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Abstract: Analysis of various mass formulas related to neutron-proton correlations in atomic nuclei is carried out.

Using the example of the N=Z chain it is shown that for self-adjoint nuclei various formulas proposed in literature

for estimating the np pairing energy lead to similar results. Significant differences between the calculation methods

arise when nuclei with N 6=Z are considered, which allows to reveal the complexity of neutron-proton correlations

in different types of atomic nuclei and to make assumptions on the correspondence of the mass relation to the real

effect of np pairing. The Shell Model parametrization of the binding energy makes it possible to draw additional
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1 Introduction

Ever since the description of the mechanism of
superconducting-type pair correlations in atomic nuclei
[1], a huge amount of experimental data has been col-
lected and a significant number of effective theoretical
models has been proposed to describe the importance of
neutron and proton pairs for various properties of atomic
nuclei [2–4]. However, due to the constant development
of experimental techniques, it became possible to expand
the range of the nuclei studied in the region far from sta-
bility and to refine significantly the experimental data for
known isotopes, which led to a new wave of theoretical
studies of the structure and dynamics of atomic nuclei.
One of the important questions discussed at present con-
cerns the neutron-proton correlations in atomic nuclei
[5–9]. The analysis of np pairing is of particular interest
since it is possible in this case to study the relationship
between the isoscalar (T=0) and isovector (T=1) pair-
ing of nucleons, and to map the change of this relation as
function of the mass number A. Traditionally, the main
object of the np-paring studies is the chain of nuclei with
N =Z. These nuclei are a clear example of the isospin
symmetry of the nucleon-nucleon interaction, which is a
consequence of the charge independence of nuclear forces.

One of the ways to study the structure of atomic nu-
clei, including the effects of two-nucleon correlations, is
to systematically analyse the mass surface of atomic nu-
clei, its global behaviour and local fluctuations. This is
an important source of information as the experimental

values of nuclear masses are known with high accuracy,
and the number of isotopes for which this information
is available is constantly increasing [10]. Mass relations
allow to extract the information concerning the magni-
tude of the interaction between nucleons as function of
the mass number A and of the occupation probabilities
of the subshells near the Fermi energy. For example, it
is well known that pairing of identical nucleons leads to
stratification of the mass surface and can be quantified
from the odd-even staggering (OES) value [11–13]. Sev-
eral approximate relations for the pairing energy of iden-
tical nucleons in even-even isotopes based on the masses
of neighbouring nuclei have been studied in detail, but
despite the long history of the problem, the question of
which relation corresponds best to the pair interaction is
still under discussion [14–19].

The mass relations for neutron-proton pairing are
more diverse [6, 20–23]. In this case, however, they are
mainly studied for nuclei with N=Z, and primarily for
odd-odd nuclei. These nuclei allow to address both the
isovector spin-zero and isoscalar deuteron-like (or maxi-
mum spin neutron-proton) coupling. Due to the assump-
tion that isoscalar pairing of nucleons in heavy nuclei
contributes significantly to collective effects, the analysis
of calculations based on mass relations should allow to
draw conclusions regarding the effect of np pairing, and
of the possibility of treating np pairs as deuteron-like
states in nuclei. The analysis of mass relations for the
chain N=Z is made more complicated by the presence
of the Wigner energy, which is closely connected with
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np-pairing [5, 24–26].
In this paper, the ideas underlying various mass rela-

tions associated with neutron-proton correlations in dif-
ferent types of atomic nuclei are considered. Examples
of N−Z = Const chains are studied in order to com-
pare the behaviour of the mass relations under consid-
eration. Binding energy parametrization based on the
Shell Model makes it possible to clarify the structure of
the mass relations obtained, and to reveal their relation-
ship with the np interaction.

2 Mass relations for np-correlations

There is a large number of indicators for np correla-
tions based on the masses of neighbouring nuclei avail-
able in literature. Below we consider the basic relations.

2.1 Mass relations ”by definition” and the δVnp

indicator

In our previous work [19], relationship between differ-
ent mass formulas and their connection with the pairing

energy of identical nucleons was shown. Various indica-
tors of like-nucleon pairing based on the odd-even split-
ting of the mass surface with different degrees of averag-
ing were considered, as was the correspondence of these
relations with the explicit definition of the nucleon pair-
ing energy, given as the difference between two-nucleon
separation energy in nucleus (A) and the doubled one-
nucleon separation energy in nucleus (A−1):

∆nn(N,Z)=S2n(N,Z)−2Sn(N−1,Z), (1)

where S2n and Sn are two- and one-neutron separation
energies, respectively. This relation gives the magnitude
of neutron pairing. A similar relation for the proton
pairing energy ∆pp(N,Z), using the proton separation
energies S2p and Sp, can be obtained by interchanging
N and Z.

To determine the neutron-proton pairing energy in
an odd-odd nucleus having an np-pair above the double-
closed core, one should consider the difference between
the np separation energy in (N,Z) nucleus and the sep-
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aration energies of a neutron and of a proton in nuclei
(N,Z−1) and (N−1,Z), respectively [27]:

∆np(N,Z)=Snp(N,Z)−[Sn(N,Z−1)+Sp(N−1,Z)]

=B(N,Z)+B(N−1,Z−1)

−B(N−1,Z)−B(N,Z−1), (2)

where Snp(N,Z) is the np-pair separation energy, and
B(N,Z) is the binding energy. This relation, suggested
in [28] for both even and odd N and Z, was widely ap-
plied [29–36].

Averaging ∆np over nuclei (N,Z) and (N+1,Z+1)
belonging to the chain N−Z= Const

∆(7)
np (N,Z)=

1

2
(∆np(N,Z)+∆np(N+1,Z+1)). (3)

can give a more accurate estimate of np-correlations. Il-
lustrative diagrams with multipliers of binding energies
of neighbouring nuclei in formulas (2) and (3) are shown
in Fig. 1(a) and (b).
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Fig. 2. (color online) Indicators ∆np(A), ∆
(7)
np (A)

and δVnp for even-even and odd-odd nuclei as
function of the mass number A in nuclei N =Z.
The dashed line corresponds to 24/A1/2. Nuclear
mass data are from [10].

Fig. 2 shows the dependence of indicators ∆np and
∆(7)

np on the mass number A in self-adjoint nuclei N=Z.
The monotonous dependence and agreement between the
values of ∆np and ∆(7)

np for A>10 are worth pointing out.
Indeed, the results of formula (2) for neighbouring even-
even and odd-odd nuclei are not only very close for the
chain N=Z, but also in other isotope regions. This can
be seen from the diagrams in Fig. 1: the difference in the
indicators ∆np for nuclei (N,Z) and (N+1,Z+1) leads to

the well-known Garvey-Kelson mass relations [37, 38]:

M(N+2,Z−2)−M(N,Z)+M(N,Z−1)

−M(N+1,Z−2)+M(N+1,Z)−M(N+2,Z−1)=0;

M(N+2,Z)−M(N,Z−2)+M(N+1,Z−2)

−M(N+2,Z−1)+M(N,Z−1)−M(N+1,Z)=0. (4)

The accuracy of the Garvey-Kelson mass relations was
verified on a large set of experimental data, and these re-
lations, as well as the generalized formulas derived from
them, are widely used for estimating the mass of nuclei
far from stability [39, 40].

The fact that the ∆np values for odd-odd and even-
even nuclei are very close does not necessarily mean that
this indicator describes precisely the np-correlation, es-
pecially for nuclei with N = Z, where the presence of
the Wigner cusp significantly changes the picture. For
even-even nuclei, the applicability of formula (2) is not
so obvious. Indeed, in the case of an even number of ex-
ternal nucleons of the same type above the closed core,
in addition to the np-interaction, the like-nucleon corre-
lations should also be taken into account. Thus, for an
even-even nucleus with two np pairs, np-pairing should
be defined as the difference between the separation en-
ergy of all four nucleons from the core and the separation
energies of neutron and proton pairs in nuclei (N,Z−2)
and (N−2,Z) [7]:

∆ee
np(N,Z)=

1

4
(B(N−2,Z−2)+B(N,Z)

−B(N−2,Z)−B(N,Z−2)). (5)

The coefficient 1/4 arises as a result of taking into ac-
count the interaction of each proton with each neutron.
The corresponding diagram is shown in Fig. 1(c). From
the diagrams, it can be seen that for even-even nuclei
this indicator may be obtained from four ∆np terms:

δVnp=∆np(N,Z)+∆np(N−1,Z−1)

−∆np(N,Z−1)−∆np(N−1,Z).

The difference between the binding energies of four
even-even nuclei as an estimator of np-interaction en-
ergy was proposed in [21], and analysed in [24, 25, 41] in
connection with the structure of the Wigner term. How-
ever, the indicator δVnp in [21], was calculated using (5)
in accordance with the np interaction in odd-odd nuclei
(N+1,Z+1) only.

The indicator δVnp in both interpretations is still sub-
ject to extensive consideration [20, 42–47]. In [24], a vari-
ant of the generalised formula (5) for different types of
nuclei was proposed:
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[B(N,Z)−B(N,Z−2)−B(N−2,Z)+B(N−2,Z−2)], (even, even),

1

2
[B(N,Z)−B(N,Z−1)−B(N−2,Z)+B(N−2,Z−1)], (even, odd),

1

2
[B(N,Z)−B(N,Z−2)−B(N−1,Z)+B(N−1,Z−2)], (odd, even),

B(N,Z)−B(N,Z−1)−B(N−1,Z)+B(N−1,Z−1), (odd, odd).

(6)

In Fig. 2, the indicator δVnp(A) given by formula (6)
is compared to ∆np. In this case, the indicators ∆np and
δVnp coincide for odd-odd nuclei, while for even-even nu-
clei formula (6) consistently produces lower estimates of
the np pairing energy. The indicator δVnp shows a pro-
nounced zigzag shape due to the relation δV oo

np > δV ee
np .

Since δVnp(A) is obtained empirically, it may contain
components of different nature. The chain N =Z is an
anomalous case due to the Wigner energy; the structure
of the Wigner term and the empirical nature of δVnp

could help to clarify it [24].

2.2 Wigner term

When considering np-correlations, the so-called
Wigner term is of special importance. This contribution
was first considered on the basis of analysis of the SU(4)
spin-isospin symmetry of nuclear forces by Wigner [48],
who showed that the symmetry energy, in addition to a
term proportional to (N−Z)2/A, must also have a term
proportional to the isospin asymmetry |I| (I=(N−Z)/A),
which leads to an enhancement of the binding energy
near N=Z. In the mass formula for the droplet model,
the Wigner term was adopted in the form [49]

EW =W (|I|+d), where W=30 MeV,

d=







1

A
(odd-odd), N=Z

0 otherwise.

The correction for (N=Z) odd-odd nuclei (term d) was
added ”because it is clearly called for by the experimen-
tal masses” (see [38], Table I). The generalization of the
Wigner term, performed in [14], results in three terms:

EW =−b1|I|+b2/a+b3/A,

where the term b3 corresponds to (N=Z) odd-odd nuclei,
and the term b2 is related to the possible α-correlation
effect. Currently, the standard expression for the Wigner
term is

EW =W (A)|N−Z|+d(A)πnpδNZ , (7)

where πnp = 1
4
(1−πn)(1−πp), and πn = (−1)N and

πp =(−1)Z are the nucleon-number parities. The ques-
tion of d/W is still open: as mentioned above, some
estimates suggest that d/W =1 [49], while the analysis
of experimental masses leads to d/W =0.56±0.27 [14].
It seems appropriate to use the empirical mass relations

to define the parameters of the Wigner term. Indicator
δVnp (5) was used for investigating the np-correlation en-
ergy, and it was shown that it is sensitive to the Wigner
energy and can be used as term d in the expression (7)
[24, 41]. The mass relations for δVnp, obtained in [24]
from supermultiplet theory, are given above (eq. (6)). In
[25], certain combinations of δVnp(N,Z) were suggested
to obtain W (A) and d(A). The difference between even-
even and odd-odd nuclei is not limited to the presence
of a special term d; the mass relation for W (A) is also
different in these two cases:

for N=Z, even-even

W (A)=δVnp(N,Z)−
1

2
[δVnp(N,Z−2)+δVnp(N+2,Z)]

(8)

for N=Z, odd-odd

W (A)=−δVnp(N+1,Z−1)

+
1

2
[δVnp(N−1,Z−1)+δVnp(N+1,Z+1)] (9)

d(A)=−4δVnp(N+2,Z)

+2[δVnp(N+1,Z−1)+δVnp(N+3,Z+1)]. (10)

Experimental values are consistent with the simple rela-
tion dT=0/W≈1. Analysis of the Wigner energy in terms
of np pairs of a given angular momentum and isospin
shows that the Wigner term cannot be explained only in
terms of correlations of deutron-like np pairs.

Significant effort is still needed to determine the pre-
cise structure of the symmetry energy and to extract the
Wigner term [5, 26, 50–52]. The interpretation of the
term d using mass relations is still open to discussions in
literature. It may be useful to consider different mass re-
lations for np-correlations not only for odd-odd (N=Z)
nuclei, but also for nuclei with different N , Z parity with
N−Z≥1.

2.3 np-correlation from Sn and Sp

Estimates of np-correlations can be obtained by con-
sidering either neutron or proton separation energies
along the chains of isotones or isotopes, respectively. In-
deed, it follows from (2) that for odd-odd nuclei

∆np(N,Z)=[Sn(N,Z)−Sn(N,Z−1)]

=[Sp(N,Z)−Sp(N−1,Z)].
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The neutron Sn and proton Sp separation energies in
isotopes Sn (Z=50) and Sb (Z=51) are shown in Fig. 3
as functions of the number of neutrons.
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Fig. 3. (color online) Neutron and proton separa-
tion energies Sn and Sp in Sn (a) and Sb (b) iso-
topes. Nuclear mass data are from [10].

The dependence of Sn(N) has a zigzag shape, which
is related to neutron pairing. The dependence of Sp(N)
shows even-odd jumps as well despite the fact that Z
is constant, due to the additional interaction of a pro-
ton with an odd neutron. The distance between parallel
lines drawn through isotopes with even and odd Z cor-
responds to the np-interaction [53, 54].

The dependence Sn(Z) in a chain of isotones is shown
schematically in Fig. 4. The different behaviour of Sn(Z)
for even and odd number of neutrons is of importance.
In the case of even N , the largest values of Sn also cor-
respond to even values of Z; for isotones with odd N ,
the maxima correspond to odd values of Z. These fea-
tures of Sn(Z) and Sp(Z) were explained in [54] in the
framework of the Shell Model. According to the diagram
in Fig. 4, the expression for ∆np should include a term
depending on the parity of A:

∆np(N,Z)=(−1)A[Sn(N,Z)−Sn(N,Z−1)]

=(−1)A[Sp(N,Z)−Sp(N−1,Z)]. (11)

However, the experimental data for Sp(Z), given in
Fig. 3, show that introducing a dependence on parity
of A is not so obvious, since the relations Soo

p (N,Z)>
Seo

p (N+1,Z) and See
p (N+1,Z)>Soe

p (N+1,Z+1) are not

always satisfied. In fact, these inequalities appear not to
be valid in most cases. Therefore, when constructing the
empirical dependence of ∆np, a term depending on the
parity of A is not included in [55, 56]. Since the study
of empirical values of np-pairing is based on the chains
of nuclei with even A, the question of the dependence
on A-parity is not so important. Furthermore, the value
of ∆np in odd-A nuclei is close to zero. Nevertheless,
we choose to keep the (−1)A ’phase’ for constructing the
mass relation.

o e eo o e
Z

S
n

N = odd

N+1 = even

Fig. 4. (color online) Schemes used to determine
the properties of the pairing interaction using nu-
cleon separation energies. a) like-nucleon corre-
lation (Sn(N) for Z= Const), b) neutron-proton
correlation (Sn(N) for N= Const)

As in the case of relations for identical nucleon pair-
ing [19], it seems reasonable to average the values of ∆np

for two or more neighbouring nuclei, which leads to for-
mulas [14]:

∆(6,n)
np (N,Z)=

1

2
[∆np(N+1,Z)+∆np(N,Z)]

=
(−1)A

2
[−Sn(N+1,Z)−Sn(N,Z−1)

+Sn(N,Z)+Sn(N+1,Z−1)]. (12)

Similar considerations for the proton separation en-
ergy Sp in isotones Z= Const leads to the formula:

∆(6,p)
np (N,Z)=

1

2
[∆np(N,Z+1)+∆np(N,Z)]

=
(−1)A

2
[−Sp(N,Z+1)−Sp(N−1,Z)

+Sp(N,Z)+Sp(N−1,Z+1)]. (13)

Diagrams for the indicators (12) and (13) are shown
in Fig. 1(d) and (e). As can be seen, formula (12) av-
erages the differences of neutron separation energies for
even and odd A by using two chains of isotones: N and
N+1. The formula that is most symmetric is the one that
averages the neutron separation energy differences both
in the neighbouring isotonic chains and in the neighbour-
ing nuclei in each chain Z and Z+1 (see Fig. 1(f)). This
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diagram shows that averaging in accordance with formu-
las (12) and (13) leads to the same result. Indeed, it
is evident from Fig. 1(d) and (e) that the difference in
these values leads to the well-known Garvey-Kelson mass
relations (4).

The indicator ∆np(A) for a chain of nuclei with N=Z
consisting of even-even and odd-odd isotopes, and for a
neighbouring chain of odd nuclei with N = Z + 1, are
shown in Fig. 5. While the values of ∆np for N=Z are
large and are, in general, in accordance with the analyt-
ical relation 24A−1/2, the corresponding values for odd
nuclei (N=Z+1 chain) are smaller and tail to zero, hav-
ing even negative values for large A. Accordingly, for the
chain with N=Z, the indicator ∆(6,n)

np (A) (12), which is
the average between these two chains, is substantially
below ∆np. This example illustrates best the contribu-
tion of the symmetry energy for N=Z nuclei, although
this trend also holds for nuclei with neutron excess.
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 np (N = Z+1)

 (6,n)
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Fig. 5. (color online) Indicators ∆np (black line)

and ∆
(6,n)
np (blue line) in nuclei with N=Z. Dot-

ted line shows ∆np(A) in nuclei N=Z+1; dashed
line corresponds to 24A−1/2.

Indicator ∆(6,n)
np (A) (12) was used for estimating the

np-pairing term in several papers [14, 18, 20]. This indi-
cator includes a difference between nuclei having differ-
ent A-parity, and it therefore reflects the complexity of
np-correlations, and not only the np-pairing in odd-odd
nuclei. Thus, this relation can be interpreted differently,
for example as an indication of α-clustering in even-even
nuclei [57].

2.4 Mass relations based for deuteron separa-

tion energy

The indicators for np-pairing ∆np (2) and ∆(7)
np (3)

are obtained using the masses of neighbouring nuclei for
both even and odd A, as well as N and Z. As the corre-
sponding estimates of like-nucleon pairing are based on
isotone and isotope chains, a significant difference is seen
between these estimates and indicators (2) and (3).

Variants of np-pairing indicators constructed by anal-
ogy with the formulas for neutron OES and proton OES
use the binding energies of even or odd A nuclei for the
chain with N−Z= Const. Indeed, for a chain of even-A
nuclei, one notes the splitting of binding energies into
two groups, for even-even and odd-odd nuclei. Since the
mass number A increases quickly for this sequence, the
splitting is small compared to the general increase of the
binding energy. As in the case of like-nucleons, this effect
is more pronounced for the difference in binding energies
of neighbouring isotopes [19]. In the case of the N =Z
chain, this corresponds to the deuteron separation en-
ergy, corrected for its binding energy:

Sd(N,Z)=B(N,Z)−B(N−1,Z−1)−2.22 MeV.

The A-dependence of the deuteron separation energy
Sd in nuclei with N =Z is shown in Fig. 6. Similar to
Sn(Z) and Sp(N), it shows a zigzag shape with an over-
all tendency of gradual decrease and stabilization of the
even-even – odd-odd splitting for heavier isotopes. The
energy of np-pairing in odd-odd nucleus (N,Z) based on
this dependence corresponds to half of the difference of
deuteron separation energies for even-even and odd-odd
nuclei:

∆(3)
np (N,Z)=

1

2
(Sd(N+1,Z+1)−Sd(N,Z))

=
1

2
(B(N+1,Z+1)−2B(N,Z)

+B(N−1,Z−1)). (14)
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20

25
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 SdN = Z

A

Fig. 6. Deuteron separation energy Sd(A) in nuclei
with N=Z. Nuclear mass data are from [10].

This relation was used in [26, 58] for estimating the
isovector np-interaction. Indeed, one can see that in the
case of even A, the deuteron separation energy is not
larger than the distance between the even-even and odd-
odd mass surfaces, corrected for the deuteron binding
energy Bd. The averaging indicator ∆(3)

np cancels Bd and
corresponds to

BEee−BEoo≈∆p+∆n≈2∆.
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Charge independence of nuclear forces implies that
isovector np-pairing in odd-odd (N = Z) nuclei must
be the same as neutron pairing in the neighbouring
(N+1,Z−1) isotope and proton pairing in the (N−1,Z+1)
isotope. Therefore, the indicator ∆(3)

np in the chain of
N=Z isotopes can be used to study np-correlations. It
must be different for isotopes with N−Z≥2; neverthe-
less, it makes sense to examine the behaviour of indica-
tors constructed by analogy with mass relations for like-
nucleon pairing in isotopes chains withN−Z= Const ≥2.

Relation (14) is analogous to the formula for OES for
neutron pairing [12]:

∆(3)
n (N,Z)=

(−1)N+1

2
(Sn(N+1,Z)−Sn(N,Z))

=
(−1)N+1

2

(

B(N+1,Z)−2B(N,Z)

+B(N−1,Z)
)

. (15)

By analogy with the averaged estimates of the OES
effect, one can introduce an indicator based on binding
energies of four nuclei [59]:

∆(4)
np (N,Z)=

1

2

(

∆(3)
np (N,Z)+∆(3)

np (N−1,Z−1)
)

=
(−1)N+1

4

(

Sd(N+1,Z+1)−2Sd(N,Z)

+Sd(N−1,Z−1)
)

. (16)

The diagrams of the coefficients for ∆(3)
np and ∆(4)

np are
given in Fig. 1(g) and (h), respectively. The (−1)N+1

multiplier is used only for chains of even-A nuclei. For
these chains, the OES effect appears to be prominent,
as the deuteron separation energy in even-even nuclei is
consistently greater than in odd-odd nuclei. No such re-
lation exists for odd-A nuclei, and the (−1)N+1 factor is
omitted for the corresponding chains.

The indicators ∆(3)
np and ∆(4)

np for nuclei with N =Z
are shown in Fig. 7(a). Since the deuteron separation
energy Sd(A) does not have a common slope, ∆(3)

np (N,Z)
and ∆(4)

np (N,Z) practically coincide. The dependence is
smooth, with jumps in the regions of double magic num-
bers 16, 40, 56. The general shape of the dependence
is in accordance with the approximation 2∆= 24/A1/2

given in [12]. In the region of light nuclei, the majority
of ∆(3)

np and ∆(4)
np values are above, and for A>40 – below

this approximation. Further down in Fig. 7, ∆(3)
np and

∆(4)
np are shown for chains of odd-A nuclei with N=Z+1

(b), and even-A nuclei with N=Z+2 (c). From Fig. 7(b),
it is clear that for most nuclei with odd A both indica-
tors have practically zero values. All plots show similar
behaviour, except that in the case of N=Z+2, ∆(3)

np and
∆(4)

np are smaller due to the absence of the Wigner term.
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Fig. 7. (color online) Indicators of np-correlations
in the chains a) N=Z, b) N=Z+1, c) N=Z+2:

∆
(3)
np (A) (red line), ∆

(4)
np (A) (green line), ∆

(13)
np (A)

(blue line) , δnp(A) (dashed black line). The thin
dotted line corresponds to 24/A1/2. Nuclear mass
data are from [10].

As we will see later, ∆(3)
np and ∆(4)

np have a complex
structure and are indirectly related to np-correlations.
That is why there are different interpretations in liter-
ature. For example, in [14] the indicator ∆(4)

np was pro-
posed as an estimator of four-nucleon correlations.

2.5 Mass surface OES

The mass surface splitting is primarily due to the
pairing of identical nucleons, but the estimate of the fluc-
tuation between experimental masses of even-even and
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odd-odd nuclei is somewhat less than the sum of OES
effects for protons ∆p and neutrons ∆n. This discrep-
ancy is generally attributed to the presence of residual
neutron and proton interactions [12], and in order to cal-
culate the splitting between the mass surfaces for even-
even and odd-odd nuclei one uses the relation [60–62]:

Eee−Eoo=∆n+∆p−δ. (17)

The correction δ, arising from the residual attractive in-
teraction of the unpaired proton and unpaired neutron,
is interpreted as an np interaction and approximated by

δ=20/A MeV [12].
Madland and Nix [61] obtained formulas for ∆n, ∆p

and δ as finite differences on the basis of Taylor expan-
sion to fourth-order. Thus, if five neighbouring isotopes
or isotones are used to calculate the OES effect for neu-
trons ∆n and protons ∆p, then data for a substantially
larger number of neighbouring nuclei are required to cal-
culate the np-interaction indicators:

∆MN
np (N,Z)=∆n+∆p−δnp, (18)

where δnp(N,Z) is the correction for np-interactions:

δnp(N,Z)=
(−1)A

4

(

2
[

B(N+1,Z)+B(N−1,Z)+B(N,Z+1)+B(N,Z−1)
]

−4B(N,Z)

−
[

B(N+1,Z+1)+B(N−1,Z+1)+B(N−1,Z−1)+B(N+1,Z−1)
]

)

. (19)

Proton and neutron OES in this case depend on the par-
ity of the corresponding nucleons:

∆n=

{

∆(5)
n (N,Z), even N

∆(5)
n (N,Z)+δnp, odd N

(20)

∆p=

{

∆(5)
p (N,Z), even Z

∆(5)
p (N,Z)+δnp, odd Z

(21)

∆(5)
n (N,Z)=

(−1)N

8

[

Sn(N+2,Z)−3Sn(N+1,Z)

+3Sn(N,Z)−Sn(N−1,Z)
]

, (22a)

∆(5)
p (N,Z)=

(−1)Z

8

[

Sp(N,Z+2)−3Sp(N,Z+1)

+3Sp(N,Z)−Sp(N,Z−1)
]

. (22b)

Diagrams for the indicators ∆MN
np (18) and δnp (19)

are shown in Fig. 1(i) and (f), from where the relation-
ship between δnp and previously introduced indicators
∆np, ∆

(6,n)
np and ∆(6,p)

np is clear. In fact, as in the case
of identical nucleons, the relations from [61] are an ad-
ditional averaging of the np-interaction energy ∆np over
the mass surface.

As mentioned above, the OES indicator ∆MN
np (18) is

indirectly related to the np-correlation, but we include
it as a well-studied reference point. According to the
diagram in Fig. 1(i), one can see that ∆MN

np for even-A
nuclei is also an average, but of the indicator ∆(3)

np (14):

∆MN
np (N,Z)=

1

4

(

2∆(3)
np (N,Z)−∆(3)

np (N+1,Z−1)

−∆(3)
np (N−1,Z+1)

)

, (23)

It is interesting to note the similarity between
∆MN

np (18) and the term d(A) in the Wigner energy

(eq. 7). The latter can also be expressed as a combi-
nation of ∆(3)

np terms:

d(A)=
1

2

(

∆(3)
np (N,Z)+∆(3)

np (N+2,Z−2)

−∆(3)
np (N,Z−2)−∆(3)

np (N+2,Z)
)

. (24)

The values ∆MN
np (A) obtained from eq. (18) for nuclei

with N =Z are shown in Fig. 7(a) and compared with
∆np(A). The dependence ∆MN

np (A) is smoother; in the
region A>40 the indicators coincide to a high degree.

Table 1 shows the results of fitting the various ∆np(A)
indicators presented above with the power function C ·
A−b, for the chain of nuclei N =Z. In general, the re-
sults can be divided into two large groups. Indicators
∆MN

np , ∆(3)
np and ∆(4)

np , appropriate for assessment of mass
splitting, and indicators ∆np and ∆(7)

np , based on the def-
inition of np-pairing in odd-odd nuclei, all correspond to
the approximation 2∆ = 24/A1/2 in [12], and they can
be approximated with sufficient accuracy by the power
functions A1/2 or A2/3 used to describe the pairing en-
ergy of nucleons in modern macroscopic models. The
neutron OES effect, when fitted as ∆(4)

n =Cn·A
−1/2 using

the current data set results in a coefficient Cn slightly
less than 12 MeV, Cn =10.77±0.06 MeV [63]. This re-
sult is in good agreement with the fitting parameters for
∆MN

np (A). Such an outcome can be explained by the fact
that smooth formulas were used for approximating both
∆n(A) and ∆np(A).

Significantly smaller values of the fitting parameter
C are obtained for ∆(6n)

np , ∆(6p)
np and δnp. The small val-

ues and their significant fluctuations indicate that the
approximations are unreliable. It should be noted, how-
ever, that the parameters of the approximations for these
indicators are in good agreement with each other.
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Table 1. Parameters of the fits ∆np(A)=C·A−b in nuclei with N=Z and N−Z=2.

N=Z N−Z=2

C/MeV b C/MeV b

∆np(A) 29.4±1.8 0.60±0.02 5.8±0.8 0.37±0.04

∆
(7)
np (A) 23.3±1.6 0.53±0.03 6.0±0.6 0.39±0.03

∆
(6n)
np (A) 10.3±1.4 0.56±0.05 1.0±0.3 0.14±0.08

∆
(6p)
np (A) 9.3±1.3 0.52±0.04 0.0±0.1 −0.7±0.3

δnp(A) 6.9±1.1 0.45±0.05 0.2±0.1 0.2±0.1

∆
(3)
np (A) 25.9±1.3 0.53±0.02 10.8±0.8 0.33±0.02

∆
(4)
np (A) 32.7±2.1 0.59±0.02 12.2±0.8 0.36±0.02

∆MN
np (A) 19.9±1.6 0.48±0.02 15.2±0.6 0.41±0.01

3 Shell model

The first step in interpreting the mass relations ob-
tained can be made within the framework of the Shell
Model [55]. Consider a nucleus with n neutrons in the
state j1 and p protons in the state j2 above the closed
core (N0,Z0). The binding energy of such a configuration
can be represented as a sum:

B(N0+n,Z0+p)=B(N0,Z0)+nεn+pεp

+W (jn1 )+W (jp2 )+I(jn1 ,j
p
2), (25)

where εn and εp denote single-particle central-field en-
ergies of the j1 neutrons and j2 protons, respectively.
Terms W (j) correspond to the interaction energy of nu-
cleons in a given shell, while I(j1,j2) denotes the interac-
tion energy between nucleons located on different shells.
The contribution of the interaction of n identical nucle-
ons in the state j can be written as the sum of two terms:

W (jn)=
1

2

(

n−
1−(−1)n

2

)

π+
n(n−1)

2
d, (26)

the first of which is due to the coupling of identical nu-
cleons with ”pairing energy” π. The second term de-
scribes the additional interaction of two nucleons with
strength d, which is independent of the relative orien-
tation of their spins, and is of repulsive nature. The
relationship of these quantities is clearly seen in the de-
pendence of Sn(N) for Z= Const (Fig. 3). The pairing
energy π is responsible for the zigzag behaviour of the
curve and is determined by the difference between Sn(N)
in neighbouring nuclei with even and odd N . The value
of d defines the slope of the curve and can be estimated
from the difference Sn(N+1)−Sn(N−1). Fig. 4 shows
the scheme that allows to estimate the values of π and
d using Sn(N) in isotones. The mass difference relations
for identical nucleons were considered in detail in our
previous paper [19].

The interaction of n neutrons in state j1 and p pro-
tons in state j2 can be written as the sum of two terms
[64]:

I(jn1 ,j
p
2 )=npI0+

(1−(−1)n)(1−(−1)p)

4
I ′, (27)

where the contribution I0 does not depend on the nu-
cleon spin orientation and is determined by the scalar
interaction. The contribution I ′ depends on the value of
the total spin J , represents the ”pairing properties” of
the interaction and, accordingly, is present in odd-odd
nuclei only.

Therefore, relation (25) can be rewritten in the form
[55]:

B(N0+n,Z0+p)=B(N0,Z0)+nεn+pεp+
n

2
πn+

p

2
πp

+
n(n−1)

2
dn+

p(p−1)

2
dp+npI0−δ,

(28)

where the parity term δ is given by

δ=











































0, ee,

1

2
πp, eo,

1

2
πn, oe,

1

2
πn+

1

2
πp−I ′, oo.

(29)

This relation is simplistic but allows to identify some
regularities in the behaviour of the indicators based on
mass differences.

The neutron separation energy in this representation
depends on the parity of N and Z:

Sn(N,Z)=



























εn+(n−1)dn+pI0+πn, ee

εn+(n−1)dn+pI0, oe

εn+(n−1)dn+pI0+πn−I ′, eo

εn+(n−1)dn+pI0+I ′, oo

(30)

Hence, the following relations hold for pairing of neu-
trons in an even-even nucleus:

∆nn=πn+dn, (31)

∆(3)
nn=πn−dn, (32)

∆(5)
nn=2∆(5)

n =πn. (33)
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In this model, as d < 0, ∆nn for even N is always
smaller than for odd N . Furthermore, ∆(3)

nn has an in-
verse relation, and the averaging indicator ∆(5)

nn depends
only on the neutron pairing energy πn. The value of
d can also be extracted from the mass relations as the
difference (∆nn−∆(3)

nn)/2.

3.1 Neutron - proton interaction

Let us consider the structure of the previously intro-
duced mass relations for np-correlations. The values of
the indicators ∆np (2) and ∆(7)

np (3) significantly differ for
even and odd A:

∆np=∆(7)
np =I ′+I0(ee,oo), (34)

∆np=∆(7)
np =I ′−I0(oe,eo). (35)

Good agreement of these relations was shown above
on the example of even A nuclei (see Fig. 2). It should
be noted that the averaging in the relation ∆(7)

np does not
allow to separate contributions of I0 and I ′.

The contribution of I ′ can be determined, by analogy
with like-nucleon pairing, from the indicators ∆(6,n)

np (12)
and ∆(6,p)

np (13):

∆(6,n)
np =∆(6,p)

np =I ′

and consequently by the indicator δnp(N,Z) =
(∆(6,p)

np (N,Z)+∆(6,p)
np (N+1,Z))/2=I ′ (see eq. (19)). Com-

parison of the diagrams for the indicators ∆np and ∆(6,p)
np

(see Fig. 8, first row) leads to the expression for the pa-

rameter I0 in even-A nuclei:

I0(N,Z)=
1

2
[B(N,Z+1)−B(N−1,Z+1)

+B(N−1,Z−1)−B(N,Z−1)]. (36)

One can obtain a similar formula for ∆(6,n)
np . As shown

earlier, the results for ∆(6,n)
np (12) and ∆(6,p)

np (13) differ
slightly and it is useful to average them.

Diagrams for this case are shown in the second row
of Fig. 8, and the results of calculations are presented
in Fig. 9 by solid lines. The values of I0 lie above I ′,
and for nuclei with N = Z agree well with the depen-
dence 12/A1/2, which was proposed to describe the pair-
ing effect. The values of I ′ fluctuate much more. With
increasing A, the values of I0 and I ′ converge, but the
ratio between them can vary. Dashed lines show I0 and
I ′ calculated using the averaged formula for I ′=δnp. The
diagrams in this case are symmetrical (see the third row
of Fig. 8). The sum I0+I ′ is related to the indicator ∆(7)

np ,
and the expression for I0 is of the form:

I0(N,Z)=
1

4
[B(N+1,Z+1)−B(N−1,Z+1)

+B(N−1,Z−1)−B(N+1,Z−1)]. (37)

This formula coincides with the expression for the
empirical np-interaction of the last neutron with the last
proton in even-even nuclei δVnp from [21, 23, 41]. The
important point here is that in this case the binding ener-
gies of odd-odd nuclei are used in the calculations, in con-
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Fig. 8. Diagrams for estimating the np-pairing energy ∆np, I
0 and I ′. See text for details.
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trast to relation (5), where δV ee
np is based on B(N,Z) in

even-even isotopes. This difference does not significantly
change the numerical results in general, but should be
taken into account in more accurate models.

5 10 15 20 25 300

5

10

15
N =Z

∆
n

p
 (

M
eV

)

 I 0 

 I’

 I’+I 0

 12/A1/2

N

0 5 10 15 20 25 30 35 40
-1

0

1

2

3

4

5

∆
n

p
 (

M
eV

)

N

N=Z+2

 I 0 

 I’

 I’+I 0

 12/A1/2

Fig. 9. (color online) Comparison of ∆np,I
0,I ′ in

chains of nuclei with N = Z (a) and N−Z = 2
(b). Solid lines show the results for averaged
parameters from the second row in Fig. 8 (I ′ =
(∆6,p

np +∆6,n
np )/2); dashed lines correspond to the

third row (I ′=δnp).

Table 2 gives the coefficients C when the parameters
π and d for identical nucleon interaction are approxi-
mated by the function C·A−b. The parameters were fitted
without taking into account the magic and self-adjoint
nuclei, in accordance with the selection rules from [13].
The fixed exponents b were chosen to be close to the fits
with two free parameters C and b. For the parameters πn

and πp, the fitted values of b are 0.30±0.01 and 0.32±0.01,
respectively, which is close to 1/3. For the parameters
dn and dp, the chosen value of b is unity, which agrees
well with the fit coefficient b for neutrons (0.93±0.03); for
protons, the deviation of the fit coefficient b from unity is
more significant due to the effect of Coulomb interaction
(0.56±0.01).

The values of the coefficient C when the parameters
I0 and I ′ are approximated by the power function C·A−b

are given in Table 3 for various values of b. The fixed
values of b allow to compare I0 and I ′ to each other, and

to π and d. The fit of I0 and I ′ by a power function with
a free exponent gives the values of b equal to 0.83±0.01
and 0.67±0.02, respectively. Thus, the best approxima-
tion for I0 is C/A, whereas C/A2/3 describes I ′ well. For
all b, the coefficients C for I0 and I ′ are similar, but C
for I0 is always larger.

Table 2. Coefficients C (MeV) for fitting π and d
for like-nucleons with the power function C·A−b

neutrons protons

π(A)=C/A1/3 10.22±0.06 11.48±0.06

d(A)=C/A −23.0±0.3 −56.7±0.6

Table 3. Coefficients C (MeV) for fitting I0 and I ′

with the power function C·A−b for various fixed b

I0 I′

C/A 41.9±0.3 30.7±0.4

C/A2/3 9.43±0.06 7.04±0.08

C/A1/3 1.93±0.02 1.46±0.02

3.2 ”Deuteron-type” relations and mass stag-

gering

The splitting of the mass surface ∆MN
np (N,Z), given

by formula (18), does not depend on the parity of N and
Z in the Shell Model with parametrization (25), and has
the form:

∆MN
np (N,Z)=

πn

2
+
πp

2
−I ′, (38)

which corresponds to the definition of the indicator.
However, it is important to note that this relation is valid
only for nuclei with even A; for odd-A nuclei the meaning
of this indicator is not obvious. More significant are the
indicators ∆(3)

np and ∆(4)
np . Indicator ∆(3)

np (N,Z) depends
on the parity of N and Z:

∆(3)
np (N,Z)=

1

2



























((πn−dn)+(πp−dp))−2(I ′+I0), ee

(−(πn−dn)+(πp+dp))+2I0, oe

((πn+dn)−(πp−dp))+2I0, eo

((πn+dn)+(πp+dp))−2(I ′−I0), oo

(39)

The expression for even-even nuclei corresponds to the
splitting of the mass surface between even-even and odd-
odd nuclei

∆(3)
np (ee)=

1

2

(

∆(3)
nn(ee)+∆(3)

pp (ee)
)

−∆np(ee),

The relation for nuclei with odd A contains the energy
difference of identical nucleon pairing, and includes a
small splitting of the mass surface between even-odd and
odd-even nuclei.

The relations for the indicator ∆(4)
np depend on the

parity of A:

∆(4)
np (N,Z)=

1

2

{

(πn+πp)−2I ′, ee,oo

(dn+dp)+2I0, oe,eo
(40)
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This expression for even A agrees with the expression for
∆MN

np . The degree of accordance can be seen in Fig. 7
on the example of the chain of N=Z nuclei. The figure
shows the dependence of indicators ∆MN

np , ∆(3)
np and ∆(4)

np

on the mass number, and it is clear that while ∆MN
np and

∆(4)
np agree well only in the region A>40, indicators ∆(3)

np

and ∆(4)
np agree to good accuracy for all N and Z, except

for the magic numbers. From the approximate equality
∆(3)

np ≈∆(4)
np for odd-odd nuclei, it follows:

1

2
((πn+dn)+(πp+dp))−(I ′−I0)≈

1

2
(πn+πp)−I ′,

1

2
(dn+dp)+I0≈0. (41)

The last relation links the values of the parameters
d and I0, and also shows that for odd A, ∆(3)

np and ∆(4)
np

are close to zero. Indeed, the estimates of π, d and I
made in [55] on the array of stable nuclei, show that dn

is about −0.1 MeV, dp is about −0.5 MeV, and I0 has
a value of about 0.3 MeV. The fact that the values of
∆(3)

np and ∆(4)
np are close to zero for odd A points to the

equality of the pairing forces of identical nucleons:

1

2
(−(πn−dn)+(πp+dp))+I0≈

1

2
(dn+dp)+I0≈0,

πp≈πn, (42)

which follows from the charge independence of nuclear
forces. The degree of agreement of these relations is
clearly seen in the values of the coefficients C for π, d
and I in Tables 2 and 3.

4 Conclusions

Mass relations based on even-odd staggering of the
mass surface are widely used to estimate the identical
nucleon pairing in atomic nuclei. By analogy, a signifi-
cant number of mass indicators are constructed for np-
correlations in order to estimate the value of np-pairing.
However, the difficulty of extracting experimental infor-
mation for odd-odd nuclei significantly limits the possi-
bilities of analysing the values obtained.

In this paper, various indicators ∆np are considered
for both odd-odd and even-even nuclei. The estimates of
the np-pair separation and the relations constructed by
analogy with the estimates for like-nucleon pairing, can
both serve as basis for construction of different mass re-
lations. It turns out that almost all formulas are related
to each other. They are based on the standard expres-
sion for the neutron-proton correlation in an odd-odd
nucleus:

∆np=B(N,Z)+B(N−1,Z−1)

−B(N−1,Z)−B(N,Z−1),

and are either an average or a difference of their respec-
tive values for the neighbouring nuclei. Thus, the widely

discussed quantity δVnp, which coincides with the defini-
tion of ∆np for odd-odd nuclei, is an average of ∆np over
four isotopes when applied to even-even nuclei. The cor-
rection for the np interaction, δnp, commonly mentioned
in discussions of the mass surface splitting, is also an av-
erage of ∆np over four neighbouring nuclei, performed,
however, by taking into account the zigzag features of the
neutron separation energy in isotopes (or proton separa-
tion energy in isotones).

This approach is similar to the method used to ob-
tain an estimate of like-nucleon pairing energy, but it can
lead to different results. In general, the zigzag relation
depends on two parameters, π and d, which determine
the amplitude of the oscillations and the general slope
of the dependence. While for identical nucleons π and d
differ considerably, the parameters Sn(Z) in isotones and
Sp(N) in isotopes used to construct the mass relations
are close in magnitude. Furthermore, the relationship
between various nuclear parameters can change within
an isotope chain. Such changes inevitably affect the re-
sults of calculations using formulas analogous to those
for like-nucleon pairing, and lead to appearance of alter-
nating quantities.

To clarify the structure of various indicators ∆np,
parametrization of the binding energy of the atomic nu-
cleus based on the Shell Model was used. This approach
effectively takes into account both the residual interac-
tion of identical nucleons in a single state, and the inter-
action of nucleons on different subshells, such as between
external neutrons and protons. Such a parametrization
makes it possible to show more clearly the relationship
of different mass formulas, and to elucidate their physi-
cal meaning. In the context of this parametrization, the
pair interaction of identical nucleons is described by the
sum of two terms

∆nn(pp)=πn(p)+dn(p).

The first term is responsible for pairing of identical nu-
cleons with the ”pairing energy” π, while the second de-
scribes the additional repulsive interaction of a nucleon
pair with strength d, independent of the relative orienta-
tion of the nucleon spins. However, taking into account
the typical values of π and d, using only parameter π
to describe the pairing forces does not greatly affect the
result. In this approach, the np interaction in odd-odd
nuclei should include both contributions

∆np=I0+I ′.

As the values of I0 and I ′ are similar, taking into ac-
count only one of these parameters changes the result by
a factor of two. This is best seen from the comparison
of the indicator ∆np with the averaged quantities ∆(6,n)

np ,
∆(6,p)

np and δnp, which are all about ∆np/2.
Approximation of I0 and I ′ by a power function

C/Ab, with various constant values of b, demonstrates

014104-12
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a clear relationship of various parameters in the whole
modern range of atomic nuclei. The coefficients C, when
dn, dp and I0 are approximated by C/A, are of the same
order of magnitude, and are related as dn+dp≈−2I0. In
turn, the pairing parameters of identical nucleons πn and
πp are well described by C/A1/3, with the coefficients C
having similar values slightly above 10 MeV. The coeffi-
cient C in the approximation of I ′ by C/A1/3 is almost

an order of magnitude smaller, 1.38±0.02 MeV, which
clearly illustrates the relationship of the pairing effects
of identical nucleons and the np-interaction.

The authors would like to thank Dr. D. Lanskoy and

L. Imasheva for fruitful discussions and technical sup-

port.
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