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Abstract: We extend the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) to go beyond-
mean-field framework by performing a two-dimensional collective Hamiltonian. The influences of dynamical correl-

ations on the ground-state properties are examined in different mass regions, picking Se, Nd, and Th isotopic chains
as representatives. It is found that the dynamical correlation energies (DCEs) and the rotational correction energies

Eyot in the cranking approximation have an almost equivalent effect on the description of binding energies for most
deformed nuclei, and the DCEs can provide a significant improvement for the (near) spherical nuclei close to the
neutron shells and thus reduce the rms deviations of S5, by ~17%. Furthermore, it is found that the DCEs are quite

sensitive to the pairing correlations; taking *Nd as an example, a 10% enhancement of pairing strength can raise

the DCE by ~37%.
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I. INTRODUCTION

The generation of unstable exotic nuclei, which is a
crucial subject pertaining to the technology upgrade in
producing radioactive isotope (RI) beams (see Refs. [1, 2]
and references therein), has made great progress in re-
cent times. Exotic features of nuclear structure, such as
neutron halos [3] and new magic numbers [4-6], have
been confirmed in present laboratories. However, most of
the neutron-rich nuclei far from the stability valley will
remain beyond experimental access for the foreseeable
future. Therefore, universal and unified theoretical mod-
els are required. Particularly, precise predictions for very
neutron-rich nuclei and the limits of nuclear binding are
responsible for understanding 7-process nucleosynthesis
[7, 8] and neutron star crusts [9, 10].

Within the nonrelativistic framework, many well-cal-
ibrated mass models have been developed and can be
primarily separated into two categories. The macroscop-
ic-microscopic models, such as the finite range droplet
model (FRDM) [11, 12], the WS4 model [13], and others
[14—16], contain both macroscopic and microscopic terms

in the expression of nuclear energy and thus can account
for most of physics. The microscopic mean-field models
rely on various energy density functionals constrained by
fitting experimental data, such as the Skyrme Hartree-Fo-
ck-Bogoliubov (HFB) model within diverse parametriza-
tions [17, 18] and Gogny HFB with D1S [19] and DIM
[20, 21] interactions. In these calculations [19—-21], the
dynamical correlation energies (DCEs) have been taken
into account self-consistently by using a five-dimension-
al collective Hamiltonian (SDCH) based on the con-
strained mean-field calculations [22, 23], and the root-
mean-square (rms) deviation with respect to the meas-
ured nuclear masses has been reduced significantly from
several MeV to a few hundred keV [24, 25]. The DCEs
have also been systematically studied by the generator
coordinate method (GCM) for the ground-state proper-
ties of even-even nuclei by imposing axial symmetry
[26—-31]. Very recently, the two-dimensional GCM with
both the quadrupole and octupole deformations as gener-
ator coordinates was used to calculate the DCEs for a set
of Xe, Ba, Ce, and Nd isotopes [32]. Comparing to other
beyond-mean-field calculations, SDCH model with para-
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meters determined by the mean-field calculations is much
cheaper in numerical realization.

Covariant density functional theory (CDFT) has
proven to be a powerful theory in nuclear physics which
has been used to describe successfully a variety of nucle-
ar phenomena [33—41]. Based on CDFT, lots of efforts
have been made to develop self-consistent mass tables
[42—47], such as the axially symmetric deformed relativ-
istic  mean-field plus  Bardeen-Cooper-Schrieffer
(RMF+BCS) approach [43] and relativistic Hartree-
Bogoliubov (RHB) [45], with an accuracy as ~ 2 MeV.
Containing the deformation and continuum effects simul-
taneously, the deformed relativistic Hartree-Bogoliubov
theory in continuum (DRHBc) was developed [48—51].
DRHBc has been applied to a variety of investigations,
including the interpretaton of deformed halo nuclei [48,
49, 52—57], the deformation effects on neutron drip line
and shape coexistence in nuclei [58—60], and the possible
peninsulas beyond the two-neutron drip line [61- 63].
Very recently, our DRHBc Mass Table Collaboration has
performed a global mass table calculation using the PC-
PK1 functional [64] for even-even nuclei with
8 <Z <120 [65, 66]. The rms deviations of binding ener-
gies are 2.744 MeV and 1.518 MeV without and with a
rotational correction, respectively.

The present version of the DRHBc mass table is with-
in the mean-field frame and only contains a simplified ro-
tational correction energy in the cranking approximation,
which cannot treat the weakly deformed nuclei properly,
e.g., |81 <0.05, and cannot take into account large shape
fluctuations for transitional nuclei. Therefore, even
though the rms deviation for binding energies is lowered
significantly, the two-nucleon separation energies are al-
most unchanged or even worse. To reduce the rms devi-
ation further, especially for the separation energies, one
needs to take into account the beyond-mean-field dynam-
ical correlation energies. Recently, some attempts to cal-
culate the DCEs systematically using the SDCH [67, 68]
based on the triaxial RMF+BCS [69] and triaxial RHB
[70] calculations have been performed. After taking into
account DCEs, the rms deviation of nuclear masses is re-
duced significantly down to 1.14 MeV in the former cal-
culation [69], and down to 1.31 MeV in the latter one
[70]. In addition, the DCEs and their effects on S, and
AS,, for the neutron-rich Er, Yb, Hf, and W isotopes
have been analyzed using the GCM method based on axi-
ally symmetric RMF+BCS [71].

In this work, we will extend the DRHBc theory to go
beyond mean-field framework by performing a two-di-
mensional collective Hamiltonian (2DCH). This model
can describe the axially symmetric deformed quadrupole
vibration and rotation and allow one to examine the influ-
ence of the dynamical correlations on the ground-state
properties, including the binding energies, two-neutron
separation energies, and quadrupole deformations for Se,

Nd, and Th isotopes, which locate in different nuclear
mass regions. Moreover, the effect of pairing correla-
tions on the DCEs will be discussed. This work provides
the first investigation on the dynamical correlations in the
relativistic framework containing the continuum effect in
the coordinate space, which is crucial for the description
of nuclei in the vicinity of neutron drip line.

The theoretical framework for DRHBc+2DCH is
presented in Sec. II. Numerical details and the results are
presented in Sec. III, in comparison with the results of
DRHBc without and with E,, and available data [72]. A
summary is provided in Sec. IV.

II. THEORETICAL FRAMEWORK

The relativistic Hartree-Bogoliubov (RHB) equation
[73] can provide a unified and self-consistent treatment of
both the mean-field and the pairing correlation, and de-
scribe the exotic nuclei properly in the Dirac Woods-Sax-
on basis [74]. The RHB equation reads

hp—2A; A U _ . (U
el o

where A, is the nucleon Fermi energy, and E; and
(Ui, Vi)T are the quasiparticle energy and wave function,
respectively. The Dirac Hamiltonian in the coordinate
space is

hp(r)=a-p+V(r)+BIM+S(r)], (2)
with the scalar potential S(r) and the vector potential
V(r). For axially symmetric deformed nuclei with spatial

reflection symmetry, the potentials are expanded in terms
of the Legendre polynomials,

f(r)ZZf,l(V)P,l(COSQ), 1=0,2,4,---. (3)
A

The pairing potential reads
A(ry,r2) = VPP (ry ro)k(ry,12), “4)

where «(ry,r;) is the pairing tensor [75]. A density-de-
pendent zero-range pairing force is adopted as

p(ry)

sat

1
VI (r1,ra) = Vo5 (1= P7)(ry —r2>(1 - ) (%)
with the pairing strength V, and the saturation density of

1 . . .
nuclear matter pgy. 5(1 — P7) is the projector for the spin

S =0 component in the pairing channel. The details of
the DRHBc theory with meson-exchange and point-coup-
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ling density functionals can be found in Refs. [49] and
[65], respectively.

By solving the DRHBc equations self-consistently,
one obtains the static mean-field solution which is char-
acterized by the breaking of translational and rotational
symmetries. To determine the beyond-mean-field ground-
state energy E(0}), it is necessary to extend the DRHBc
scheme to include collective dynamical correlations that
arise from symmetry restoration and shape fluctuations
around the mean-field minima.

The beyond-mean-field ground-state energy E(07)
can be described using a collective Hamiltonian, with de-
formation-dependent collective parameters determined
from constrained DRHBc calculations. The 2DCH
Hamiltonian takes the following form:

Heon =Tvip + Trot + Veoll

”wo1 8 |7 a J?
=—— — s + Ve, (6)
2, /]B,BB B Bﬁﬁ (9,8 2]

where Ty, and T, are the vibrational and rotaitonal kin-
etic-energy terms, respectively. V.o is the collective po-
tential. In the second line of Eq. (6), J denotes the total
angular momentum in the intrinsic frame, and .# denotes
the moment of inertia, which is calculated by the Inglis-
Belyaev formular [75-77]:

g = Z(”f S e, ()

where [i) and |j) denote the single-particle states in the
canonical basis, while v; (1;) and E; represent the occupa-
tion probabilities and the quasi-particle energies, respect-
ively. The collective mass Bgg is calculated in the crank-
ing approximation [78],

97441013
_2 21 -1
By=——h [M\ M MG ®)
with
(i1Q201))¢1Q20liy 2
Z (E+E,)" (uvj+viuy)”, 9)
where the quadrupole moment operator

On0 = V161/5rY20(6,¢), ro=1.2 fm, and A4 is the mass
number. The collective potential V., is calculated from
the DRHBc total energy Ei by subtracting the zero-point
energy (ZPE) corrections [78], mainly including the rota-
tional correction energy E. and the vibrational correc-
tion energy Eyip,

Veoll =Etot — Erot — Evip
1

=E
T 4

| My MG3)| (10)

By diagonalizing the 2DCH Hamiltonian in Eq. (6),
one can obtain the beyond-mean-field ground-state en-
ergy E(07). The dynamical correlation energy is defined
as the difference between the global minimum of the total
energy curve and E(07):

DCE = E"" — E(0}). (11)

III. RESULTS AND DISCUSSION

Numerical details for the mean-field calculations are
the same as suggested in Ref. [65]. The density function-
al PC-PK1 [64] is adopted, which is considered to be one
of the best relativistic density functionals for the descrip-
tion of nuclear masses [61, 69, 70, 79, 80]. The pairing
strength Vo = —325 MeV fm? together with a pairing win-
dow of 100 MeV is adopted, which can accurately repro-
duce the odd-even mass differences for calcium and lead
isotopes [65]. The Legendre expansion truncations in Eq.
(3) are chosen as 2 =6 for Se and Nd isotopes and 1 =8
for Th isotopes [81].

For the 2DCH calculation, we choose a transitional
nucleus '*¥Nd as an example in Fig. 1 to present the de-
formation dependence of the collective parameters in Eq.
(6) and the beyond-mean-field DCE. We first carry out a
constrained calculation to generate the mean-field total
energies (blue dashed line in Fig. 1(a)) and wave func-
tions of the axially symmetric quadrupole deformed
shapes. The single-particle wave functions, occupation
probabilities, and quasiparticle energies are used to calcu-
late the collective potential, collective mass, and moment
of inertia (red solid lines in Fig. 1), all of which are func-
tions of the deformation B. The collective potential
around the global minimum is lowered by ~ 3 MeV com-
pared with the mean-field total energy due to the ZPE
corrections. The collective mass fluctuates slightly with-
in 130 42> MeV~! in the prolate side but increases sharply
at 8~ —0.45 due to the proton pairing collapse [82, 83].
The moment of inertia grows rapidly with increasing de-
formation |8 and saturates as ~ 38 h> MeV~! (x~33 i’
MeV~1) for the prolate (oblate) side when |8 > 0.4. By
solving the 2DCH (c.f. Eq. (6)) constructed from the
three collective parameters, we can obtain the ground
state 0] shown as a triangle in Fig. 1(a). Finally, the DCE
is calculated as the difference between the global minim-
um of total energy (blue circle) and E(07), displayed by
the green segment, and its value is 1.91 MeV.

Figure 2(a) displays the evolution of DCEs for Nd
isotopes from the two-proton drip line to the two-neutron

064103-3



Wei Sun, Kai-Yuan Zhang, Cong Pan ef al.

Chin. Phys. C 46, 064103 (2022)

Energy (MeV)

Bgg (> MeV™)

5 (h* MeV?)

06 -04 02 00 02 04 06

Deformation S

Fig. 1. (color online) The collective potential V. together
with the constrained mean-field total energy curve Ei (a), the
collective mass Bgs (b), and the moment of inertia .# (c) for
148Nd as functions of the deformation parameter £ calculated
by the DRHBc+2DCH. The circle and triangle in panel (a) de-
note the global minimum of the total energy curve and the
ground-state energy E(0).

drip line calculated by DRHBc+2DCH. For the nuclei
with the magic number, the DCEs are almost zero as ex-
pected, whereas they increase rapidly to ~ 2.0 ~ 3.0 MeV
when moving away from the neutron shells. It is remark-
able that peaks appear at N ~ 70,106, and 116. This can
be attributed to the large shape fluctuation characterized
by a very soft potential around the global minima, which
can be seen clearly in Fig. A2 in the Appendix. The
DCEs of '20:152Nd exhibit conspicuous non-physical
jumps. This is because the pairing collapse of both neut-
ron and proton around the global minimum causes relat-
ively larger non-physical vibrational correction energies
in the collective potential (c.f. Eq. (10)). Compared with
the rotational correction energies E,o, the DCEs present
similar behavior for most of well-deformed nuclei as ex-
pected, while they are generally enhanced for the near
spherical and transitional nuclei. This plays a vital role in
improving the description of nucleon separation energies
(c.f. Fig. 4).

Figure 2(b) shows the differences between the calcu-
lated binding energies and the available data [72]. In gen-
eral, the deviations for binding energies including either
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(color online) (a) The dynamical correlation energies

Fig. 2.
in Eq. (11) and rotational correction energies obtained from
the cranking approximation E.o = (/2)/2.#, as functions of the
neutron number in Nd isotopes. (b) The differences between
the experimental binding energies [72] and those from
DRHBc with DCE for Nd isotopes versus the neutron number.
The results of DRHBc without and with E,, are also shown
for comparison.

DCEs or Ey are significantly reduced, within +1.7 MeV,
compared to those of DRHBc. However, it is emphasized
that the inclusion of DCEs can give a better description
for the near-spherical nuclei with N = 80,84, and thus re-
duces the rms deviation slightly from 0.90 MeV to 0.87
MeV.

In Fig. 3, systematic DRHBc+2DCH calculations are
also performed for Se and Th isotopes to further examine
the evolution of DCEs and their effect on the binding en-
ergies in different mass regions. In Figs. 3(a) and (c), the
evolutions of DCEs in these two isotopic chains are simil-
ar to that in the Nd isotopes except for the Se nuclei at
N =50,70 where the (sub-) shell effect is eroded away
due to the very soft potential around the global spherical
minima. The consistency between E;, and DCE for well-
deformed nuclei is also noted in the light and heavy mass
regions. Moreover, it is found that the trend of the correc-
tion energies as a whole decreases slightly for heavier
nuclei in one isotopic chain, and it also applies for the
case from light to heavy isotopic chains. In Figs. 3(b) and
(d), we find that the DCE and E,, have almost equival-
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ent effect on reducing the deviations of binding energies
in both Se and Th isotopes except for the near spherical
nuclei close to the neutron shells. For Se isotopes, the rms
deviation is reduced from 2.86 MeV in the DRHBc calcu-
lations to 0.95 MeV by including E,, and to 0.77 MeV
by including DCE. For Th isotopes, it is reduced from
2.76 MeV to 1.80 MeV and 1.99 MeV by including the
E.o: and DCE, respectively. The over-binding for N ~ 126
nuclei found in the Th isotopes also arises in a number of
other DFT calculations [20, 24, 25, 45], and it remains as
an open question, which has not been explained.

Figure 4 shows the two-neutron separation energies of
Se, Nd, and Th isotopes from two-proton drip line to two-
neutron drip line calculated from DRHBc without and
with correction energies, in comparison with the avail-
able data [72]. In general, S, decreases smoothly along
the isotopic chains except at magic numbers, e.g., N = 28,
50, 82, and 126, where S, drops significantly. It is inter-
esting to find the disappearance of the N = 82 shell in the
very neutron-rich Se isotopes and the emergence of a pos-
sible new magic number N = 184 in the neutron-rich Th
isotopes. One notes that the inclusion of dynamical cor-
relations reduces the N = 82 and 126 shell gaps character-
ized by the AS,,, e.g., from 6.08 to 5.25 MeV and from
5.91 to 4.95 MeV for the N = 126 shell in Nd and Th iso-
topes, respectively. This is consistent with the findings in
the GCM calculations based on the axially symmetric

120 124 128 132 136 140 144

Neutron Number N

(color online) The same as in Fig. 2, but for Se and Th isotopes.

HFB [31] and RMF+BCS [71]. Kinks of S5, in some iso-
topes, e.g., '%Se and '8%192Nd, are found in the DRHBc
calculations with E;.. This is due to the quenching of E,
for the nuclei in the vicinity of the (sub-) shells (c.f.
Figs. 2 and 3). The theoretical results agree well with the
available data, especially for the nuclei away from the
neutron shells. The rms deviations of S,, in Se, Nd, and
Th isotopic chains are respectively 0.79, 1.23, and 1.16
MeV for the DRHBc calculations without correction en-
ergies, and 1.01, 1.15, and 1.02 MeV for the calculations
with E;.. One notes that the inclusion of DCEs can im-
prove the description of S,,, and the corresponding rms
deviations of S,, forthe three isotopic chains are re-
duced respectively to 0.69, 1.02, and 0.88 MeV, with an
overall decline of ~17% compared to that with E,,. Fur-
thermore, it is found that the neutron drip lines of Se and
Nd isotopic chains are extended respectively from '2°Se
to '?8Se and from 2'°Nd to 2'¥Nd by including the DCEs.

It is interesting to further study the effect of dynamic-
al correlations on the quadrupole deformations, which
can be seen in Fig. 5. The deformations in DRHBc+
2DCH model are calculated as the expectation values of
in the ground state O7. It is found that the results of
DRHBc+2DCH calculations are similar to those of mean-
field calculations for the nuclei away from the (sub-)
shells, and both well reproduce the data. In contrast, for
the nuclei close to the neutron (sub-) shells, the DRHBc+
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Fig. 4.

(color online) The two-neutron seperation energies of Se, Nd, and Th isotopes calculated from the DRHBc with DCE. The ex-

perimental data and the results of DRHBc without and with E,, are also shown for comparison. Detailed predictions of S, for the nuc-

lei close to the drip lines are illustrated in the inserted panels.
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Fig. 5.
DRHBc+2DCH, compared with the available data [84].

2DCH gives nonzero or even rather large deformations,
e.g., |8/~ 0.15 in ¥ Se due to the shape fluctuation, and
the calculated deformations agree well with the data,
which are extracted from the measured B(E2;0] — 27)
[84].

The collective parameters of the collective Hamiltoni-
an have a rather strong dependence on the pairing correla-
tions [82, 83] and thus affect the ground state energy
E(07) as well as the DCE. Therefore, it is necessary to
quantify the relation between DCE and pairing correla-
tion to further improve the description of nuclear masses
and separation energies based on the beyond mean-field
collective Hamiltonian. To this end, we choose three dif-
ferent values of pairing strength in the DRHBc+2DCH
for the case “8Nd: =309, —325, and —341 MeV fm?3, cor-
responding to 95%, 100%, and 105%, respectively, of the
original pairing strength that was determined in the

100

1 1 1 L 1 1 I 1 1 1
120 140 160 130 150 170 190 210 230 250

N

(color online) Absolute values of the quadrupole deformations || of Se, Nd, and Th isotopes calculated by DRHBc and

DRHBc mass table. Figure 6(a) shows that by increasing
the pairing strength, both total energy curves and collect-
ive potential curves move downwards as expected, and it
is interesting to note that the latter ones lower faster due
to the enhancement of the ZPE correction energies plot-
ted in Fig. 6(b). As the pairing strength V, increases
gradually from —309 to =341 MeV fm?, the E, grows
from 1.56 to 1.79 MeV, and finally reaches 2.19 MeV,
while the E.j, changes very slightly. This results in the
rise of DCE from 1.67 to 2.29 MeV with an enhance-
ment of ~ 37%.

IV. SUMMARY

In summary, we extend the DRHBc¢ theory to go bey-
ond mean-field framework by performing the 2DCH with
parameters determined by constrained mean-field calcula-
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(color online) (a) The mean-field total energies E (dashed lines) and the collective potentials V. (solid lines) of 8Nd cal-

culated using three different pairing strengths: —309, =325, and —341 MeV fm?3, denoted by the colors green, red, and blue, respect-
ively. (b) The vibrational and rotational correction energies corresponding to the global minima of the total energy curves for different

pairing strengths. Red triangles indicate the DCEs.

tions for quadrupole deformed shapes. The influence of
the dynamical correlations on the ground-state properties
was examined, including the binding energies, two-neut-
ron separation energies, and quadrupole deformations, for
Se, Nd, and Th isotopes, which are located in different
nuclear mass regions. It is found that the DCEs and E,
have an almost equivalent effect on the description of
binding energies for most of deformed nuclei, and the
DCEs can provide a significant improvement for the
(near) spherical nuclei close to the neutron shells and thus
reduce the rms deviations of S,,. After taking into ac-
count DCEs, the rms deviations of binding energies for
Se, Nd and Th isotopic chains are reduced respectively to
0.77,0.87, and 1.99 MeV, and the corresponding rms de-
viations of §,, are improved to 0.69, 1.02, and 0.88 MeV
in comparison with those including E.y (1.01, 1.15, and
1.02 MeV). The quadrupole deformations are also calcu-
lated by the DRHBc+2DCH, and the results are similar to
those of mean-field calculations for the nuclei away from
the (sub-) shells. However, for the (near) spherical nuclei
in the mean-field calculations, the DRHBc+2DCH gives
nonzero or even rather large deformations, which agree
well with the available data. Furthermore, it is found that
the DCEs are quite sensitive to the pairing correlations.
For the case of “8Nd, the DCE grows by ~ 37%, from
1.67 t02.29 MeV, as the pairing strength increases by 10%.

This study provides a comprehensive analysis of the
beyond-mean-field effects of the dynamical correlations
and demonstrates that the DRHBc+2DCH constructed in
the coordinate space is an effective and efficient model to
improve the present relativistic mass model. This encour-
ages us to perform a global calculation for the DCEs and
other properties of the ground and excited states.
Moreover, our systematic SDCH calculation based on tri-

axial RHB with harmonic oscillator basis revealed that a
number of neutron-rich nuclei, in particular, the nuclei on
the path of r-process and those in the vicinity of neutron
drip line, exhibit transitional properties characterized by
triaxial soft potentials [70]. Therefore, it would be inter-
esting to extend our present axially symmetric DRHBc to
include triaxial degree of freedom, i.e., to construct the
triaxial relativistic Hartree-Bogoliubov theory in con-
tinuum (TRHBc), and such studies are in progress. Fur-
thermore, the SDCH based on TRHBc is planned and ex-
pected to provide relatively more convincing predictions
for very neutron-rich nuclei.
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APPENDIX: NUMERICAL CHECKS AND
RESULTS OF CONSTRAINED DRHBc¢
CALCULATIONS

The convergence checks for the total energies and the
collective masses in “8Nd with respect to the energy

cutoff £, and angular momentum cutoff Jp, are shown
in Fig. Al, and E}, =300 MeV and Jya =23/2# are ad-
opted.

Figure A2 displays the evolution of total energy
curves for '20-216Nd calculated by constrained DRHBc
with PC-PK1 functional. Very soft potentials around the
global minima can be seen clearly in the nuclei around
the mass numbers A = 130,166, and 176, which corres-
pond to the peaks of DCEs in Fig. 2.
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Fig. Al.

-1217.0 T T T T T T T T T T
(a)p=-0.2 148\ 4liF(c) =0.2 148N d
— 12175
>
=
-1218.0 - k
— }Z;f n 1725
= 920 1972
W _q2185¢L ~|:§;g ;’7 ‘|:§¥§Z
- h 4
2512 5 A
-1219.0 } } } } } } t t t t
— 250f(b) (d)
% E ]
2502
= 150f 232 1 . 172 1
& 212 5
— 19/2 » F 192 5 1
s 1772 \ 212 5
Q 50 F 232 h
2512 5

1éO 2(I)O 2£I'>0 3(I)O 3é0
Energy cutoff £, (MeV)

(color online) The convergence of the total energies and the collective masses in “8Nd with the energy cutoff, for angular
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momentum cutoff from 17/2x to 25/2nr. The convergence checks for the oblate (8 = —0.2) and prolate (8 =0.2) shapes are shown in the
left and right panels, respectively. Here the pairing correlation is neglected.

Fig. A2.
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(color online) The evolution of total energy curves for '20-21Nd calculated by constrained DRHBc¢ with PC-PK1 functional.

For each nucleus the energies are normalized with respect to the binding energy of the global minimum. The total energy curves of
210-216Nd are shifted down by 5 MeV to avoid crossing with those of other isotopes.
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