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Abstract: In this study, we present expressions for the full effective potential corresponding to the one-photon ex-

change interaction between two fermions within the framework of the effective Schrédinger-like equation, derived

exactly from the Bethe-Salpeter equation in quantum electrodynamics. The final effective potential is expressed in

terms of eight scalar functions. When these scalar functions are expanded order by order in terms of velocities, we

systematically recover the non-relativistic effective potential organized in terms of velocities. By retaining the exact

momentum dependence in the effective potential, we estimate its corrections to the energy spectrum of hydrogen us-

ing a highly precise numerical method. A comparison is made between our numerical results and those obtained us-

ing conventional the bound-state perturbative theory. Our calculations suggest that this method can accurately ac-

count for all relativistic contributions. It would be interesting to extend these calculations to positronium, muonic hy-
drogen, and scenarios involving nuclear structure and radiative corrections.
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I. INTRODUCTION

The study of the energy spectrum of hydrogen-like
atoms has been pivotal in the development of quantum
mechanics and has remained important for over a century.
However, addressing bound states within a pure quantum
field theory, particularly when the non-relativistic expan-
sion is not valid, remains challenging. Over the past fif-
teen years, precise experimental measurements of the
Lamb shifts in hydrogen and muonic hydrogen have ad-
vanced significantly; however, they have also presented
numerous challenges [1—8]. Theoretically, the bound-
state perturbative theory is commonly used to estimate
energy corrections beyond the Coulomb potential (see re-
cent reviews and books [9-11] and the references
therein). To reliably estimate these corrections, the effect-
ive Schrodinger-like equation [12] or effective Dirac-like
equations [13], which are derived exactly from the Bethe-
Salpeter (BS) equation [14, 15]in quantum electro-
dynamics (QED) or non-relativistic quantum electro-
dynamics (NRQED) [16], should be employed, as there is
no analytical solution for the physical BS equation.

In the bound-state perturbative theory, the interaction
kernel in the effective Schrodinger-like equation or ef-
fective Dirac-like equations is expanded order by order in
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terms of the fine structure constant «., velocities p;/m,,,
and m,/m,, where p; represents the three momenta of the
particles in the center-of-mass frame, and m, and m, de-
note the masses of the electron and proton, respectively.
The expansion of the interaction kernel in terms of velo-
cities implies that only contributions from low momenta
are accurately considered, while contributions from high
momenta need to be treated separately.

Meanwhile, the wave functions derived from the
Schrodinger-like equation with the Coulomb potential de-
crease polynomially with momentum in the momentum
space. These wave functions are used over the entire mo-
mentum range in the bound-state perturbative theory. The
integration of the wave functions and interaction kernels
includes contributions from both low and high momenta,
which can introduce additional ultraviolet (UV) diver-
gences. These differ somewhat from the usual UV diver-
gences in scattering amplitudes that arise from loop integ-
rals in radiative corrections. Regularization methods are
employed to handle these UV divergences [17—19]. After
considering all the contributions at the same order, these
UV divergences eventually cancel each other out, and the
final results are independent of the regularization proced-
ure and free of divergences.

Throughout history, various other methods have also
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been employed to investigate corrections beyond the
Coulomb potential. These include the use of the Dirac
equation with an effective potential [20], external field
approximation [9], quasi-potential approach [21-23], and
Foldy-Wouthuysen transformation method [24—26],among
others.

In this study, we focus our discussion on the relativ-
istic effective potential between two fermions within the
framework of the effective Schrodinger-like equation,
which is derived exactly from the Bethe-Salpeter equa-
tion in QED [12]. Different from the usual bound-state
perturbative theory applied in hydrogen-like systems, we
do not expand the interaction kernel in terms of velocit-
ies and m,/m,, but retain them in its relativistic form. The
relativistic form effective potential has correct behavior at
high energy or short distance. By taking the one-photon-
exchange (OPE) interaction kernel as an example, we ex-
press the corresponding relativistic form effective poten-
tial using eight scalar functions which include all relativ-
istic corrections at the order of «,. This effective poten-
tial is valid across the entire momentum range and repro-
duces the usual low energy behavior. With this potential,
the additional UV divergences present in the bound-state
perturbative theory naturally disappear. Furthermore, we
use a highly precise numerical method to calculate the en-
ergy spectrum based on this potential. This numerical cal-
culation can be regarded as a complete result incorporat-
ing the OPE interaction and provides an interesting basis
for comparison with results obtained using the conven-
tional bound-state perturbative theory.

The paper is organized as follows. In Sec. II, we in-
troduce the framework used in our calculations. In Sec.
III, we present the numerical results for specific states
and highlight their properties. We also provide a brief
discussion comparing these numerical results with those
obtained using the conventional bound-state perturbative
approach.

II. BASIC FORMULA

A. Effective Schrodinger-like equation

In QED, the bound states of the ep system in the cen-
ter frame can be accurately described by the following ef-
fective Schrodinger-like equation [12]:

Eps ~
[Po—E; —EV] ¢15(p1) = / ﬁim,ﬁy(m P P)bru (D).
(1)

where P = (P(),O) =pi1+pry=p3tps; Pip3a are the mo-
menta of final and intermediate fermions, as shown in

Fig. 1; E¢ = \/pi+m2; E/ = \/p;+m2; p, are the three
momenta of p;; m,, are the masses of the electron and
proton; and A,u are the indices related to the spinors. The

P1

Fig. 1. Diagram for the BS equation.

interaction kernel 1?:1/1,,1,1 (P1,p3,P) is defined as

ud/(pl s M, /_l)ﬁB(_Pl 5 mpsp)
\/4EfEf
Uo(p3, M, Dug(—p3,mp, ()

/AESEY ’

I?M,ﬁu(Pl,P,%P) =

Xk&a,ﬁﬁ(FlsPLP) (2)

where the spinors are chosen as

E! +m,
T
u(pia mgy, /l) = 1 i 5

L — |
GE G PxW

where y(+)=(1,0)" and x(-)=(0,1)". The
K(p\, ps, P) is defined as

kernel

K(Pl’pS’P) = I_{(pl’p:i’P) 0

s
—0—
1*P3*T('P0

K = [I-Kgs(Go— G)l™' Kgs, (3)

where 7, =m,/(m,+m,), and Kpsis the usual two-body
BS irreducible kernel. Here, we directly make the as-
sumption that the inverse [I - Kps(Go—Go)]™' exists, and
that K can be expressed in a perturbative form as follows:

_ d*k
K(p1,ps,P) = KBS(Pl,P3,P)+/WKBs(pl,k,P)[Go(k»P)
_G_O(ksP)]KBS(k’p3’P)+"'
“4)

where

Go(k, P) = S5 (k,mo)S by (P — k,my),
AL(K)AL(=k) AL(K)AL(-k)
Py—E(k)—E,(k) Po+E.(k)+E,(k)
AL ()AL (k)
Py—E.(k)-E,(k)’

Go(k, P) = 27is (k°)

~ 27mis (k")

)

In the above expressions, S{;” are the full propagators of
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the electron and proton [10], respectively, and A% (k) are
ALk) = [ERyy F (k-y=m))]“ 2B, (6)

with E“(k) = \/k>+m?2.
In the 1eading order of «,, p;/m,,, and m,/m,, the in-
teraction kernel K can be chosen as

2
- - 1
iK' (p1,p3, P) = 616, £ U
1w (P1:P3: P) = 0103 |p1 = p3I* [N(p)N(p3)]'/2 @)
where
[Po+E¢ + E'1[P3— (E¢ + EP)?)
N(p)y = 20 ° ®)

2P, [P(z, —(m, - mp)z]

By utilizing this effective interaction kernel and ex-
panding the equation in terms of momenta and bound en-
ergy, the effective Schrodinger-like equation Eq. (1) sim-
plifies to the Schrodinger equation with the Coulomb po-
tential. The contributions from interaction kernels in-
volving higher orders of «,, p;/m,,, and m,/m, beyond
KO(p,,ps,P) can be estimated systematically using the
bound-state perturbative theory, order by order. This ap-
proach can also be applied in NRQED, where the power
counting and analytical calculations are more straightfor-
ward.

B. Full interaction kernel in the leading order of «,

In the bound-state perturbative theory, the interaction
kernels are expanded order by order in terms of p;/m,,,
and the corresponding matrix elements often exhibit di-
vergences. To handle these divergences, regular methods
are employed during the intermediate calculations. It is
important to note that these divergences arise naturally
owing to the slow decrease of the wave functions of the
bound states with respect to momenta p;, whereas the ex-
pansion of the interaction kernels in terms of momenta is
not valid in the high momentum region.

In this study, we adopt a different approach by not ex-
panding the interaction kernel K (p1,p3,P) in terms of
pi/m,, and m,/m,. Instead, we employ a numerical meth-
od to directly solve Eq. (1) using the leading-order «, ex-
pression of I?(pl,p3,P).

In the leading order of «., only the OPE interaction
contributes. As an approximation, we consider the proton
to be a point-like particle in this study. Therefore, we
have

Kign 35(P1 3 P) = (=ieYso) Dy (p1 = p3)(+ieyyy),  (9)

and

IZPEJ:TePU

KO p1.ps. P) = K3 (pr.ps. P)| ., (10)

where D, (p: — p3) refers to the propagator of the photon.
In the Coulomb gauge, we have

i

Dyo(q) = I
_19;qx 16
PHD = g g

and

) _ i
K0 .(p1,ps, P) = (—leyga)w (+ieygy)

19,qr 10
lgl* gl

+(ierh)| | iers. an
with ¢ = p; — p3, and j,k=1,2,3. Here, ¢° = 0 because of
the special choice of the momenta with p? = p} = 7,P,.

After performing the necessary calculations, we ob-
tain the following result:

iK31u(P1, 23 P) = X T QT @V (1, p)x” () (D)

8 = o
EC I (" (T (x“ (D)
473 \/E{ESEVESX{ XXV XY

)

i=1

(12)

where

T, =1,

T, =i(p1 X p3)-0°,

T5 =i(p1 X p3)-o7,

Ty=p-0'p -0’

Ts=pi-0°ps-07,

Ts=ps;-0°p-07,

T;=p;-0°ps-0”,

Ts=0°-07, (13)
and

Ci =(z2—2)(p1-p3)’ —21z3p1 - ps —2lpi Ipsf
—z1XfX§XfX§,

Cy = —(E} +E5)(X] + X§)p1 - ps +21p1 - P
+(mezy + )XV + XD+ 7, XV X,

Cs = —(EY + E\)(X{ + X5)p1 - ps + 21p1 - s

+(mpzy +1,)(X] + X3) + 21 X7 X35,
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Cy = 2ESELp: - ps + ES(E] = ED)Ips|” — E5(m,z +1,)
—mengl,
Cs = —pi - p3[EV(EY + E5) + ES(ES - EY)]+ E{E5z4
+E{m,z + m X5z,
Co = —pi-p3[E{(E] — E5) + ES(ES + E7)] + ESEV 2,
+E{myz +m Xz,
C; = 2EE{p\ - ps + E5(ES — ED)pi[* — E{(myz) +1,)
—meXfZl,
Cs = (=p:1 - p3(E| + E5) +m,z1 +1,)(—p; - p3(E7 + EY)
+mpzi +1,), (14)
with
X' =E!+m,,
z = pil +1psl’ - 2p - ps.
2 = (X7 + X)H(XT +X3),
3 = X X5+ XV XY,
2 = pif +Ipsl,
t = E{|ps|’ + Eslpi
t, EE{’|p3|2+E§|p1|2. (15)

By expanding the potential V' in terms of p;/m,,, it
can be verified that the leading-order term corresponds to
the Coulomb potential, while the next-leading-order
terms correspond to the Breit potential. The higher-order
terms correspond to the effective potential beyond the
Breit potential. Similarly, the expansion results corres-
pond to the amplitude in NRQED at the leading order of
., with higher orders of p;/m,,.

C. Energy correction in the bound-state perturbative
theory

Expanding H, =V + (E{ + EY —m, —m,)2n)*8*(p, — p3)
in terms of momenta yields the following results:

Hy=H?+HY + .., (16)
where
2 2 2
HO — {A+A} S (o —po)—
p 2m, " 2m, (2n)y’6°(p1 —p3) 7
Y = Hi B 4 a
with

H o) = - | 2o+ 2] 0np6(p, - po)
»,0 D1,q9) = sz 8m13, s D1—D3
21 1 2 P
+z{7 7%*4{@_1%},
8 Lm;  my mem,, q q
e’ e’

H (p,.q) = {7+7
pa (P19 dm2  2m,m,

e? {O'B-qO"’-q

4m,m, q?

+{ e’ e? }io'p'(qxpl)
4m? - 2mgm, q’ ’

1.
| i @,

H;g(Pl,q) == _O-E'o-p}

(18)

Here, HS" corresponds to the Breit potential in mo-
mentum space.

In perturbative bound-state theory, for a state
|n,l, j,F), labeled as nlf , where n is the principal quantum
number, / corresponds to the orbital angular momentum
of the electron, j corresponds to the sum of the spin and
orbital angular momentum of the electron, and F corres-
ponds to the total angular momentum, the energy contri-
bution of hydrogen owing to the OPE interaction can be
written as

E,=E?+EY+E® +.... (19)

where

2
@M

2n2’

E? =(n,lL j,FIH?|n,1,j,F) = -
E\ = (n.Lj.FIHYn.1,j.F),
EY =(nl,j,FIHYQEP - H*)"' QH"\n, 1, j.F)

+(n,L, j,FIH|n,L, j,F). (20)
2
Here, a. = = H= ey and Q is a projection operat-
ere, e 47’ m,+m,’ pro) P

or on a subspace orthogonal to |n,1, j, F).
The calculation of Eff,-) can be performed directly, and
the analytic results are expressed as

EY = E+E+ED, 1)
where
E® = @ {1 _ (2—6n)u }
0 o3 n(m,+m,) .’
Ef:? _ 2atum,(2m, +my,) j—1 (1— 50,

n(m,+m,)?* QI+ D2j+1)
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E® = ay’ 1
n2 —
n3(m, +m,) 21+ H(2F +1)

4 3

§|:F2+F—E:|60[, l:O
1

-7 1#0,F=1+1 (22)

1

-, l#0,F=1-1.

(I+1) *

The calculation of E is somewhat complex [27-30],
and there is a UV divergence in the middle matrix ele-
ments for the S wave, as explained above. In this study,
we do not compare these results.

D. Form of the wave function

The wave function in Eq. (1) can be written as
$1a(P) = > X QX @Pa5(p1)- (23)
ap
This results in the following equation:

d3
[Po—E{—EV] ®;5(p)) = /(ZTP;V@Q,Bﬁ(pl’p3)q)a,ﬁ(P3)~
(24)

To compare with the results in Eq. (22), we also con-
sider the state of the system as n/f. For F = j+1=1+1,
we have the following form for @, 4(p;):

Do p(P3) = > XalSIWp(s e, sSKFFljjes 557)®in(ps),

p
¢ ,s{.

(25)

where F. is taken as F, and only s¢ and s” need to be
summed. When the effective potential J” does not include
spin-dependent terms, the above form of the wave func-
tion gives the same result as the following form:

(Da,ﬂ(P3) - q)nlm (PS) (26)

We would also like to mention that the form of the
wave functions expressed by Eq. (25) corresponds to the
quantum numbers in non-relativistic quantum mechanics.
When discussing states in QED, one can consider J as
suitable quantum numbers to determine the most general
form of the wave function @, for solving the equation.
In this case, effects such as mixing of the S and D waves
naturally appear. However, in this study, we limit our dis-
cussion to the relativistic effects when considering the
above form of the wave functions.

E. Numerical method

To calculate the energy contributions beyond the
bound-state perturbative theory, we expand ®,,;,(p) as

Nmax Nmax

Dun(P) > D> Catbn (@)= > cutdy (PDYi(Qy).  (27)

i=l+1 i=l+1
where
(0)(|p|) _ 22l+3l§la3/2i2+l I (l— |- 1);
VT @+ DR o (4!
2 =2
m (P71
XCiip (ﬂﬁﬁ) (28)

where C is the Gegenbauer polynomial, p=ap, and

1
a= Eis the Bohr radius.

By choosing a specific value of ng,,, one can calcu-
late the following matrix:

/ & prOY S POLE] + EY 1650055 Pq (1)

&¢p & "
PP Vao o1, PO p), (29)

where @\ 5.(p1) is simply ®,5(p1) in Eq. (25) after repla-
cing @,,(p;) with ¢§,0)(|p1|)Ylm. The integration over the
angles Q, and Q, can be performed analytically, while
the integration over |p,| and |p;| can be performed numer-
ically with high precision. After diagonalizing this mat-
rix, the energy spectrum E, = P, —m,—m, is obtained
approximately.

We would like to highlight a significant difference
between the method described above and the bound state
perturbative theory. In the latter, non-relativistic poten-
tials are utilized order by order. These non-relativistic po-
tentials can lead to additional UV divergences in certain
matrix elements, which are only canceled when all inter-
mediate states are considered. In contrast, our calculation
correctly accounts for the higher energy behavior of the
effective potential, and there are no additional UV diver-
gences; a finite n,,, can yield precise results. We elabor-
ate on this property in detail in the next section.

III. NUMERICAL RESULTS AND DISCUSSION

In our numerical calculations, we set ny,, = 100, and
the physical constants were set as m, =0.510998950
MeV,m, =938.27208816 MeV,and 1/a, = 137.035999084.
The relative precision of the numerical calculation for
each matrix element reached 1072, ensuring that the ab-
solute precision of the matrix elements was better than
107" eV. This guarantees the reliability of the numerical
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results. The numerical precision was also tested for the
matrix elements involving the Coulomb and Breit poten-
tials.

To compare the results with those obtained using the
bound-state perturbative theory, we decompose the ef-
fective potential into three terms as follows:

V= V0+V1 +V,, (30)

where V| is spin-independent, V, depends only on the
electron spin, and V, depends on the proton spin. We la-
bel the energy contributions corresponding to
Vo, Vo+ Vi,Vo+ V14V, as E, g, E,1,E,,, respectively. The
contributions beyond the Breit potential are expressed by
the following quantities:

_ 2 4
AE, = E, - E?-E,
_ 2 4 4
AE‘n,l = En,l —E; )— Efl,()) _E( )

nl»

AE,,=E,,~EP-E}-E -ED. (31)

We present the numeric results for AE,; in Tables 1,
2, and 3, respectively, where /=0,1,2 or S,P,D waves,
j=1+1/2, and F =1[+1 are considered. For a more dir-
ect comparison, we also provide the contributions with
specific orders as follows:

au~ 11 peV,
aSu ~77 neV,

e ~ 42 peV. (32)
mp

The results in Tables 1, 2, and 3 clearly demonstrate a
notable property whereby the contributions in the S wave
are significantly larger than those in the P and D waves.

In terms of ma%nitude, the contributions AE, (S) are
ap  30agu

50 T g v;/hlch are larger than

. . a,u . .
the contributions at the order of ﬁ The contributions

he order of 22/
AE, o(P) are on the order o 202

butions AE, (D) weakly depend on n and are much smal-
ler than a®u.

The results for AE, (S) and AE,»(S) are similar to
those for AE, (S), indicating that the contributions from
spin-independent terms are most significant for the S
wave. This is expected, as the contributions from elec-
tron spin are zero for the S wave, and the contributions
from proton spin are greatly suppressed.

The results for AE, (P) and AE,,(P) are similar to
each other and differ significantly from AE, o(P). This in-
dicates that in the P wave, the contributions from the

approximately —

By contrast, the contri-

Table 1. Numeric results for the energy corrections AE, o(l),
where the unit is peV (1072 eV).
peV
" AE,o(S) AE, o(P) AE,o(D)

n=1 —2349361 - -

n=2 —289552 813 -

n=3 —85154 424 13

n=4 —35738 242 16

n=>5 —18225 151 14

Table 2. Numeric results for the energy correction AE, (l)
with j=1+1/2, where the unit is peV (10712 eV).
peV
! AL, 1(S) AE, 1(P) AE, 1(D)

n=1 —2349361 - -

n=2 —289552 —44 -

n=3 —85154 50 3

n=4 —35738 48 6

n=>5 —18225 37 6

Table 3. Numeric results for the energy correction AE, (/)
with F = j+1/2=1[+1, where the unit is peV (10712 eV).
peV
n
AE,2(S) AE, »(P) AE, »(D)

n=1 —2357360 - -

n=2 —290555 —45 -

n=3 —85452 50 3

n=4 —35864 48 6

n=>5 —18289 37 6

electron spin are of the same order as the spin-independ-
ent contributions. The spin-dependent contributions in the
D wave are similar to those in the P wave.

To illustrate the contributions more explicitly, we
define the following terms:

AEi{in = AE‘n,l - AE‘n,O = En,l - En,O - E(4)

nl»

AEP! = AE,»~AE,; = E,o—E,—ES.  (33)

These terms reflect the corrections to the fine struc-
ture and hyperfine structure beyond the Breit potential,
respectively.

The numeric results for AE/™ and AE™/ are presen-
ted in Tables 4 and 5, respectively. The numerical results
in Table 4 indicate that the contributions to the fine strgc—
ture beyond the Breit potential are approximately —%
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Table 4. Numeric results for the energy correction AE-,{ ’"(l)
with j=1+1/2, where the unit is peV (10712 eV).
peV
n
AE]"™(S) AE]"(P) AE)"(D)
n=1 0 - -
n=2 0 —857 -
n=3 0 -374 -10
n=4 0 —194 -10
n=>5 0 -114 -8
Table 5. Numeric results for the energy correction AE™ (1)
with F = [+ 1, where the unit is peV (10712 eV).
peV
" AEP(S) AEY (P) AE (D)
n=1 =7999 - -
n=2 -1003 -0.66 -
n=3 —298 -0.27 —-0.007
n=4 —-126 -0.14 —-0.007
n=>5 —65 -0.08 —0.005

in the P wave and —10 peV in the D wave. These Vahges
a,
are much smaller compared to the contributions of — I;Z,u .

The numeric results in Table 5 show that the contribu-

tions to the hyperfine structure beyond the Breit potential
00aSu m, .
o for the S wave, while the

are approximately — e

contributions are negligible for the P and D waves.

To demonstrate the uncertainty arising from the ap-
proximation of finite n,., we plot AE, o(/,nn,) as a
function of n,,x in Fig. 2. The results clearly indicate that
the uncertainty is smaller than 0.5 peV when ny,, > 60,
suggesting that the approximation is reliable.

In our calculations, we do not expand the OPE inter-
action kernel order by order in momenta; instead, we
solve the effective Schrodinger-like equation using a nu-
merical method. This approach enables us to include all
contributions from ladder diagrams with the approxim-
ated propagator G, and full photon propagator, while ex-
cluding the crossed diagrams. Consequently, the compar-

—~~ 10 T T T T T T T

= o | —— (=0 with con = -2349361 |

L 8r = = = (=1 with con = 813 1

S TP\ e (=2 with con = 13 ]

O 6| ]

(]

AL 5 i
>
Ef |

S 3t i

~-~)

\-/o 2 -\ -
< 4L S i
st Se

LLI 0 feoeee by Maaeagsesaseesseasaesnsasasessnsassd

<] 1 ) ] ) ] . ] . -

20 40 60 80 100
n
max
Fig. 2.  (color online) Numeric results for AE..; (I, nmax) VS.

nmax With 1=0,1 and 2, where the unit is peV (10712 eV).

ison of our results with those obtained from higher-order
bound-state perturbation theory is not straightforward. To
directly compare the pure relativistic contributions due to
the OPE interaction by the two approaches at higher or-
ders, one would need to separate the contributions in the
bound-state perturbation theory based on the diagram
types and momentum regions, and then compare them
with our results. In the bound-state perturbation theory,
the pure relativistic contributions are usually mixed with
the same-order radiative corrections. Therefore, we only
compare our results with E® + E®,

In summary, the effective potential associated with
the full OPE interaction in momentum space is expressed
through eight scalar functions. The expansions of these
scalar functions directly correspond to the ep — ep amp-
litude in NRQED or the quasi-potential at order @, and
any desired order of momenta. Our precise numerical cal-
culations suggest that all relativistic contributions can be
captured using this method. Extending these calculations
to positronium, muonic hydrogen, and cases involving
nuclear structure and radiative corrections would be inter-
esting directions for future research.
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