in the context of GR (a =00, {1 =10, £, =00 [km‘z]) -left panel, f(7) (a =00, {1=08, /L =2x10"° [km‘z]) -middle panel,

and f(7)+MGD (=02, £ =038, & =2x10" [km™2])-right panel.

0.012
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0.008
0.006

0.004

Fig. 3.

0.009
0.007

0.008

0.007 0.006

0.006
0.005

0.005

0.004 0.004

0.003

B 0.003

(color online) Effective tangential pressure profile [ p¢™(r)] in [km™2] along the radial distance r of the stellar model for solu-

tion Il A [@) =p] in the context of GR (¢ =0.0, {1 =1.0, & =00 [km™])-left panel, f(7) (¢=0.0, £ =038, £ =2x10" [km™])-
middle panel, and £(7)+MGD (@=02, i =0.8, & =2x107 [km2])-right panel.
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0.0005
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Fig. 4.
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0.0015
0.0015

0.0010
0.0010

0.0009 0.0005

(color online) Effective anisotropy profile [A®f(r)] in [km™] along the radial distance 7 of the stellar model for solution IIT A

[ =p] in the context of GR (a =00, {1 =10, £ =00 [km’z]) -left panel, f(7) (a =00, £1=08, L =2x107° [km’z]) -middle panel,

and f(7)+MGD (=02, £ =08, £ =2x10" [km™])-right panel.

tial pressures increase even further. This indicates that the
presence of MGD has a relaxing effect on the fluid par-
ticles, with this effect being particularly pronounced in
the central regions of the star. Importantly, in both solu-
tions, the effective radial and tangential pressures remain
continuous throughout the star and exhibit a monotonic-
ally decreasing trend with increasing radial coordinates. It
is worth noting that the effective radial component of the
pressure at the stellar surface disappears, which is a signi-
ficant characteristic observed in these solutions. Figs. 4
and 8 illustrate the trend of the effective anisotropy para-

meter, A(r), for three distinct scenarios with the same
fixed parameters in both solutions. It is worth noting that
the presence of MGD leads to a significant increase in the
anisotropy within the stellar body compared to the cases
of GR and f(7). Specifically, when comparing the scen-
arios of GR, f(7), and f(7)+MGD, we observe that the
inclusion of MGD causes the anisotropy parameter to
double. This finding highlights the pronounced impact of
MGD on the anisotropic nature of the system, indicating
that the presence of MGD significantly enhances the an-
isotropy within the stellar body. The observed amplifica-
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Fig. 5.
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I 0.0125

(color online) Effective density profile [p¢"(+)] in [km™2] along the radial distance r of the stellar model for solution III B

[©! = p,] in the context of GR (a =00, £ = 1.0, & =0.0 [km"z]) -left panel, f(7) (a =0.0, {1 =08, & =2x10"6 [km‘z]) -middle panel,

and f(7)+MGD (a =02, =08, 5 =2x107° [km‘z]) -right panel.
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Fig. 6.
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0.0050

0.002

(color online) Effective radial pressure profile [ p¢™(r)] in [km™2] along the radial distance r of the stellar model for solution III

B [0} = p,] in the context of GR (=00, ¢ = 1.0, & =0.0 [km™?])-left panel, f(7) (¢ =0.0, & =08, & =2x10"° [km™])-middle pan-

el, and f(7)+MGD (a =02, =08, 5, =2%x1076 [km‘z]) -right panel.
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Fig. 7.
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(color online) Effective tangential pressure profile [ p¢(r)] in [km=2] along the radial distance r of the stellar model for solu-

tion III B [®] = p,] in the context of GR (a =00, {1 =10, £, =00 [km’z]) -left panel, f(7) (a =0.0, {1 =08, & =2x107° [km’z])—
middle panel, and (7)) + MGD (a =02, =08, 5 =2x10"° [km‘z]) -right panel.

tion of anisotropy serves to reinforce the stability of the
surface layers of the star. The presence of MGD plays a
crucial role in inducing greater anisotropy within the stel-
lar fluid by introducing a larger disparity between the ra-
dial and tangential stresses. This enhanced anisotropy, fa-
cilitated by MGD, can be attributed to various physical
processes taking place within the stellar interior. These
processes include phase transitions, the transport of neut-
rinos and electrons, and dissipation. Each of these mech-
anisms contributes to the overall increase in anisotropy.

Phase transitions occurring within the stellar interior can
result in changes to the EOS, affecting the balance be-
tween radial and tangential stresses. Neutrino and elec-
tron transport processes also influence the pressure distri-
bution, leading to variations in anisotropy throughout the
star. Dissipative effects, such as viscosity or heat conduc-
tion, can further contribute to the development of aniso-
tropic stresses. It is intriguing to observe that the effect-
ive anisotropy, initially zero at the center of the star,
gradually increases in magnitude toward the outer bound-
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Fig. 8.
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(color online) Effective anisotropy profile [A*ff(r)] in [km™2] along the radial distance r of the stellar model for solution III B

[©! = p,] in the context of GR (=00, & = 1.0, & =0.0 [km™2])-left panel, £(7) (a=0.0, &1 =08, & =2x107 [km™])-middle panel,

and f(7)+MGD (a=02, {1 =08, £ =2x107 [km™])-right panel.

ary. This increasing anisotropy is accompanied by a pos-
itive value of A(r), indicating a repulsive force arising
from radial stresses overpowering transverse stresses
within the star. The mounting anisotropy and the result-
ing repulsive force play a significant role in enhancing
the stability of the surface layers of the star. They be-
come crucial in counteracting the inward gravitational
force, thereby contributing to the overall stability of the
compact object. This interplay between increasing aniso-
tropy, repulsive forces, and the counterbalance of gravita-
tional forces is instrumental in maintaining the stability of
the surface layers of the star and ensuring the resilience
of the compact object.

VI. MASS-RADIUS RELATION FOR
MINIMALLY DEFORMED STRANGE STAR
MODELS AND THEIR RELEVANCE TO
ASTROPHYSICS

Pulsars are NSTRs that can emit periodic and strong
electromagnetic signals as pulses arising from their high
magnetic fields and rotational properties. The large rota-
tional frequencies exhibited by pulsars suggest that they
possess a high degree of compactness. Typically, pulsars
are found in binary systems, where a massive neutron star
is accompanied by a companion star. By applying Kep-
ler's third law, these binary systems can be used to meas-
ure the mass of the pulsar through the analysis of time
delays in the observed pulses [105-106].

Determining the radii of NSTRs is a challenging and
complex task compared to measuring their masses. This
difficulty arises owing to the various observational para-
meters involved in the process [107-108]. However, re-
cent advancements have provided new avenues for estim-
ating neutron star radii. One method involves studying
the tidal deformability factor, which is related to the de-
tection of gravitational waves [109]. Another approach
uses measurements obtained from NICER (Neutron star
Interior Composition Explorer) on hotspots located on the

surfaces of NSTRs [110-111]. These recent breakth-
roughs have opened up promising avenues for advancing
our understanding of neutron star radii, offering new pos-
sibilities for precise measurements in the future.

In this study, we developed a framework based on the
well-known Buchdahl metric in f(7") gravityto con-
struct models of pulsars. A key aspect of our analysis is
the investigation of M —R curves, as depicted in Figs. 9,
10, and 11. These curves represent different values of a,
B, 7, and ¢, for both solution IIT A (8 = p) and solution
I B (®] =p,). It is worth noting that the mass-radius
curves are obtained using the quadratic polytropic EOS in
conjunction with the TOV equation. This combination al-
lows us to explore the relationship between mass and ra-
dius for pulsars within the context of our f(7) gravity
framework. Figures 9, 10, and 11 also show the horizont-
al bands representing the selected pulsars. The M —R
curves that intersect with constraints such as the black
hole formation but do not intersect with the horizontal
bands of pulsars can be excluded when measuring radii.
This exclusion criterion facilitates the prediction of the
radii listed in Tables 1, 2, and 3.

In Figs. 9 and 10, corresponding to solution IIT A
(@) =p), the M—R curves exhibit a gradual increase to-
ward a maximum peak, followed by a sharp decrease and
subsequent constancy for larger radii. This pattern high-
lights the variation in radius for a range of different
masses of NSTRs. Remarkably, we observe that NSTRs
with masses ranging from 2.4 to 3.5M, correspond to a
range of radii from 9.80%09? to 13.01739ikm, determined
by the values of the involved parameters a, £, y, and ¢;.
The intermediate part of the M—R curves indicates a
smaller change in the radii. As the values of a, £, and y
increase, the peak of the M —R curves shifts downward
and to the left horizontally. This suggests that higher val-
ues of a, f, and y result in NSTRs with smaller mass and
radii. In contrast, as the value of ; increases, the peak of
the M —R curves shifts upward and horizontally to the
right. This implies that higher values of ¢; correspond to
NSTRs with larger mass and radii. Clearly, the M —R
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curves associated with higher values of ¢; and lower val-
ues of a, f, and y can be linked to a stiffer EOS, which
supports the existence of massive NSTRs.

Moreover, in Fig. 11, corresponding to solution III B
(®! = p,), we observe a similar trend in the M —R curves.
They gradually increase toward a maximum peak, fol-
lowed by a rapid decrease and subsequent constancy for

larger radii. In particular, NSTRs with masses ranging
from 2.4 to 3.5M, exhibit a range of radii from 9.80%)3
to 13.01739! km, which is determined by the values of the
parameters involved, namely a and ¢;. This observation
supports the existence of NSTRs while excluding the
variations of £ and y. We find a similar behavior for both

parameters, albeit with slight differences in magnitude.
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Table 1. M- R curve and prediction of radii for different values of a and f for p = €Y.
Predicted R/km
Objects M/Mg a B
0 0.25 0.50 0.75 1.0 0.3 0.33 0.36 0.39 042
PSRJI1903+327 1.667+0.021 11.61*03 1136700 11.15%003 10.94*00% 10744002 11217003 11187093 11157903 11.137092 11.10*503
PSR J1614-2230  1.97+0.04 12.14700¢ 11.87:50¢ 11.58+003 11.2870%% 10.94*09%  11.66700° 11.637002 11601003 11577008 11.5470%%
GW190814 25-2.67 12967000 12,60t 12.17709%  11.50739%3 - 12.327008  12.26+007 12.20700¢  12.13*503 12.05709)
Table 2. M -R curve and prediction of radii for different values of y and ¢ for p = ©].
Predicted R/km
Objects MM y 141
10.0 12.5 15.0 17.5 20 0.6 0.7 0.8 0.9
PSRI1903+327  1.667+0.021 11.20*09%  11.195700%  11.19*003  11.186*302  11.18+092  9.80*002  10.40*0:93  10.947003  11.467003
PSRJ1614-2230  1.97+0.04 11677008 11.66*00¢  11.647007 11617003 11.59*005 10152004 11787091 11.35720¢  11.90*002
GW190814 25-267 12357090 12317008 1227+00% 12227008 12167003 10437007 1117001 11.837007  12.447002
Table 3. M —R curve and prediction of radii for different values of a and ¢; for p, =@].
Predicted R/km
Objects M/Mg o 4]
0.2 0.3 0.4 0.5 0.25 0.30 0.35 0.40 045
PSRJI1903+327  1.667+0.021 10.18709%  10.97*091 1147430 11.88*0%1 - 1020799 11417000 12267000 13.00%09!
PSR J1614-2230  1.97+0.04 - 10734595 114129000 11.87:001 - - 11201595 12217900 13.012091
GW190814 2.5-2.67 - - - 11714593 - - - 11754013 12.897003

As the values of  and ¢; increase from 0 to 0.5 and from
0.25 to 0.45, respectively, the peak of the M —R curves
shifts upward and toward the right horizontally. This in-
dicates that higher values of a and ¢, correspond to
NSTRs with larger masses and radii. This conclusion
aligns with our findings from the first solution, where
higher values of o and ¢{; were also associated with a
stiffer EOS, supporting the existence of massive NSTRs.
In previous studies that used variational methods and
EOSs for nucleonic matter, M —R curves that exhibit a
significant mass around 3 M, were reported, similar to the
M — R curves depicted in Figs. 9, 10, and 11. An example
of such studies is [112], which investigated the scenario
of the R?> model. This study revealed that the curve M —R
in the scenario of the R? model adheres to the general re-
lativistic limit of approximately 3M,. Moreover, the up-
per limit of the causal mass was found to closely align
with the general relativistic causal maximum mass and to
fall within the region of the mass gap. Furthermore, the
authors also examined the concept of strange stars in the
context of modified gravity, with a specific focus on the
secondary component of the GW190814 event. In a dif-
ferent study [113], the authors explored the possibility of
supermassive compact stars characterized by masses ran-
ging from approximately 2.2 to 2.3M,, and radii of appro-

ximately 11 km within the framework of axion R> grav-
ity. Finally, in [114] the authors explored static NSTRs
using various inflationary models commonly used in cos-
mology. Through the utilization of the MPA1 EOS, they
found that the maximum masses of NSTRs fell within the
mass gap region. In particular, these maximum masses
exceeded 2.5M; while still remaining below the causal
limit of 3M,,.

VII. STABILITY ANALYSIS

A. Stability analysis via adiabatic index

To determine the stability of an anisotropic neutron
star in hydrostatic equilibrium, it is crucial to analyze the
adiabatic index. This index plays a key role in under-
standing the stability characteristics of the configuration
of the star. In this context, the adiabatic stability criterion

dp,
was established [115-117], I'= (1+p£)( P

» dp
must exceed 4/3 for stars with isotropic pressures. Here,

)s , where I’

dr
refers to a constant specific entropy. Herrera and col-

leagues found that this criterion could be modified owing

represents the speed of sound and the subscript S
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to anisotropy and dissipative effects such as heat flow.
Consequently, the adiabatic index for a collapse scenario
in an anisotropic setting is modified accordingly as [118]

A ,
L ko
4ipI

4
I'>-|(1+

71
3 rip.l’ 7D

A
In this expression, the term ET represents the modi-
fication to the stability condition due to anisotropy where
rKOP;
pr # p;- Meanwhile, the final term ﬁ accounts for the

relativistic adjustment.

It has been shown that dissipative effects, such as the
internal heat flow of a star, can impact the adiabatic in-
dex. Consequently, a critical value for the adiabatic in-
dex (i) was proposed, dependent on two factors: (i)

compactness (4 = }) of the stellar model and (ii) a meas-
ure of the deviation from hydrostatic equilibrium (quanti-
fied by the amplitude of the Lagrangian displacement
from equilibrium). The critical adiabatic parameter is ex-
pressed as Dot = 3 57 [119]. To ensure stability

against radial perturbations, I' must be greater than I'.;
[119]. However, it has been observed that for stable neut-

2.0r

6¢,=0.01

ron stars, including white dwarfs and supermassive com-
pact objects, I" ranges between 2 and 4. F%r matter obey-
ing a polytropic EOS, T is greater than 3 and is influ-
enced by the ratio of central density to central pressure.
According to Fig. 14, it is evident that our models meet
the Chandrasekhar stability criterion, given that the adia-
batic index (I') increases and remains above 2 throughout
the strange star models. In particular, an increase in the
f(T) coupling constant {; appears to make the configura-
tion less stable. This is evident from the left panel of Fig.
14 for the solution ®) = p,. However, an opposite trend
can be observed for the solution ®] = p, in the right pan-
el of Fig. 14. It shows that increasing the model paramet-
er £, results in stability of the stellar core.

Furthermore, we performed a comprehensive analys-
is, the results for which are presented in Table 4 , by
varying the model parameter (jand the gravitational
coupling constant a. It should be noted that increasing the
MGD constant a appears to reduce the stability of the
configuration for both solutions, namely ®f=p, and
®! = p,. However, in any case, it does not violate the lim-
itT > et -

B. Stability analysis via Harrison-Zeldovich-Novikov
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pr=0] , respectively.

criterion

In a previous study, Chandrasekhar introduced a
method to evaluate the stability of a stellar system when
exposed to radial perturbations. However, in this ap-
proach, the Harrison-Zeldovich-Novikov (HZN) stability
criterion involves examining the perturbations of physic-
al parameters such as the metric functions, pressure, and
density. Based on the HZN stability criterion [120—121],
the following constraints are established:

dm

™ > (0 = Stable configuration,
pe

dm

do.

<0 = Unstable configuration. (72)

In this context, we analyzed stability for the solutions
p=0) and p, =@} , as shown in Figs. 12 and 13 , re-
spectively. On the left in these figures, we present the
mass profile as a function of the central density p.. It is
evident that mass monotonically increases as central
density grows. Moreover, for a given central density of
the anisotropic star, lower values of the model parameter
£ lead to an increase in the total mass M of the system.
By varying the f(7°) model parameter ¢, for both models,
we examined the rate of changes of total mass with re-
spect to p. on the right in Figs. 12 and 13. The results
show that the rate of change of mass with central density
is positive and exhibits a linear trend across the entire
stellar region. Therefore, the current anisotropic star mod-
el satisfies the stability condition.

VIII. EQUI-MASS DIAGRAMS FOR THE MEAS-
UREMENT OF MASS

In this section, we determine the mass of the aniso-
tropic star using equi-mass diagrams on various planes,
specifically B, -a, B,-8, B,—v, B,—{i, and B,—R. The
focus of this discussion is on the mass distribution con-
cerning the constraints imposed by the bag parameter B, ,

L 4=0.2 ]
‘‘‘‘‘ =04
10 é ]
3 — o~ =06
E —- 7,208 1
2 — =10
]
s 6 ]
=
<
4, 4
2T ‘ ‘ ‘ J
0 2 4 6 8 10

r (km)

(color online) Graphical analysis of adiabatic index for different values of the model parameter for the solutions p = © and

Table 4. Numerical values of the adiabatic index for the
model parameter ¢; and MGD constant a at the core of the

stellar region.

Model-I (p = ©)) Model-II (p, = ©1)

& r 4 r
0.2 2224 0.2 2.031
0.4 2.104 0.4 2.049
0.6 2.065 0.4 2.055
0.8 2.058 0.8 2.057
1.0 2.056 1.0 2.059

o Ir o T
0.05 2.276 0.05 2.415
0.10 2.038 0.10 2.279
0.15 1.845 0.15 2.149
0.20 1.694 0.20 2.031
0.25 1.567 0.25 1.935

where B, = —3%. According to Fig. 15, it is evident that
within the range of [55-90] MeV/fm’, for a given B,, an
increase in a corresponds to an increase in the mass of
NSTRs. However, there is no significant change when the
MGD coupling constant a is fixed and the bag parameter
B, is varied. This analysis strongly indicates that higher
coupling constants result in more massive compact stars.
Conversely, when « € [-1,0], it leads to a low-mass star,
similar to a white dwarf (WD).

Next, we consider the B,—8, B,—vy, and B,—¢
planes, where the mass of the NSTRs is predominantly
distributed within the range of [2.35-2.6] M. Note that
for a given value of B,, an increase in f3, y, or {; results in
an increase in the mass of the star. However, in these
three analyses, the mass exceeds the Tolman-Oppen-
heimer-Volkoff (TOV) limit of 2.1M, for a neutron star.
Furthermore, no significant changes are observed when
the constrained y, B, £, is kept constant and the bag para-
meter B, is varied.
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Fig. 15. (color online) Equi-mass diagram for B, —a, B, -8, Bg—y, B, — {1, and B, —R planes where B, = —%‘ in MeV/fim®.

Finally, we analyzed the B,—R planes, observing radii between 9 and 10 km correspond to low-mass stars.
variations in the mass distribution across a wide range of However, when the radius exceeds 10 km, the star sur-
[1.75-3.25]M,. For a fixed value of B,, variations in the passes the Tolman-Oppenheimer-Volkoff (TOV) limit of
radius R result in the formation of stars ranging from low- 2.1M,, forming massive NSTRs. In this analysis, the ma-
mass WD to high-mass NSTRs. Specifically, stars with ximum mass observed is 3.25M,, for a radius of 13 km.
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IX. CONCLUSIONS

In this section, we present a concise summary of our
findings:

1. We explored anisotropic stars using GD through
the MGD approach within the framework of f(7") grav-

ity.

2. After implementing the MGD to the metric poten-
tial A(r) and B(r), we obtained two systems of equations,
one corresponding to the seed system and the other to the
® sector.

3. We considered a suitable polytropic EOS for the
interior matter distribution of a compact star, particularly
a neutron star or quark star, which reduces to the MIT
bag model in the appropriate limit. Furthermore, by em-
ploying the well-established Buchdahl ansatz, we solved
the seed system of equations for our constructed compact
star model.

4. In the second system, the deformation function
Y(r) was obtained by mimicking the physical constraints,
resulting in two separate sectors, namely p=0) and
pr = O], each leading to distinct classes of solutions.

Following the steps outlined above, the results were
thoroughly assessed and discussed in detail through vari-
ous tables and figures. We analyzed the three most critic-
al features of the model: matter density, effective radial
pressure, and effective tangential pressure. Additionally,
we investigated the role of the anisotropy factor, A°T,
within the stellar sphere. It is well-established that any
compact object representing the interiors of stars should
be free from physical or mathematical singularities in its
primary physical characteristics. The maximum values of
matter density and pressure should occur at the center of
the configuration and should decrease monotonically with
the radial coordinate toward the surface. These character-
istics are essential for describing real objects such as
white dwarfs, NSTRs, and even quark stars. Next, we
highlight some of the key features of our findings:

* From Figs. 1 and 5, it can be observed that the ef-
fective energy density consistently decreases with in-
creasing radial distance, achieving its peak value at the
core of the self-gravitating object. Importantly, these fig-
ures show that the effective energy density is regular
throughout the entire interior of the configuration across
all three scenarios: GR, f(7), and f(7)+MGD. For the
GR scenario, the core effective density is higher with ¢;.
In f(7) gravity, reducing ¢, and introducing ¢, de-
creases the core density. Conversely, in the f(7)+MGD
model, adding a boosts the central density, concentrating

matter in concentric shells. However, beyond the core,
variations in a, ¢, and £, do not affect the effective dens-
ity of the outer layers of the star. In addition, it can be ob-
served that the effective energy density shows no singu-
larity and yields finite values throughout the stellar re-
gion, indicating a viable behavior of the stellar system.

* For @) = p (solution IIIT A, Figs. 2 and 3), the effect-
ive radial and tangential pressures for the GR case are
higher in the central region compared to the f(7") scen-
ario. Additionally, in the f(7") + MGD scenario, the inclu-
sion of MGD results in even lower effective radial and
tangential pressures. This finding strongly indicates that
MGD has a confining and compacting effect on the fluid
particles, particularly in the central regions of the star. A
similar pattern could be observed for p, = ®! (solution III
B, Figs. 6 and 7). This suggests that the fluid particles are
influenced by the presence of MGD, with this impact be-
ing especially noticeable in the central regions of the star.
Additionally, it can be observed that the radial pressure
and tangential pressure are free from singularities and
maintain finite values throughout the stellar region, indic-
ating a stable and viable behavior of the stellar system.

* Another important physical quantity is the aniso-
tropic factor of a stellar system, which can be measured
by AT = p¢f — peff. The contribution to the equilibrium of
an NS/QS mechanism depends on the sign of A°T, ie.,
whether p¢T > p¢ or p¢f < peff. We graphically analyzed
the behavior of the anisotropic factor in Figs. 4 and 8. In-
terestingly, the effective anisotropy, starting at zero at the
center of the star, gradually increases toward the outer
boundary. This rise, marked by a positiveA(r), indicates a
repulsive force from radial stresses exceeding transverse
stresses. This growing anisotropy and repulsive force are
key to stabilizing the surface layers of the star, counter-
acting the inward gravitational pull, and enhancing the
overall stability of the compact object. It is noteworthy
that the inclusion of MGD results in a substantial in-
crease in anisotropy within the stellar body compared to
scenarios in GR and f(7"). Specifically, an analysis of the
GR, f(7), and f(7)+MGD scenarios reveals that the
presence of MGD causes the anisotropy parameter to
double. This observation underscores the significant in-
fluence of MGD on the anisotropic characteristics of the
system, demonstrating that MGD markedly enhances the
anisotropy within the stellar body. The amplified aniso-
tropy observed with MGD contributes to reinforcing the
stability of the surface layers of the star. The introduction
of MGD plays a pivotal role in increasing anisotropy
within the stellar fluid by creating a greater disparity
between radial and tangential stresses.

* We also examined the impact of three relevant scen-
arios — GR, f(7), and f(7)+MGD — on the properties
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of NSTRs, using observational constraints from
GW190814 with a mass range of 2.5-2.67M,, as well as
the NSTRs PSR J1614-2230 with a mass of 1.97+
0.04M, and PSR J1903+327 with a mass of 1.667+
0.021M,. The M—-R curves show that NSTRs with
masses ranging from 2.4 to 3.5M, correspond to a range
of radii from 9.80*5:%* to 13.01*59! km, determined by the
values of the parameters a, £, y, and ; in the two sectors,
with higher values of a, f, and y resulting in NSTRs with
smaller mass and radii, and higher values of {; corres-
ponding to NSTRs with larger mass and radii. Clearly,
the M —R curves associated with larger values of ¢; for
p=0) and p, =0}, and smaller values of o for p =)
(and larger for p, = ®}), B, and y can be linked to a stiffer
EOS, which supports the existence of massive NSTRs
within the modified f(7") gravity theory.

* An analysis of stability using the anisotropic gener-
alization of the Chandrasekhar adiabatic index and the
HZN stability criterion demonstrated that our models are
stable. Additionally, the stability is further enhanced by
the perturbation of the decoupling constant a and model
parameter ;.

* Finally, we determined the mass of the anisotropic
star using equi-mass diagrams on various planes, spe-
cifically B,—«a, B,—f8, B;—7v, B,—{, and B,—R. This
discussion focused on the mass distribution concerning
the constraints imposed by the bag parameter B, , where
B,=-% Tt is observed from Fig. 15 that for a given
value of B,, an increase in a, f, y, {; , and R results in an
increase in the mass of the star. However, in the analyses
of the B, -8, B, —v, and B, —{; planes, the mass exceeds
the Tolman-Oppenheimer-Volkoff (TOV) limit of 2.1M,

_(A-BA)(1+Br)

for a neutron star. Additionally, no significant change
was observed when the constrained parameters a, vy, 8, 1,
R were held constant and the bag parameter B, was var-
ied. In this analysis, we obtained a maximum mass of
3.25M,, for the B, — R plane.

Thus, our results provide significant insight into the
complex relationship between anisotropy and gravitation-
al effects of f(7°) gravity, enhancing our understanding
of pulsars and their fundamental physical processes.
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APPENDIX

Py(r) = AiBrE (3632y§$ —4ABL (14 3B+ 6Byl +3y5) + A
X (L2 +2B+7y6) +4x) = 2A°2QBL(L+B+y0) + L2+ 2B+70) +40) + A (4B (] + H(2+28
A+Br)!
+¥8) +8BL (1 +28+2y0) +4/\()) + %{MB#(BP +1)° +4(A - 1)’ B>y r* X (Br* +3)°
X (Br* +3)* +4A(-1+A)Br*(1+ Br*)* (1 + 3B+ 3y + B (1 + B+v()) + ¢ ' A*(1 + Br?) <8§1 +(Brr+1)
X A(GQB+YH+2)+40)) X Fi(r)} - 44,
(A1)
e (r):ﬂ[zrz((g QB+yl +2) +4)A* —22BL(B+y5)
22 (BP +A) 2 Y2 X 61 V62
+ D+ HQB+yL+2) +AAT + (AB YL +8BQ2B+2yL + i+ L(2B+y4 +2) + 4)A” - 4BL,
A-1)"!
X3+ OByL, + 3G+ DA+ 365YEB] + A°X (G084 +2)+ 40 - (5 s (1608

+y0 +2) +4AY = 2Q2BLB+yL + 1)+ LB+l +2) +4AY + (AB*y + 8BB+ 2yl + 1)
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1 2
T KB +A) {assr
4A—-1DBBB+ys, + Dr* +38+3y4 + 1)r?
Bri+1

+H(2B+yl +2) +40)A* —4BL(3B+ 6Byl + 3yl + DA +36B*y( |

+4A7 (B + 1) (A= 1B (Br* +3)* v 17 +
(Br? + 1)L +75+2) +40)r
g
+6(A— 1B, +AL)r - %(33# +3)(ABLr +6(A = 1B +AL) (G2 + 76 +2) +4x)

16(A-2)B*y{} N 16(A- DBy (A=D1
(Br2+1)? (B +17 (B +1)

A-1)"
—6)Byl1 +2(A-1)y5)| - ﬁ

+y0 +2) +4)A’ + (4B*y (] +8BQ2B+ 2yl + DG+ H(2B+ 7l +2) +4x)A” — 4BL (3B + 6Byl
+3y5 + DA+36ByE )| - 847 3Br + 3)((ABLr* + 6(A - 1B +AL) b, (A2)

+A(

+8)(—24B(Br* + 1)1 6o + 24A7 B, (ABL 1

A%+

[4BL1(9Byl + AQ(A- DB+ (A

[(L2(2B+78 +2) +4)A* = 22BL(B+yoH + 1)+ H(2B

Ou(r) = Ar*(Br* + ' (L(2B + & +2) +4x) + 2Br*(Br* + 1 )Wy — 6Br*(A + Bri)n, — 3(Br* + 1)(A + Br?)
X —2r(Br* + 1)(A+ Br*) (BN + yN* + x) x (2BrL(3 + Br*)™" +r ' )4AB(Br’ + r)*({(28
+y0 +2) +4x) +4BLr(Brr + DX(AGB+2Br (B +yL + 1)+ 3yl +2) — 2Br* +3)(B+74))
+8Br(Br* + 1)(ABr*(38+ BrX(B+yls + 1) + 3yl +2) + A— Bri(Br* + 3)(B+y4)) + Ar
X(Br’ + D' (LB +vL +2) +4x), (A3)
Y = [4A-1(A —1)’By{ir*(Br* +3)° +44(Br’ + 1) (ABr* (3B + Brr(B+yl + 1) + 3y
+2) + A= BrA(Br* +3)(B+y5) + AP (B + DNG2B+y5 +2) +4y)] ’
Y = (BN +yN* +x)x { L+44(Br + ) (ABP (3B + Br(B+y&+ 1)+ 3y5 +2) + A= BrA(Br?
+3)B+y0) + AP B+ NGB +yL+2) + 4)()} ,

_(A-DB{(BrP+3) &
ST ABR+IE 2

Uas = & (A2 (B +1) (LB + 7L +2) +4x) + HA - 1P By (Br* +3)° +4A¢ (B +1)* (ABr (38 + BF(B+yL,
+1)+3y5+2) +A=Br? (B +3)(B+70)))

L=4A"A-1’BYrH(Brr+3)*, N

Yas = (4A“ (A= 1)B*yir*(Br* +3)* +44,(Br* + 1)*(ABr*(38+ Brr(B+yl, + 1)+ 3yl, +2) + A — Br*(Br*
F3)B+YE)+APBP + DHG2B+v6 +2)+40)

Wss = %(A —D)B*, 7 (Br* +5)(A + Br*)(A(B(Br* + 1)* + 2Byl (Br* + 3) + y{o(Br* + 1)*) = 2Byl (Br* + 3)),

¥s = (ABr* + A (4A" (A=1YB*y({r(Br +3)" +44,(Br* + 1) (ABP(3B+ Brr(B+ylo + 1) + 3y, +2) + A= Br?
(B +3)(B+70)) +Ar(Brr + VNGB +yL +2) + 4)()) .

(A4)
References 2021)
[2]  K.S. Stelle, Phys. Rev. D 16, 953 (1977)
[11 Y. Akrami et al., Modified Gravity and Cosmology: An [3]  A.Addazi, J. Alvarez-Muniz, R. Alves Batista et al., Prog.
Update by the CANTATA Network, New York: Springer, Part. Nucl. Phys. 125, 103948 (2022)

1051010-22


https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948

Gravitationally deformed polytropic models in extended teleparallel gravity and...

Chin. Phys. C 49, 1051010 (2025)

[4]

S. Capozziello and M. De Laurentis, Phys. Rept. 509, 167
(2011)

T. Shirafuji and G. G. L. Nashed, Prog. Theor. Phys. 98,
1355 (1997)

J. W. Maluf, Annalen Phys. 525, 339 (2013)

G. R. Bengochea and R. Ferraro, Phys. Rev. D 79, 124019
(2009)

E. V. Linder, Phys. Rev. D 82, 109902 (2010)

Y. F. Cai, S. Capozziello, M. De Laurentis et al., Rept.
Prog. Phys. 79(10), 106901 (2016)

G. Kofinas and E. N. Saridakis, Phys. Rev. D 90, 084044
(2014)

S. Bahamonde, C. G. Béhmer, and M. Wright, Phys. Rev.
D 92(10), 104042 (2015)

C. G. Boehmer and E. Jensko, Phys. Rev. D 104(2),
024010 (2021)

C. Q. Geng, C. C. Lee, E. N. Saridakis et al., Phys. Lett. B
704, 384 (2011)

M. Hohmann, L. Jarv, and U. Ualikhanova, Phys. Rev. D
97(10), 104011 (2018)

S. Bahamonde, K. F. Dialektopoulos, and J. Levi Said,
Phys. Rev. D 100(6), 064018 (2019)

E. N. Saridakis et al. (CANTATA Collaboration),
Modified Gravity and Cosmology, (Springer, 2021)

C. G. Boehmer and E. Jensko, J. Math. Phys. 64(8),
082505 (2023)

T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451
(2010)

S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002)

G. J. Olmo, Int. J. Mod. Phys. D 20, 413 (2011)

T. Harko, T. S. Koivisto, F. S. N. Lobo ef al., Phys. Rev. D
85, 084016 (2012)

J. L. Rosa, S. Carloni, and J. P. S. Lemos, Phys. Rev. D
101(10), 104056 (2020)

T. Harko, F. S. N. Lobo, S. Nojiri et al., Phys. Rev. D 84,
024020 (2011)

N. J. Poplawski, arXiv: gr-qc/0608031 [gr-qc]

T. Harko and F. S. N. Lobo, Extensions of f(R) Gravity,
(England: Cambridge University Press, 2018)

M. Jamil, D. Momeni, M. Raza et al., Eur. Phys. J. C 72,
1999 (2012)

M. J. S. Houndjo and O. F. Piattella, Int. J. Mod. Phys. D
21, 1250024 (2012)

M. J. S. Houndjo, Int. J. Mod. Phys. D 21, 1250003 (2012)
F. G. Alvarenga, A. de la Cruz-Dombriz, M. J. S. Houndjo
et al., Phys. Rev. D 87(10), 103526 (2013)

H. Shabani and M. Farhoudi, Phys. Rev. D 88, 044048
(2013)

H. Shabani and M. Farhoudi, Phys. Rev. D 90(4), 044031
(2014)

P. H. R. S. Moraes, Eur. Phys. J. C 75(4), 168 (2015)

J. L. Rosa, M. A. Marques, D. Bazeia et al., Eur. Phys. J.
C 81(11), 981 (2021)

S. D. Odintsov and D. Saez-Goémez, Phys. Lett. B 725, 437
(2013)

Z. Haghani, T. Harko, F. S. N. Lobo et al., Phys. Rev. D
88(4), 044023 (2013)

R. Zaregonbadi, M. Farhoudi, and N. Riazi, Phys. Rev. D
94, 084052 (2016)

P. H. R. S. Moraes and P. K. Sahoo, Phys. Rev. D 96(4),
044038 (2017)

S. K. Maurya, A. Errehymy, D. Deb ef al., Phys. Rev. D
100(4), 044014 (2019)

[39]
[40]
[41]
[42]
[43]
[44]
[43]
[46]
[47]

(48]

1051010-23

S. K. Maurya, A. Errehymy, K. N. Singh ef al., Phys. Dark
Univ. 30, 100640 (2020)

A. Errehymy, Y. Khedif, G. Mustafa et al., Chin. J. Phys.
77, 1502 (2022)

A. Errehymy, S. K. Maurya, G. E. Vilcu et al., Astropart.
Phys. 160, 102972 (2024)

S. Hansraj and A. Errehymy, Phys. Dark Univ. 46, 101632
(2024)

M. Zubair, G. Mustafa, Saira Waheed ef al., Eur. Phys. J.
C 177, 680 (2017)

G. Mustafa, M. Zubair, Saira Waheed3 et al., Eur. Phys. J.
C 80, 26 (2020)

G. Mustafa, Xia Tie-Cheng, and M. Farasat Shamir,
Annals Phys. 413, 168059 (2020)

G. Mustafa, M. F. Shamir, and X. Tie-Cheng, Phys. Rev.
D 101, 104013 (2020)

S. Waheed, G. Mustafa, M. Zubair et al., Symmetry 12,
962 (2020)

G. Mustafa, M. Farasat Shamir, and Mushtaq Ahmad,
Phys. Dark Univ. 30, 100652 (2020)

R.J. Yang, Eur. Phys. J. C 71, 1797 (2011)

R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011)

A. Awad, W. El Hanafy, G. G. L. Nashed ef al., JCAP 02,
052 (2018)

A. Awad, W. El Hanafy, G. G. L. Nashed et al., JCAP 07,
026 (2018)

S. Bahamonde, C. G. Bohmer, S. Carloni et al., Phys.
Rept. 775-777, 1 (2018)

S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Phys.
Rept. 692, 1 (2017)

R. C. Nunes, JCAP 05, 052 (2018)

L. Iorio, N. Radicella, and M. L. Ruggiero, JCAP 08, 021
(2015)

J. Z. Qi, S. Cao, M. Biesiada et al., Eur. Phys. J. C 77(8),
502 (2017)

C. G. Bochmer, A. Mussa, and N. Tamanini, Class. Quant.
Grav. 28, 245020 (2011)

A. De Benedictis and S. Iliji¢, Phys. Rev. D 98(6), 064056
(2018)

V. C. de Andrade, L. C. T. Guillen, and J. G. Pereira,
Phys. Rev. Lett. 84, 4533 (2000)

R. Ferraro and M. J. Guzman, Phys. Rev. D 97(10),
104028 (2018)

B. Li, T. P. Sotiriou, and J. D. Barrow, Phys. Rev. D 83,
064035 (2011)

T. P. Sotiriou, B. Li, and J. D. Barrow, Phys. Rev. D 83,
104030 (2011)

M. Li, R. X. Miao, and Y. G. Miao, JHEP 07, 108 (2011)
C. Bejarano, R. Ferraro, and M. J. Guzman, Eur. Phys. J. C
75,77 (2015)

M. Blagojevic and M. Vasilic, Class. Quant. Grav. 17,
3785 (2000)

Y. C. Ong and J. M. Nester, Eur. Phys. J. C 78(7), 568
(2018)

M. Kr$sak and E. N. Saridakis, Class. Quant. Grav. 33(11),
115009 (2016)

A. D. Rendall and B. G. Schmidt, Class. Quant. Grav. 8,
985 (1991)

T. W. Baumgarte and A. D. Rendall, Class. Quant. Grav.
10, 327 (1993)

H. A. Buchdahl, Phys. Rev. 116, 1027 (1959)

H. Andreasson, J. Diff. Eq. 245, 2243 (2008)

B. K. Harrison, M. Thorne, K. S. Wakano et al,


https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1143/PTP.98.1355
https://doi.org/10.1143/PTP.98.1355
https://doi.org/10.1143/PTP.98.1355
https://doi.org/10.1143/PTP.98.1355
https://doi.org/10.1143/PTP.98.1355
https://doi.org/10.1143/PTP.98.1355
https://doi.org/10.1143/PTP.98.1355
https://doi.org/10.1143/PTP.98.1355
https://doi.org/10.1143/PTP.98.1355
https://doi.org/10.1002/andp.201200272
https://doi.org/10.1002/andp.201200272
https://doi.org/10.1002/andp.201200272
https://doi.org/10.1002/andp.201200272
https://doi.org/10.1002/andp.201200272
https://doi.org/10.1002/andp.201200272
https://doi.org/10.1002/andp.201200272
https://doi.org/10.1002/andp.201200272
https://doi.org/10.1002/andp.201200272
https://doi.org/10.1002/andp.201200272
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.104.024010
https://doi.org/10.1103/PhysRevD.104.024010
https://doi.org/10.1103/PhysRevD.104.024010
https://doi.org/10.1103/PhysRevD.104.024010
https://doi.org/10.1103/PhysRevD.104.024010
https://doi.org/10.1103/PhysRevD.104.024010
https://doi.org/10.1103/PhysRevD.104.024010
https://doi.org/10.1103/PhysRevD.104.024010
https://doi.org/10.1103/PhysRevD.104.024010
https://doi.org/10.1103/PhysRevD.104.024010
https://doi.org/10.1103/PhysRevD.104.024010
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1063/5.0150038
https://doi.org/10.1063/5.0150038
https://doi.org/10.1063/5.0150038
https://doi.org/10.1063/5.0150038
https://doi.org/10.1063/5.0150038
https://doi.org/10.1063/5.0150038
https://doi.org/10.1063/5.0150038
https://doi.org/10.1063/5.0150038
https://doi.org/10.1063/5.0150038
https://doi.org/10.1063/5.0150038
https://doi.org/10.1063/5.0150038
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1103/PhysRevD.85.084016
https://doi.org/10.1103/PhysRevD.85.084016
https://doi.org/10.1103/PhysRevD.85.084016
https://doi.org/10.1103/PhysRevD.85.084016
https://doi.org/10.1103/PhysRevD.85.084016
https://doi.org/10.1103/PhysRevD.85.084016
https://doi.org/10.1103/PhysRevD.85.084016
https://doi.org/10.1103/PhysRevD.85.084016
https://doi.org/10.1103/PhysRevD.85.084016
https://doi.org/10.1103/PhysRevD.101.104056
https://doi.org/10.1103/PhysRevD.101.104056
https://doi.org/10.1103/PhysRevD.101.104056
https://doi.org/10.1103/PhysRevD.101.104056
https://doi.org/10.1103/PhysRevD.101.104056
https://doi.org/10.1103/PhysRevD.101.104056
https://doi.org/10.1103/PhysRevD.101.104056
https://doi.org/10.1103/PhysRevD.101.104056
https://doi.org/10.1103/PhysRevD.101.104056
https://doi.org/10.1103/PhysRevD.101.104056
https://doi.org/10.1103/PhysRevD.101.104056
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1103/PhysRevD.84.024020
https://arxiv.org/abs/0608031 
https://arxiv.org/abs/0608031 
https://arxiv.org/abs/0608031 
https://arxiv.org/abs/0608031 
https://arxiv.org/abs/0608031 
https://doi.org/10.1140/epjc/s10052-012-1999-9
https://doi.org/10.1140/epjc/s10052-012-1999-9
https://doi.org/10.1140/epjc/s10052-012-1999-9
https://doi.org/10.1140/epjc/s10052-012-1999-9
https://doi.org/10.1140/epjc/s10052-012-1999-9
https://doi.org/10.1140/epjc/s10052-012-1999-9
https://doi.org/10.1140/epjc/s10052-012-1999-9
https://doi.org/10.1140/epjc/s10052-012-1999-9
https://doi.org/10.1140/epjc/s10052-012-1999-9
https://doi.org/10.1142/S0218271812500241
https://doi.org/10.1142/S0218271812500241
https://doi.org/10.1142/S0218271812500241
https://doi.org/10.1142/S0218271812500241
https://doi.org/10.1142/S0218271812500241
https://doi.org/10.1142/S0218271812500241
https://doi.org/10.1142/S0218271812500241
https://doi.org/10.1142/S0218271812500241
https://doi.org/10.1142/S0218271812500241
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.88.044048
https://doi.org/10.1103/PhysRevD.90.044031
https://doi.org/10.1103/PhysRevD.90.044031
https://doi.org/10.1103/PhysRevD.90.044031
https://doi.org/10.1103/PhysRevD.90.044031
https://doi.org/10.1103/PhysRevD.90.044031
https://doi.org/10.1103/PhysRevD.90.044031
https://doi.org/10.1103/PhysRevD.90.044031
https://doi.org/10.1103/PhysRevD.90.044031
https://doi.org/10.1103/PhysRevD.90.044031
https://doi.org/10.1103/PhysRevD.90.044031
https://doi.org/10.1103/PhysRevD.90.044031
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-015-3393-x
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1140/epjc/s10052-021-09783-5
https://doi.org/10.1016/j.physletb.2013.07.026
https://doi.org/10.1016/j.physletb.2013.07.026
https://doi.org/10.1016/j.physletb.2013.07.026
https://doi.org/10.1016/j.physletb.2013.07.026
https://doi.org/10.1016/j.physletb.2013.07.026
https://doi.org/10.1016/j.physletb.2013.07.026
https://doi.org/10.1016/j.physletb.2013.07.026
https://doi.org/10.1016/j.physletb.2013.07.026
https://doi.org/10.1016/j.physletb.2013.07.026
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.96.044038
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1016/j.dark.2020.100640
https://doi.org/10.1016/j.dark.2020.100640
https://doi.org/10.1016/j.dark.2020.100640
https://doi.org/10.1016/j.dark.2020.100640
https://doi.org/10.1016/j.dark.2020.100640
https://doi.org/10.1016/j.dark.2020.100640
https://doi.org/10.1016/j.dark.2020.100640
https://doi.org/10.1016/j.dark.2020.100640
https://doi.org/10.1016/j.dark.2020.100640
https://doi.org/10.1016/j.dark.2020.100640
https://doi.org/10.1016/j.dark.2020.100640
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.cjph.2021.10.040
https://doi.org/10.1016/j.astropartphys.2024.102972
https://doi.org/10.1016/j.astropartphys.2024.102972
https://doi.org/10.1016/j.astropartphys.2024.102972
https://doi.org/10.1016/j.astropartphys.2024.102972
https://doi.org/10.1016/j.astropartphys.2024.102972
https://doi.org/10.1016/j.astropartphys.2024.102972
https://doi.org/10.1016/j.astropartphys.2024.102972
https://doi.org/10.1016/j.astropartphys.2024.102972
https://doi.org/10.1016/j.astropartphys.2024.102972
https://doi.org/10.1016/j.astropartphys.2024.102972
https://doi.org/10.1016/j.astropartphys.2024.102972
https://doi.org/10.1016/j.dark.2024.101632
https://doi.org/10.1016/j.dark.2024.101632
https://doi.org/10.1016/j.dark.2024.101632
https://doi.org/10.1016/j.dark.2024.101632
https://doi.org/10.1016/j.dark.2024.101632
https://doi.org/10.1016/j.dark.2024.101632
https://doi.org/10.1016/j.dark.2024.101632
https://doi.org/10.1016/j.dark.2024.101632
https://doi.org/10.1016/j.dark.2024.101632
https://doi.org/10.1140/epjc/s10052-017-5251-5
https://doi.org/10.1140/epjc/s10052-017-5251-5
https://doi.org/10.1140/epjc/s10052-017-5251-5
https://doi.org/10.1140/epjc/s10052-017-5251-5
https://doi.org/10.1140/epjc/s10052-017-5251-5
https://doi.org/10.1140/epjc/s10052-017-5251-5
https://doi.org/10.1140/epjc/s10052-017-5251-5
https://doi.org/10.1140/epjc/s10052-017-5251-5
https://doi.org/10.1140/epjc/s10052-017-5251-5
https://doi.org/10.1140/epjc/s10052-017-5251-5
https://doi.org/10.1140/epjc/s10052-017-5251-5
https://doi.org/10.1140/epjc/s10052-019-7588-4
https://doi.org/10.1140/epjc/s10052-019-7588-4
https://doi.org/10.1140/epjc/s10052-019-7588-4
https://doi.org/10.1140/epjc/s10052-019-7588-4
https://doi.org/10.1140/epjc/s10052-019-7588-4
https://doi.org/10.1140/epjc/s10052-019-7588-4
https://doi.org/10.1140/epjc/s10052-019-7588-4
https://doi.org/10.1140/epjc/s10052-019-7588-4
https://doi.org/10.1140/epjc/s10052-019-7588-4
https://doi.org/10.1140/epjc/s10052-019-7588-4
https://doi.org/10.1140/epjc/s10052-019-7588-4
https://doi.org/10.1016/j.aop.2019.168059
https://doi.org/10.1016/j.aop.2019.168059
https://doi.org/10.1016/j.aop.2019.168059
https://doi.org/10.1016/j.aop.2019.168059
https://doi.org/10.1016/j.aop.2019.168059
https://doi.org/10.1016/j.aop.2019.168059
https://doi.org/10.1016/j.aop.2019.168059
https://doi.org/10.1016/j.aop.2019.168059
https://doi.org/10.1016/j.aop.2019.168059
https://doi.org/10.1016/j.aop.2019.168059
https://doi.org/10.1103/PhysRevD.101.104013
https://doi.org/10.1103/PhysRevD.101.104013
https://doi.org/10.1103/PhysRevD.101.104013
https://doi.org/10.1103/PhysRevD.101.104013
https://doi.org/10.1103/PhysRevD.101.104013
https://doi.org/10.1103/PhysRevD.101.104013
https://doi.org/10.1103/PhysRevD.101.104013
https://doi.org/10.1103/PhysRevD.101.104013
https://doi.org/10.1103/PhysRevD.101.104013
https://doi.org/10.1103/PhysRevD.101.104013
https://doi.org/10.1103/PhysRevD.101.104013
https://doi.org/10.3390/sym12060962
https://doi.org/10.3390/sym12060962
https://doi.org/10.3390/sym12060962
https://doi.org/10.3390/sym12060962
https://doi.org/10.3390/sym12060962
https://doi.org/10.3390/sym12060962
https://doi.org/10.3390/sym12060962
https://doi.org/10.3390/sym12060962
https://doi.org/10.3390/sym12060962
https://doi.org/10.1016/j.dark.2020.100652
https://doi.org/10.1016/j.dark.2020.100652
https://doi.org/10.1016/j.dark.2020.100652
https://doi.org/10.1016/j.dark.2020.100652
https://doi.org/10.1016/j.dark.2020.100652
https://doi.org/10.1016/j.dark.2020.100652
https://doi.org/10.1016/j.dark.2020.100652
https://doi.org/10.1016/j.dark.2020.100652
https://doi.org/10.1016/j.dark.2020.100652
https://doi.org/10.1016/j.dark.2020.100652
https://doi.org/10.1140/epjc/s10052-011-1797-9
https://doi.org/10.1140/epjc/s10052-011-1797-9
https://doi.org/10.1140/epjc/s10052-011-1797-9
https://doi.org/10.1140/epjc/s10052-011-1797-9
https://doi.org/10.1140/epjc/s10052-011-1797-9
https://doi.org/10.1140/epjc/s10052-011-1797-9
https://doi.org/10.1140/epjc/s10052-011-1797-9
https://doi.org/10.1140/epjc/s10052-011-1797-9
https://doi.org/10.1140/epjc/s10052-011-1797-9
https://doi.org/10.1140/epjc/s10052-011-1797-9
https://doi.org/10.1140/epjc/s10052-011-1752-9
https://doi.org/10.1140/epjc/s10052-011-1752-9
https://doi.org/10.1140/epjc/s10052-011-1752-9
https://doi.org/10.1140/epjc/s10052-011-1752-9
https://doi.org/10.1140/epjc/s10052-011-1752-9
https://doi.org/10.1140/epjc/s10052-011-1752-9
https://doi.org/10.1140/epjc/s10052-011-1752-9
https://doi.org/10.1140/epjc/s10052-011-1752-9
https://doi.org/10.1140/epjc/s10052-011-1752-9
https://doi.org/10.1140/epjc/s10052-011-1752-9
https://doi.org/10.1088/1475-7516/2018/02/052
https://doi.org/10.1088/1475-7516/2018/02/052
https://doi.org/10.1088/1475-7516/2018/02/052
https://doi.org/10.1088/1475-7516/2018/02/052
https://doi.org/10.1088/1475-7516/2018/02/052
https://doi.org/10.1088/1475-7516/2018/02/052
https://doi.org/10.1088/1475-7516/2018/02/052
https://doi.org/10.1088/1475-7516/2018/02/052
https://doi.org/10.1088/1475-7516/2018/02/052
https://doi.org/10.1088/1475-7516/2018/07/026
https://doi.org/10.1088/1475-7516/2018/07/026
https://doi.org/10.1088/1475-7516/2018/07/026
https://doi.org/10.1088/1475-7516/2018/07/026
https://doi.org/10.1088/1475-7516/2018/07/026
https://doi.org/10.1088/1475-7516/2018/07/026
https://doi.org/10.1088/1475-7516/2018/07/026
https://doi.org/10.1088/1475-7516/2018/07/026
https://doi.org/10.1088/1475-7516/2018/07/026
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1088/1475-7516/2018/05/052
https://doi.org/10.1088/1475-7516/2018/05/052
https://doi.org/10.1088/1475-7516/2018/05/052
https://doi.org/10.1088/1475-7516/2018/05/052
https://doi.org/10.1088/1475-7516/2018/05/052
https://doi.org/10.1088/1475-7516/2018/05/052
https://doi.org/10.1088/1475-7516/2018/05/052
https://doi.org/10.1088/1475-7516/2018/05/052
https://doi.org/10.1088/1475-7516/2018/05/052
https://doi.org/10.1088/1475-7516/2018/05/052
https://doi.org/10.1088/1475-7516/2015/08/021
https://doi.org/10.1088/1475-7516/2015/08/021
https://doi.org/10.1088/1475-7516/2015/08/021
https://doi.org/10.1088/1475-7516/2015/08/021
https://doi.org/10.1088/1475-7516/2015/08/021
https://doi.org/10.1088/1475-7516/2015/08/021
https://doi.org/10.1088/1475-7516/2015/08/021
https://doi.org/10.1088/1475-7516/2015/08/021
https://doi.org/10.1088/1475-7516/2015/08/021
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://doi.org/10.1088/0264-9381/28/24/245020
https://doi.org/10.1088/0264-9381/28/24/245020
https://doi.org/10.1088/0264-9381/28/24/245020
https://doi.org/10.1088/0264-9381/28/24/245020
https://doi.org/10.1088/0264-9381/28/24/245020
https://doi.org/10.1088/0264-9381/28/24/245020
https://doi.org/10.1088/0264-9381/28/24/245020
https://doi.org/10.1088/0264-9381/28/24/245020
https://doi.org/10.1088/0264-9381/28/24/245020
https://doi.org/10.1088/0264-9381/28/24/245020
https://doi.org/10.1088/0264-9381/28/24/245020
https://doi.org/10.1103/PhysRevD.98.064056
https://doi.org/10.1103/PhysRevD.98.064056
https://doi.org/10.1103/PhysRevD.98.064056
https://doi.org/10.1103/PhysRevD.98.064056
https://doi.org/10.1103/PhysRevD.98.064056
https://doi.org/10.1103/PhysRevD.98.064056
https://doi.org/10.1103/PhysRevD.98.064056
https://doi.org/10.1103/PhysRevD.98.064056
https://doi.org/10.1103/PhysRevD.98.064056
https://doi.org/10.1103/PhysRevD.98.064056
https://doi.org/10.1103/PhysRevD.98.064056
https://doi.org/10.1103/PhysRevLett.84.4533
https://doi.org/10.1103/PhysRevLett.84.4533
https://doi.org/10.1103/PhysRevLett.84.4533
https://doi.org/10.1103/PhysRevLett.84.4533
https://doi.org/10.1103/PhysRevLett.84.4533
https://doi.org/10.1103/PhysRevLett.84.4533
https://doi.org/10.1103/PhysRevLett.84.4533
https://doi.org/10.1103/PhysRevLett.84.4533
https://doi.org/10.1103/PhysRevLett.84.4533
https://doi.org/10.1103/PhysRevLett.84.4533
https://doi.org/10.1103/PhysRevD.97.104028
https://doi.org/10.1103/PhysRevD.97.104028
https://doi.org/10.1103/PhysRevD.97.104028
https://doi.org/10.1103/PhysRevD.97.104028
https://doi.org/10.1103/PhysRevD.97.104028
https://doi.org/10.1103/PhysRevD.97.104028
https://doi.org/10.1103/PhysRevD.97.104028
https://doi.org/10.1103/PhysRevD.97.104028
https://doi.org/10.1103/PhysRevD.97.104028
https://doi.org/10.1103/PhysRevD.97.104028
https://doi.org/10.1103/PhysRevD.97.104028
https://doi.org/10.1103/PhysRevD.83.064035
https://doi.org/10.1103/PhysRevD.83.064035
https://doi.org/10.1103/PhysRevD.83.064035
https://doi.org/10.1103/PhysRevD.83.064035
https://doi.org/10.1103/PhysRevD.83.064035
https://doi.org/10.1103/PhysRevD.83.064035
https://doi.org/10.1103/PhysRevD.83.064035
https://doi.org/10.1103/PhysRevD.83.064035
https://doi.org/10.1103/PhysRevD.83.064035
https://doi.org/10.1103/PhysRevD.83.104030
https://doi.org/10.1103/PhysRevD.83.104030
https://doi.org/10.1103/PhysRevD.83.104030
https://doi.org/10.1103/PhysRevD.83.104030
https://doi.org/10.1103/PhysRevD.83.104030
https://doi.org/10.1103/PhysRevD.83.104030
https://doi.org/10.1103/PhysRevD.83.104030
https://doi.org/10.1103/PhysRevD.83.104030
https://doi.org/10.1103/PhysRevD.83.104030
https://doi.org/10.1007/JHEP07(2011)108
https://doi.org/10.1007/JHEP07(2011)108
https://doi.org/10.1007/JHEP07(2011)108
https://doi.org/10.1007/JHEP07(2011)108
https://doi.org/10.1007/JHEP07(2011)108
https://doi.org/10.1007/JHEP07(2011)108
https://doi.org/10.1007/JHEP07(2011)108
https://doi.org/10.1007/JHEP07(2011)108
https://doi.org/10.1007/JHEP07(2011)108
https://doi.org/10.1007/JHEP07(2011)108
https://doi.org/10.1140/epjc/s10052-015-3288-x
https://doi.org/10.1140/epjc/s10052-015-3288-x
https://doi.org/10.1140/epjc/s10052-015-3288-x
https://doi.org/10.1140/epjc/s10052-015-3288-x
https://doi.org/10.1140/epjc/s10052-015-3288-x
https://doi.org/10.1140/epjc/s10052-015-3288-x
https://doi.org/10.1140/epjc/s10052-015-3288-x
https://doi.org/10.1140/epjc/s10052-015-3288-x
https://doi.org/10.1140/epjc/s10052-015-3288-x
https://doi.org/10.1088/0264-9381/17/18/313
https://doi.org/10.1088/0264-9381/17/18/313
https://doi.org/10.1088/0264-9381/17/18/313
https://doi.org/10.1088/0264-9381/17/18/313
https://doi.org/10.1088/0264-9381/17/18/313
https://doi.org/10.1088/0264-9381/17/18/313
https://doi.org/10.1088/0264-9381/17/18/313
https://doi.org/10.1088/0264-9381/17/18/313
https://doi.org/10.1088/0264-9381/17/18/313
https://doi.org/10.1140/epjc/s10052-018-6050-3
https://doi.org/10.1140/epjc/s10052-018-6050-3
https://doi.org/10.1140/epjc/s10052-018-6050-3
https://doi.org/10.1140/epjc/s10052-018-6050-3
https://doi.org/10.1140/epjc/s10052-018-6050-3
https://doi.org/10.1140/epjc/s10052-018-6050-3
https://doi.org/10.1140/epjc/s10052-018-6050-3
https://doi.org/10.1140/epjc/s10052-018-6050-3
https://doi.org/10.1140/epjc/s10052-018-6050-3
https://doi.org/10.1140/epjc/s10052-018-6050-3
https://doi.org/10.1140/epjc/s10052-018-6050-3
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/8/5/022
https://doi.org/10.1088/0264-9381/8/5/022
https://doi.org/10.1088/0264-9381/8/5/022
https://doi.org/10.1088/0264-9381/8/5/022
https://doi.org/10.1088/0264-9381/8/5/022
https://doi.org/10.1088/0264-9381/8/5/022
https://doi.org/10.1088/0264-9381/8/5/022
https://doi.org/10.1088/0264-9381/8/5/022
https://doi.org/10.1088/0264-9381/8/5/022
https://doi.org/10.1088/0264-9381/10/2/014
https://doi.org/10.1088/0264-9381/10/2/014
https://doi.org/10.1088/0264-9381/10/2/014
https://doi.org/10.1088/0264-9381/10/2/014
https://doi.org/10.1088/0264-9381/10/2/014
https://doi.org/10.1088/0264-9381/10/2/014
https://doi.org/10.1088/0264-9381/10/2/014
https://doi.org/10.1088/0264-9381/10/2/014
https://doi.org/10.1088/0264-9381/10/2/014
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1016/j.jde.2008.05.010
https://doi.org/10.1016/j.jde.2008.05.010
https://doi.org/10.1016/j.jde.2008.05.010
https://doi.org/10.1016/j.jde.2008.05.010
https://doi.org/10.1016/j.jde.2008.05.010
https://doi.org/10.1016/j.jde.2008.05.010
https://doi.org/10.1016/j.jde.2008.05.010
https://doi.org/10.1016/j.jde.2008.05.010
https://doi.org/10.1016/j.jde.2008.05.010
https://doi.org/10.1016/j.jde.2008.05.010

Sneha Pradhan, S. K. Maurya, A. Errehymy ef al.

Chin. Phys. C 49, 1051010 (2025)

[74]
[75]

[76]
(771

(78]
[79]

[80]
(81]

(82]
(83]
[84]
(85]
[86]
(87]

(88]
(89]

[90]
[91]

[92]
(93]
[94]
[95]

[96]
[97]

(98]

Gravitation Theory and Gravitational Collapse, (Chicago:
University of Chicago Press, 1965)

S. Ilijic and M. Sossich, Phys. Rev. D 98(6), 064047
(2018)

S. Iliji¢ and M. Sossich, Phys. Rev. D 102(8), 084019
(2020)

J. Ovalle, Phys. Rev. D 95, 104019 (2017)

S. Maurya, K. N. Singh, M. Govender ef al., Astrophys. J.
925(2), 208 (2022)

J. Ovalle, Phys. Lett. B 788, 213 (2019)

S. K. Maurya, F. Tello-Ortiz, and M. Govender, Fortsch.
Phys. 69(10), 2100099 (2021)

M. Estrada, Eur. Phys. J. C 79,918 (2019)

R. Casadio, E. Contreras, J. Ovalle et al., Eur. Phys. J. C
79, 826 (2019)

J. Ovalle, R. Casadio, R. d. Rocha et al., Eur. Phys. J. C
78, 960 (2018)

E. Contreras and Z. Stuchlik, Eur. Phys. J. C 82, 706
(2022)

J. Ovalle, C. Posada, and Z. Stuchlik, Class. Quant. Grav.
36(20), 205010 (2019)

E. Contreras and E. Fuenmayor, Phys. Rev. D 103(12),
124065 (2021)

E. Contreras and P. Barguefio, Class. Quant. Grav. 36(21),
215009 (2019)

V. Torres-Sanchez and E. Contreras, Eur. Phys. J. C 79,
829 (2019)

R. da Rocha, Eur. Phys. J. C 82(1), 34 (2022)

J. Ovalle, E. Contreras and Z. Stuchlik, Eur. Phys. J. C
82(3), 211 (2022)

H. W. Turnbull, Math. Gaz. 12(170), 122 (1924)

J. A. Schouten, Ricci-calculus: an introduction to tensor
analysis and its geometrical applications, (New York:
Springer, 2013)

K. Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1979)
R.C. Tolman, Phys. Rev. 55, 364 (1939)

J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55(4),
374 (1939)

J. Ovalle, R. Casadio, R. da Rocha et al., Eur. Phys. J. C
78(2), 122 (2013)

E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984)

A. K. Prasad and J. Kumar, Astrophys. Space Sci. 366, 26
(2021)

P.C.Vaidya and R. Tikekar, J. Astrophys. Astr 3, 325

[112]
[113]
[114]
[115]
[116]
[117]

[118]

N —
[=3 ]
—_

[121]

1051010-24

(1982)

M. C. Durgapal and R. Bannerji, Phys. Rev. D 27, 328
(1983)

J. Kumar and Y. K. Gupta, Astrophys. Space Sci. 299, 43
(2005)

M. D. Mkenyeleye, R. Goswami, and S. D. Maharaj, Phys.
Rev. D 90, 064034 (2014)

Y. K. Gupta and M. K. Jasim, Astrophys. Space Sci. 272,
403 (2000)

G. Darmois, Les équations de la gravitation einsteinienne,
(Paris: Gauthier-Villars, 1927)

W. Israel, Nuovo Cim. B 48, 463 (1967)

J. M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485 (2012)
F. Ozel, D. Psaltis, R. Narayan et al., Astrophys. J. 757, 55
(2012)

M. Fortin, J. L. Zdunik, P. Haensel et al., Astron.
Astrophys. 576, A68 (2015)

F. Ozel and P. Freire, Ann. Rev. Astron. Astrophys. 54,
401 (2016)

B. P. Abbott ef al., Phys. Rev. Lett. 121(16), 161101
(2018)

M. C. Miller et al., Astrophys. J. Lett. 887, 1 (2019)

T. E. Riley, A. L. Watts, P. S. Ray et al., Astrophys. J.
Lett. 918, L27 (2021)

A. V. Astashenok, S. Capozziello, S. D. Odintsov et al.,
Phys. Lett. B 816, 136222 (2021)

A. V. Astashenok, S. Capozziello, S. D. Odintsov et al.,
Phys. Lett. B 811, 135910 (2020)

S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D
107(10), 104039 (2023)

S. Chandrasekhar, Astrophys. J. 140, 417 (1964)

S. Chandrasekhar, Phys. Rev. Lett. 12, 114 (1964)

M. Merafina and R. Ruffini, Astron. Astrophys. 221, 4
(1989)

H. Heintzmann and W. Hillebrandt, Phys. Lett. A 54, 349
(1975)

C. C. Moustakidis, Gen. Rel. Grav. 49, 1 (2017)

B. K. Harrison, K. S. Thorne, M. Wakanoet al,
Gravitation Theory and Gravitational Collapse, (Chicago:
University of Chicago Press, 1965)

Y. B. Zeldovich and 1. D. Novikov,
astrophysics. Vol 1: Stars and relativity,
University of Chicago Press, 1971)

Relativistic
(Chicago:


https://doi.org/10.1103/PhysRevD.98.064047
https://doi.org/10.1103/PhysRevD.98.064047
https://doi.org/10.1103/PhysRevD.98.064047
https://doi.org/10.1103/PhysRevD.98.064047
https://doi.org/10.1103/PhysRevD.98.064047
https://doi.org/10.1103/PhysRevD.98.064047
https://doi.org/10.1103/PhysRevD.98.064047
https://doi.org/10.1103/PhysRevD.98.064047
https://doi.org/10.1103/PhysRevD.98.064047
https://doi.org/10.1103/PhysRevD.98.064047
https://doi.org/10.1103/PhysRevD.98.064047
https://doi.org/10.1103/PhysRevD.102.084019
https://doi.org/10.1103/PhysRevD.102.084019
https://doi.org/10.1103/PhysRevD.102.084019
https://doi.org/10.1103/PhysRevD.102.084019
https://doi.org/10.1103/PhysRevD.102.084019
https://doi.org/10.1103/PhysRevD.102.084019
https://doi.org/10.1103/PhysRevD.102.084019
https://doi.org/10.1103/PhysRevD.102.084019
https://doi.org/10.1103/PhysRevD.102.084019
https://doi.org/10.1103/PhysRevD.102.084019
https://doi.org/10.1103/PhysRevD.102.084019
https://doi.org/10.1103/PhysRevD.95.104019
https://doi.org/10.1103/PhysRevD.95.104019
https://doi.org/10.1103/PhysRevD.95.104019
https://doi.org/10.1103/PhysRevD.95.104019
https://doi.org/10.1103/PhysRevD.95.104019
https://doi.org/10.1103/PhysRevD.95.104019
https://doi.org/10.1103/PhysRevD.95.104019
https://doi.org/10.1103/PhysRevD.95.104019
https://doi.org/10.1103/PhysRevD.95.104019
https://doi.org/10.1103/PhysRevD.95.104019
https://doi.org/10.3847/1538-4357/ac4255
https://doi.org/10.3847/1538-4357/ac4255
https://doi.org/10.3847/1538-4357/ac4255
https://doi.org/10.3847/1538-4357/ac4255
https://doi.org/10.3847/1538-4357/ac4255
https://doi.org/10.3847/1538-4357/ac4255
https://doi.org/10.3847/1538-4357/ac4255
https://doi.org/10.3847/1538-4357/ac4255
https://doi.org/10.3847/1538-4357/ac4255
https://doi.org/10.3847/1538-4357/ac4255
https://doi.org/10.3847/1538-4357/ac4255
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1002/prop.202100099
https://doi.org/10.1140/epjc/s10052-019-7444-6
https://doi.org/10.1140/epjc/s10052-019-7444-6
https://doi.org/10.1140/epjc/s10052-019-7444-6
https://doi.org/10.1140/epjc/s10052-019-7444-6
https://doi.org/10.1140/epjc/s10052-019-7444-6
https://doi.org/10.1140/epjc/s10052-019-7444-6
https://doi.org/10.1140/epjc/s10052-019-7444-6
https://doi.org/10.1140/epjc/s10052-019-7444-6
https://doi.org/10.1140/epjc/s10052-019-7444-6
https://doi.org/10.1140/epjc/s10052-019-7444-6
https://doi.org/10.1140/epjc/s10052-019-7358-3
https://doi.org/10.1140/epjc/s10052-019-7358-3
https://doi.org/10.1140/epjc/s10052-019-7358-3
https://doi.org/10.1140/epjc/s10052-019-7358-3
https://doi.org/10.1140/epjc/s10052-019-7358-3
https://doi.org/10.1140/epjc/s10052-019-7358-3
https://doi.org/10.1140/epjc/s10052-019-7358-3
https://doi.org/10.1140/epjc/s10052-019-7358-3
https://doi.org/10.1140/epjc/s10052-019-7358-3
https://doi.org/10.1140/epjc/s10052-018-6450-4
https://doi.org/10.1140/epjc/s10052-018-6450-4
https://doi.org/10.1140/epjc/s10052-018-6450-4
https://doi.org/10.1140/epjc/s10052-018-6450-4
https://doi.org/10.1140/epjc/s10052-018-6450-4
https://doi.org/10.1140/epjc/s10052-018-6450-4
https://doi.org/10.1140/epjc/s10052-018-6450-4
https://doi.org/10.1140/epjc/s10052-018-6450-4
https://doi.org/10.1140/epjc/s10052-018-6450-4
https://doi.org/10.1140/epjc/s10052-022-10684-4
https://doi.org/10.1140/epjc/s10052-022-10684-4
https://doi.org/10.1140/epjc/s10052-022-10684-4
https://doi.org/10.1140/epjc/s10052-022-10684-4
https://doi.org/10.1140/epjc/s10052-022-10684-4
https://doi.org/10.1140/epjc/s10052-022-10684-4
https://doi.org/10.1140/epjc/s10052-022-10684-4
https://doi.org/10.1140/epjc/s10052-022-10684-4
https://doi.org/10.1140/epjc/s10052-022-10684-4
https://doi.org/10.1088/1361-6382/ab4461
https://doi.org/10.1088/1361-6382/ab4461
https://doi.org/10.1088/1361-6382/ab4461
https://doi.org/10.1088/1361-6382/ab4461
https://doi.org/10.1088/1361-6382/ab4461
https://doi.org/10.1088/1361-6382/ab4461
https://doi.org/10.1088/1361-6382/ab4461
https://doi.org/10.1088/1361-6382/ab4461
https://doi.org/10.1088/1361-6382/ab4461
https://doi.org/10.1088/1361-6382/ab4461
https://doi.org/10.1088/1361-6382/ab4461
https://doi.org/10.1103/PhysRevD.103.124065
https://doi.org/10.1103/PhysRevD.103.124065
https://doi.org/10.1103/PhysRevD.103.124065
https://doi.org/10.1103/PhysRevD.103.124065
https://doi.org/10.1103/PhysRevD.103.124065
https://doi.org/10.1103/PhysRevD.103.124065
https://doi.org/10.1103/PhysRevD.103.124065
https://doi.org/10.1103/PhysRevD.103.124065
https://doi.org/10.1103/PhysRevD.103.124065
https://doi.org/10.1103/PhysRevD.103.124065
https://doi.org/10.1103/PhysRevD.103.124065
https://doi.org/10.1088/1361-6382/ab47e2
https://doi.org/10.1088/1361-6382/ab47e2
https://doi.org/10.1088/1361-6382/ab47e2
https://doi.org/10.1088/1361-6382/ab47e2
https://doi.org/10.1088/1361-6382/ab47e2
https://doi.org/10.1088/1361-6382/ab47e2
https://doi.org/10.1088/1361-6382/ab47e2
https://doi.org/10.1088/1361-6382/ab47e2
https://doi.org/10.1088/1361-6382/ab47e2
https://doi.org/10.1088/1361-6382/ab47e2
https://doi.org/10.1088/1361-6382/ab47e2
https://doi.org/10.1140/epjc/s10052-019-7341-z
https://doi.org/10.1140/epjc/s10052-019-7341-z
https://doi.org/10.1140/epjc/s10052-019-7341-z
https://doi.org/10.1140/epjc/s10052-019-7341-z
https://doi.org/10.1140/epjc/s10052-019-7341-z
https://doi.org/10.1140/epjc/s10052-019-7341-z
https://doi.org/10.1140/epjc/s10052-019-7341-z
https://doi.org/10.1140/epjc/s10052-019-7341-z
https://doi.org/10.1140/epjc/s10052-019-7341-z
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-021-09971-3
https://doi.org/10.1140/epjc/s10052-022-10168-5
https://doi.org/10.1140/epjc/s10052-022-10168-5
https://doi.org/10.1140/epjc/s10052-022-10168-5
https://doi.org/10.1140/epjc/s10052-022-10168-5
https://doi.org/10.1140/epjc/s10052-022-10168-5
https://doi.org/10.1140/epjc/s10052-022-10168-5
https://doi.org/10.1140/epjc/s10052-022-10168-5
https://doi.org/10.1140/epjc/s10052-022-10168-5
https://doi.org/10.1140/epjc/s10052-022-10168-5
https://doi.org/10.1140/epjc/s10052-022-10168-5
https://doi.org/10.1140/epjc/s10052-022-10168-5
https://doi.org/10.2307/3604670
https://doi.org/10.2307/3604670
https://doi.org/10.2307/3604670
https://doi.org/10.2307/3604670
https://doi.org/10.2307/3604670
https://doi.org/10.2307/3604670
https://doi.org/10.2307/3604670
https://doi.org/10.2307/3604670
https://doi.org/10.2307/3604670
https://doi.org/10.2307/3604670
https://doi.org/10.2307/3604670
https://doi.org/10.2307/3604670
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1140/epjc/s10052-018-5606-6
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1007/s10509-021-03931-9
https://doi.org/10.1007/s10509-021-03931-9
https://doi.org/10.1007/s10509-021-03931-9
https://doi.org/10.1007/s10509-021-03931-9
https://doi.org/10.1007/s10509-021-03931-9
https://doi.org/10.1007/s10509-021-03931-9
https://doi.org/10.1007/s10509-021-03931-9
https://doi.org/10.1007/s10509-021-03931-9
https://doi.org/10.1007/s10509-021-03931-9
https://doi.org/10.1007/BF02714870
https://doi.org/10.1007/BF02714870
https://doi.org/10.1007/BF02714870
https://doi.org/10.1007/BF02714870
https://doi.org/10.1007/BF02714870
https://doi.org/10.1007/BF02714870
https://doi.org/10.1007/BF02714870
https://doi.org/10.1007/BF02714870
https://doi.org/10.1007/BF02714870
https://doi.org/10.1103/PhysRevD.27.328
https://doi.org/10.1103/PhysRevD.27.328
https://doi.org/10.1103/PhysRevD.27.328
https://doi.org/10.1103/PhysRevD.27.328
https://doi.org/10.1103/PhysRevD.27.328
https://doi.org/10.1103/PhysRevD.27.328
https://doi.org/10.1103/PhysRevD.27.328
https://doi.org/10.1103/PhysRevD.27.328
https://doi.org/10.1103/PhysRevD.27.328
https://doi.org/10.1007/s10509-005-2794-y
https://doi.org/10.1007/s10509-005-2794-y
https://doi.org/10.1007/s10509-005-2794-y
https://doi.org/10.1007/s10509-005-2794-y
https://doi.org/10.1007/s10509-005-2794-y
https://doi.org/10.1007/s10509-005-2794-y
https://doi.org/10.1007/s10509-005-2794-y
https://doi.org/10.1007/s10509-005-2794-y
https://doi.org/10.1007/s10509-005-2794-y
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1023/A:1002657611465
https://doi.org/10.1023/A:1002657611465
https://doi.org/10.1023/A:1002657611465
https://doi.org/10.1023/A:1002657611465
https://doi.org/10.1023/A:1002657611465
https://doi.org/10.1023/A:1002657611465
https://doi.org/10.1023/A:1002657611465
https://doi.org/10.1023/A:1002657611465
https://doi.org/10.1023/A:1002657611465
https://doi.org/10.1007/BF02712210.
https://doi.org/10.1007/BF02712210.
https://doi.org/10.1007/BF02712210.
https://doi.org/10.1007/BF02712210.
https://doi.org/10.1007/BF02712210.
https://doi.org/10.1007/BF02712210.
https://doi.org/10.1007/BF02712210.
https://doi.org/10.1007/BF02712210.
https://doi.org/10.1007/BF02712210.
https://doi.org/10.1007/BF02712210.
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1088/0004-637X/757/1/55
https://doi.org/10.1088/0004-637X/757/1/55
https://doi.org/10.1088/0004-637X/757/1/55
https://doi.org/10.1088/0004-637X/757/1/55
https://doi.org/10.1088/0004-637X/757/1/55
https://doi.org/10.1088/0004-637X/757/1/55
https://doi.org/10.1088/0004-637X/757/1/55
https://doi.org/10.1088/0004-637X/757/1/55
https://doi.org/10.1088/0004-637X/757/1/55
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.3847/1538-4357/ab5067
https://doi.org/10.3847/1538-4357/ab5067
https://doi.org/10.3847/1538-4357/ab5067
https://doi.org/10.3847/1538-4357/ab5067
https://doi.org/10.3847/1538-4357/ab5067
https://doi.org/10.3847/1538-4357/ab5067
https://doi.org/10.3847/1538-4357/ab5067
https://doi.org/10.3847/1538-4357/ab5067
https://doi.org/10.3847/1538-4357/ab5067
https://doi.org/10.3847/1538-4357/ab5067
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.1016/j.physletb.2021.136222
https://doi.org/10.1016/j.physletb.2021.136222
https://doi.org/10.1016/j.physletb.2021.136222
https://doi.org/10.1016/j.physletb.2021.136222
https://doi.org/10.1016/j.physletb.2021.136222
https://doi.org/10.1016/j.physletb.2021.136222
https://doi.org/10.1016/j.physletb.2021.136222
https://doi.org/10.1016/j.physletb.2021.136222
https://doi.org/10.1016/j.physletb.2021.136222
https://doi.org/10.1016/j.physletb.2021.136222
https://doi.org/10.1016/j.physletb.2020.135910
https://doi.org/10.1016/j.physletb.2020.135910
https://doi.org/10.1016/j.physletb.2020.135910
https://doi.org/10.1016/j.physletb.2020.135910
https://doi.org/10.1016/j.physletb.2020.135910
https://doi.org/10.1016/j.physletb.2020.135910
https://doi.org/10.1016/j.physletb.2020.135910
https://doi.org/10.1016/j.physletb.2020.135910
https://doi.org/10.1016/j.physletb.2020.135910
https://doi.org/10.1016/j.physletb.2020.135910
https://doi.org/10.1103/PhysRevD.107.104039
https://doi.org/10.1103/PhysRevD.107.104039
https://doi.org/10.1103/PhysRevD.107.104039
https://doi.org/10.1103/PhysRevD.107.104039
https://doi.org/10.1103/PhysRevD.107.104039
https://doi.org/10.1103/PhysRevD.107.104039
https://doi.org/10.1103/PhysRevD.107.104039
https://doi.org/10.1103/PhysRevD.107.104039
https://doi.org/10.1103/PhysRevD.107.104039
https://doi.org/10.1103/PhysRevD.107.104039
https://doi.org/10.1103/PhysRevD.107.104039
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1086/147938
https://doi.org/10.1103/PhysRevLett.12.114
https://doi.org/10.1103/PhysRevLett.12.114
https://doi.org/10.1103/PhysRevLett.12.114
https://doi.org/10.1103/PhysRevLett.12.114
https://doi.org/10.1103/PhysRevLett.12.114
https://doi.org/10.1103/PhysRevLett.12.114
https://doi.org/10.1103/PhysRevLett.12.114
https://doi.org/10.1103/PhysRevLett.12.114
https://doi.org/10.1103/PhysRevLett.12.114
https://doi.org/10.1103/PhysRevLett.12.114
https://articles.adsabs.harvard.edu//full/1989A%26A...221....4M/0000004.000.html
https://articles.adsabs.harvard.edu//full/1989A%26A...221....4M/0000004.000.html
https://articles.adsabs.harvard.edu//full/1989A%26A...221....4M/0000004.000.html
https://articles.adsabs.harvard.edu//full/1989A%26A...221....4M/0000004.000.html
https://articles.adsabs.harvard.edu//full/1989A%26A...221....4M/0000004.000.html
https://articles.adsabs.harvard.edu//full/1989A%26A...221....4M/0000004.000.html
https://articles.adsabs.harvard.edu//full/1989A%26A...221....4M/0000004.000.html
https://articles.adsabs.harvard.edu//full/1989A%26A...221....4M/0000004.000.html
https://articles.adsabs.harvard.edu//full/1989A%26A...221....4M/0000004.000.html
https://doi.org/10.1016/0375-9601(75)90764-1
https://doi.org/10.1016/0375-9601(75)90764-1
https://doi.org/10.1016/0375-9601(75)90764-1
https://doi.org/10.1016/0375-9601(75)90764-1
https://doi.org/10.1016/0375-9601(75)90764-1
https://doi.org/10.1016/0375-9601(75)90764-1
https://doi.org/10.1016/0375-9601(75)90764-1
https://doi.org/10.1016/0375-9601(75)90764-1
https://doi.org/10.1016/0375-9601(75)90764-1
https://doi.org/10.1007/s10714-016-2163-x
https://doi.org/10.1007/s10714-016-2163-x
https://doi.org/10.1007/s10714-016-2163-x
https://doi.org/10.1007/s10714-016-2163-x
https://doi.org/10.1007/s10714-016-2163-x
https://doi.org/10.1007/s10714-016-2163-x
https://doi.org/10.1007/s10714-016-2163-x
https://doi.org/10.1007/s10714-016-2163-x
https://doi.org/10.1007/s10714-016-2163-x
https://doi.org/10.1007/s10714-016-2163-x

	I INTRODUCTION
	IIMATHEMATICALFRAMEWORKOFf(\calT)GRAVITYWITHADDITIONALSOURCE
	IIIMINIMALLYGRAVITATIONALLYDECOUPLEDSOLUTIONINf(\calT)GRAVITY
	AMimickingthedensityconstraints(ρ=Θ00)
	BMimickingthepressureconstraints(pr=Θ11)

	IV MATCHING CONDITION: EXTERIOR SPACE-TIME
	V DEFORMED STRANGE STAR MODELS AND THEIR RELEVANCE TO ASTROPHYSICS
	VI MASS-RADIUS RELATION FOR MINIMALLY DEFORMED STRANGE STAR MODELS AND THEIR RELEVANCE TO ASTROPHYSICS
	VII STABILITY ANALYSIS
	A Stability analysis via adiabatic index
	B Stability analysis via Harrison-Zeld́ovich-Novikov criterion

	VIII EQUI-MASS DIAGRAMS FOR THE MEASUREMENT OF MASS
	IX CONCLUSIONS
	DATA AVAILABILITY
	ACKNOWLEDGEMENT
	APPENDIX
	REFERENCES

