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Abstract: The extensivity for the thermodynamics of general D-dimensional rotating black holes with or without a
cosmological constant can be proved analytically, provided that the effective number of microscopic degrees of free-
dom and the chemical potential are given respectively as N = LP~2/G, u= GTIp/LP~2, where G is the variable

Newton constant, Ip is the Euclidean action, and L is a constant length scale. In the cases without a cosmological
constant, i.e., the Myers-Perry black holes, the physical mass and the intensive variables can be expressed as explicit

macro state functions in the extensive variables in a simple and compact form, which allows for an analytical calcu-

lation of the heat capacity. The results indicate that the Myers-Perry black holes with zero, one, and & equal rotation

parameters are all thermodynamically unstable.
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I. INTRODUCTION

This work is a continuation of the recent works [1-3]
on black hole thermodynamics and the cases of general
rotating black holes in D-dimensional Einstein gravity.
The formalism introduced in [1-3] involves a variable
Newton constant G, which enters the expression

N=="+— (1)

for the new thermodynamic variable N. For asymptotic-
ally AdS black holes, N is proportional to the central
charge of the dual CFT, while for non-AdS black holes, N
may be simply understood as the effective number of mi-
croscopic degrees of freedom for the black holes. The
thermodynamic conjugate of NV is given by the chemical
potential

n= p2° (2

where Ip is the Euclidean action, and L is a constant
length scale (which may be identified as the largest radi-
us of the event horizon during a thermodynamic process

of interest). This formalism coincides neither with the tra-
ditional formalism [4-7] nor with the so-called extended
phase space formalism [8-14] but is closely related with
Visser's holographic thermodynamics [15]. The idea to
introduce a chemical potential in black hole thermody-
namics was already presented in [16-20], while a vari-
able Newton constant in black hole thermodynamics was
also presented in [21]. However, the major points of con-
cern are completely different. The motivation of the
works [1-3] is mainly to introduce a formalism in which
the first law and the Euler relation hold simultaneously.
This makes the thermodynamics extensive, and the ther-
modynamic potential and the intensive variables behave
as appropriate homogeneous functions in the extensive
variables. In this spirit, the ideas of the works [22, 23] are
quite close to ours but with a different set of extensive
variables. The chemical potential introduced in [22, 23] is
conjugate to the so-called topological charge, while the
chemical potential introduced in [1, 2] is conjugate to the
central charge of the dual CFT for AdS black holes, and
the formalism is extended to non-AdS cases without a
holographic dual in [3]. The wider applicability of the
variable Newton constant formalism may be a signature
for its universality, and one of the purposes of the present
work is to illustrate the power and strength of this formal-
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ism in the cases of general rotating black hole solutions in
higher dimensional Einstein gravity, regardless of the
value and sign of the cosmological constant.

The black hole solutions to be analyzed in this paper
was first obtained in [24]. The solutions have k=
[(D-1)/2] independent rotation parameters a; in k ortho-
gonal 2-planes. For a vanishing cosmological constant,
the solutions degenerate into Myers-Perry black holes
[25]. Using the explicit expression for the chemical po-
tential, it will be shown that the Hawking-Page (HP)
transition [26] appears only in the asymptotically AdS
cases and only if the radius of the event horizon ap-
proaches the AdS radius. Moreover, by introducing the
N, u variables, the physical mass as well as all the intens-
ive variables can, in principle, be expressed as macro
state functions in the extensive variables with appropri-
ate homogeneity behaviors. These macro state functions
are made explicit in the cases with a vanishing cosmolo-
gical constant, i.e., the Myers-Perry cases. [ will also ana-
lytically calculate the heat capacities and discuss the ther-
modynamic instabilities for the Myers-Perry black holes.

II. GENERAL ROTATING BLACK HOLES IN
HIGHER DIMENSIONS

The general D-dimensional rotating black hole solu-
tions with the cosmological constant were first obtained
in [24]. In Boyer-Linquist coordinates, the metrics are
given by

.
-

k 2 2

2Gm a; (17 de;

2_ 1.2 4.2, cbm I el
ds® = W(l /lr)dT+ (WdT E )

i=1

k 2, 2 5 ke 2, 2
re+a: Udr r+a:
+ Lu?de? + + Ldu?
LiE MYV aGm T L TET
1 k+e r2+a.2 2
+ ~uidug ) 3
W(l—/lrz)(izl g “) 3
where k=[(D-1)/2], e=(D-1) mod 2,
k+e
Z,u.zzl’
i=1
and
k+e 2 k+e 2 k
_\Hi _ e Hi )
W= E’ U=sr r2+a2 l_l(r +aj)7 (4)

Zi=l+1d>. ()

The integer € is known as the evenness number, which is
1 for even D and O for odd D. The metrics satisfy
Ry =(D-1)Ag,,. The choices 1>0,1=0,2<0 corres-
pond to asymptotically de Sitter, flat (i.e. Myers-Perry),
and anti-de Sitter cases, respectively. Moreover, for
A#0, one has |1 = £72, where ¢ is the (A)dS radius. The
original solutions were presented in unit G = 1. However,
since I will be discussing a formalism with the variable
G, the explicit G-dependence is brought back carefully.

The outer horizon is located at r = r,, where r, is the
largest root of V(r)—2Gm = 0. Therefore, one has

_ V) _

k
I 2 2, 2
—ri (A =-Ar) | | +a)). (6)

The surface gravity x and the area 4 of the event horizon

are given by [24]

2—€e+elr?
2r, ’

1
— _ 1,2 _
k=ri(1=-2ry) Ei r%+ai2

e-1 ri+ai2
A=Apari | |25
i

=i

where Ap_, is the volume of the unit (D —2)-sphere:

27D-D/2

A2 = Fp-

The Hawking temperature and the entropy are then given
by

K 1 5 1 2-e+ear?
T=—=—|r,(-2 - :
27 2n | r+)zi:r3+a§ 2,
(7
A Ap, r+a’
S=-—= ; L, 8
4G~ 4G T [1 = ®

i

The angular velocities, measured relative to a frame that
is non-rotating at infinity, are given by

(1-2r2)a;
i= T, 9
r+a’ ©)
and the angular momenta are given by
ma; Ap_» (10)

" AanE(1E)
J

The physical mass E of the black holes are related to the
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mass parameter m via

C mAps (1
4n<r1~]>(25_ ) a

i=1
Finally, the first law of thermodynamics at fixed G reads

dE=TdS +ZQic~1J,», (12)

where d denotes the total differential taken when G is
considered to be a constant.

Before closing this section, note that, in [27], the
black hole parameters such as the surface gravity x, the
area 4 of the event horizon, the physical mass E, and the
Euclidean action I that will be used in the next section
are presented separately for odd and even D. Here, |
found it more convenient to rewrite these quantities for
generic D in a unified form by using the evenness num-
ber e. Inserting the corresponding values for € will recov-
er the original values of these quantities given in [27].

III. THERMODYNAMICS WITH VARIABLE
NEWTON CONSTANT

The Euclidean actions for the black holes described in
the preceding section are calculated explicitly in [27].
After properly restoring the Newton constant, the results
read

A
Ip = b- (

2
SISy n(’ *aj )) (13)

It was verified [27] that Ip obeys the identity

E-TS-Y Qii=TIp. (14)
i

Equations (1) and (2) imply uN = Tlp; thus, Eq. (14) is
recognized to be the Euler relation

E=TS +ZQiJi+yN. (15)

Now, if G is considered to be a variable, one has a
different total differential, e.g.,

mdG SdG
dm=dm-"2 g5 =ds - 22
m=an-Tg G

Moreover, for any function of the form

f(m’ai’r+)=g(ai7r+)mv (16)
one has

df =mdg+gdm
~ mdG
=md dm—- ——
m g+g( m-—x )
~ dG
=df - f—. 17
f-1 )

Meanwhile, it follows from Eq. (1) that

dG dN

G N’

Thus, Eq. (17) can also be written as
~ dN
df =df - f—.

f=df -1

It is important to note that the quantities £ and J; are all
proportional to m. For this reason,

dE =aE+Ed—N
N

dN dN) _dN
:T(dS —SW)+ZQ,- (d],-—]l-w).yEW

=TdS +ZQidJ,-+[E—TS—ZQiJ,-)dWN

=Tds +ZQ,-dJ,~+/,¢dN, (18)

where the Euler relation (15) has been used. The analysis
does not rely on the choice of 4 and the concrete value of
D, provided that Egs. (12) and (14) are valid, and 4 and L
are both kept as constants. Egs. (15) and (18) lay down
the fundamental relations in our formalism of black hole
thermodynamics.

Please note that the inclusion of the (u,N) variables
implies that the first law (18) corresponds to an open
thermodynamic system; the corresponding ensemble is
grand canonical. One can, of course, consider the case
with N fixed. Then, the first law (18) would fall back to
(12), which corresponds to a closed thermodynamic sys-
tem or a canonical ensemble. It should be stressed that
even in the latter case, the variables (u,N) are still mean-
ingful, and the Euler relation (15) still holds. Therefore,
our formalism is still different from the traditional form-
alism, which is governed only by the first law (12) and
the generalized Smarr relation, without the Euler relation.
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IV. HAWKING-PAGE TRANSITIONS
WITH NEGATIVE 4

Before delving into the detailed analysis of the ther-
modynamic behaviors, let me first make a brief discus-
sion about the possible HP transitions in either the canon-
ical or grand canonical ensembles, i.e., regardless of
whether G is variable or not.

The HP transition [26] is a particular kind of trans-
ition between the AdS black hole state and a thermal gas
state which is characterized by a vanishing Gibbs free en-
ergy or, equivalently, a vanishing chemical potential.

Using definition (2) and Eq. (13), one has

_ Ap-2 /l_"i 2 2
1 ML) (m+ G H(r++ai)). (19)

It is evident that 4 can become zero only when A < 0. The
zero appears when

Are
m+ f 1?[(;32r +aiz) =0. (20)

Substituting Eq. (6) into Eq. (20), one obtains

1
i(l—ﬂrﬁ)m:o. (21)

+

Writing A = —£2, the solution to Eq. (21) is found to be
(re)up = £

Therefore, the HP transition occurs precisely when the ra-
dius of the event horizon reaches the AdS radius.

The temperature at which the HP transition occurs is
known as the HP temperature. In the present case, the HP
temperature can be expressed analytically using the para-
meters ¢ and q;. The result reads

¢ 1 1-e
M= D T

i

V. PHYSICAL MASS AS A MACRO
STATE FUNCTION

The first law (18) and the Euler relation (15) imply
that the variables S, J;, N are extensive, and their conjug-
ates, T, Q;, u, are intensive. This formalism conforms
with the standard extensive thermodynamics; therefore,
one naturally expects that the usual practice for analyz-
ing the thermodynamic properties of macroscopic sys-
tems should also be applicable here. In particular, the

physical mass and the intensive variables should all be
expressible as homogeneous macro state functions in the
extensive variables S, J;, and V.

A. Generic A

In the cases with generic A, one can obtain from Egs.
(6) and (8) that

l_[El.z M' 22)
157 sa=a)

Inserting Eq. (22) into (10), one has

B a; S(1 —/lri)

=T T+ 23
2nri(1+2a?) 23

i

Equation (23) can be viewed as an algebraic equation for
a;, whose solution gives a; as functions in S, J;, r,,

a; = ai(S3Ji9r+)'

By inserting the functions «;(S,J;,r;) into Eq. (8), a very
complicated equation for r, will arise, the solution of
which gives a function

ry =1 (S8,9), (24)

where J denotes the sequence of all J;. This in turn im-
plies that a; are actually functions in S and J because r,
is no longer an independent variable:

ai; =ai(S’Ji’r+(S’j))' (25)

By scaling arguments, it can be seen that the functions
re(S,9) and a;(S,J;,r.(S,9)) are all zeroth order homo-
geneous functions in §,9. Finally, inserting Egs. (1),
(24), and (25) into (11), (7), (9), and (19), the macro state
parameters E,T,Q;,u can all be expressed as functions in
S,9J, and N.

Although the corresponding functions are very com-
plicated and are not worth explicitly presenting here,
some key features can be recognized without much diffi-
culty. In particular, E(S,J,N) is a homogeneous func-
tion of the first order, and T'(S,7,N), Q(S,9J,N), and
u(S,J,N) are homogeneous functions of the zeroth order.
These homogeneity behaviors are desired for the thermo-
dynamic potential and intensive variables in any extens-
ive thermodynamic system.

B. A=0: Myers-Perry cases

The overwhelmingly complicated form for the macro
state functions E(S,J,N) and T(S,9,N), Q:i(S,9,N),
u(S,J,N) can be avoided if one considers only the cases
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with 1 =0, i.e., the Myers-Perry cases. In such cases, one
has

Ei=1 (26)
Hence, Egs. (22) and (23) become
mﬂg_z S
b2 2 2
2 ry @7
a; 27TJi
—=— 28
5 (28)

Substituting Egs. (26) and (28) into Eq. (8), one obtains

NAp2 5 2rJ;\?
S = 4L§22£2]T[[1+(T)]. (29)

This is an algebraic equation for r,, whose solution reads
1/(D-2)

48
- (2nJ,- )2]
S

Inserting the above result into Eq. (28) one obtains an ex-
pression for ¢; as a macro state function:

(30)
Ap-oNTl;

1/(D-2)

Ji 48
o = 2nL(§) FPIRE ET)
ﬂszN Hl 1+ (T)

Notice that if all J; are equal to each other,a;are also
equal to each other. Finally, substituting Eqs. (26) and
(30) into Eq. (11), one obtains an explicit and very com-
pact expression for the physical mass £ as a macro state
function E(S,J,N),

E(S.J.N)=(D-2)KNAT] B;, (32)

where

(Ap_p)1/P-2)

K= o002,

is a constant factor, and

S \(D-3/(D-2) 2J; 211/(D-2)
A= (_) , B;= 1+— .
N S

It is evident from Eq. (32) that the physical mass is pro-
portional to N, with the coefficient of proportionality be-
ing a zeroth order homogeneous function in the extensive
variables.

In principle, one can also obtain the macro state func-
tions 7(S,J,N), Q(S,J,N), and u(S,J,N) explicitly by
substituting Egs. (26), (30), and (31) into the appropriate
equations presented in Sec. II. However, the resulting ex-
pressions will be somewhat complicated and require
some effort to simplify. For the sake of simplicity, I will
proceed in an alternative way, i.e., by using the first law
(18) and treating the intensive variables as partial derivat-
ives of E. The results will be presented in the next sec-
tion.

VI. EQUATIONS OF STATES FOR MYERS-
PERRY BLACK HOLES

In this section, I will present the explicit form for the
macro state functions T7(S,J,N), Q(S,9,N), and
u(S,J,N) as the equation of states (EOS) for Myers-
Perry black holes.

To begin with, it is necessary to write down the par-
tial derivatives of the intermediate functions A(S,N) and
B;i(S,J;). These are given as follows:

0A (D-3\A
ﬁ_(ﬁ)?

0A _ (D-3\A
a_N__(ﬁ)N’

(’*)Bi_ 27(],‘Bi

84S ~ (D-2)(S2+2xJ:S)
C()Bi 27TB,'

aJ; _ (D-2)(S +27J)

Using these relations, one finds

i) _X8,.9) ,
a5l 1B = Db-2s" j Bj.

0 2
— 1A Bl=—— A B
aJ; l—[ N (D=2)(S +2nJ;) U »

0 1

—1A Bi|l=——A B;
ON 1—[ 1 (D-2)N U ”
where

27TJ,‘
S +2nJ;

k
X8, =D-3-3" (33)
i=1

Therefore,
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OE

7(S,J,N) = (as

) =k (gl B G
J

oFE 2nN
QS TN) = (51 )s TN (S +27TJ) HBJ’ )

y(SjN)( ) —KA]_[B (36)

Several remarks need to be noted as follows.

1) The explicit EOS allows for a straightforward re-
verification of the Euler relation (15). Moreover, one can
also find other mass formulae using the EOS, e.g.,

D-2
E= - 3[TS+ZQJI], (37)
E =(D-2)uN. (38)

Equation (37) is already known as the Smarr relation.

2) The chemical potential u(S,J,N) is strictly posit-
ive, which indicates that there is no HP transition in the
asymptotically flat cases, and that the microscopic de-
grees of freedom are repulsive. This latter feature may be
a signature for thermodynamic instability. More confirm-
ative evidence for the thermodynamic instabilities will be
given in the next section by analysis of the heat capacity.

3) The condition 7(S,J,N) > 0 requires

2nJ;

X(8,.9)=D-3- ZS+27TJ>0. (39)

Since the expression increases monotonically

T 1
S +2nJ, i
with J; and approaches the value 1 as J; — co with finite
S (recall here that k = (D—1-¢€)/2), one has

D-1-¢€
2

miny(S,9)=D-3- =%(D+E—5).

For D <4, the bound (39) can be violated, signifying that
the angular momentum cannot be too large. D =4,5 are
critical in the sense that the bound (39) can be at most
saturated but not violated. Therefore, the existence of ex-
tremal black holes of the Myers-Perry class cannot be ex-
cluded by use of the bound (39) alone in these dimen-
sions. For D > 5, T is always strictly positive, which ex-

cludes the existence of extremal Myers-Perry black holes
in higher dimensions.

VII. HEAT CAPACITY OF MYERS-PERRY
BLACK HOLES

The explicit form of the EOS allows for an analytical
calculation for the heat capacity of Myers-Perry black
holes. I particularly concentrate on the heat capacity asso-
ciated with the macro processes with fixed J and N, i.e.,

oS
oot
oT TN

The calculation of the heat capacity Cqy is essentially
the calculation of the partial derivative (Z_j") . This

TN
partial derivative cannot be calculated directly because S

has not been written as an explicit function in 7,9, and
N. However, using the EOS (34), one can calculate its in-

. oT .
verse, i.€., (ﬁ) . To make the calculation more con-

cise, it is better to start with the partial derivative of
Xx(S,9), which is defined in (33) with respect to S as fol-
lows:

X(S I = Z S +27TJ)2

Using the above result, one has
or d (N
(g)M:K[g (5)]X(SJ)A]7[B/
+K(g)(%x(5,j))AnBj
J
K(g)x(S,j)%(AnBj]
j

T N 2
S +K(—)Z i,
S S L4 (S +2m);)?

XS,9)
T Dh-s

L1z
J

| 27?./,'
=X 6.d) [Z‘ (S +270)?

2
X (S,J)_)((S,J)}T'
(D-2)S S

Consequently, the heat capacity can be written as
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T
Cqn —@ =x(S.9)
S TN

271'./1‘
X +
[Z S +27TJi)2

i

6.9 x|
(D-2)S S '

(40)

The analytical result (40) for the heat capacity makes
it possible to analyze the thermodynamic (in)stability for
Myers-Perry black holes in generic dimensions. For arbit-
rary choices of J;, the detailed analysis can still be quite
complicated; therefore, I will proceed only with some
simplified cases.

1) J; =0 for all i, i.e. the Schwarzschild-Tangher-
lini cases
In such cases, one has

X($.9)=D-3,
and consequently,
Cyn=—-(D-2)S <0,

which shows that the higher dimensional Schwarzschild-
Tangherlini black holes are thermodynamically unstable.

2) J1=J,Ji=0 for all i>2, i.e., the cases with a
single rotation parameter
In these cases, one has

2nJ
S.T)=D—-3—
XS.9) S +21)

Can=x(S,NDS,T),

>0 for D>5andJ < o,

where

_ 2l ST x(8.9)
D(S’j):(5+2n1)2 (D-2)S S

__(D=4)@rJ+S)* +(D-2)S?
- 2D-2)S2nJ +S)?

<0 for D=>S5.

Therefore, the higher dimensional Kerr black holes with a
single rotation parameter always have a negative heat ca-
pacity, indicating that such black holes are thermodynam-
ically unstable.

3) Ji=J #0 for all i, i.e., the cases with k equal ro-
tation parameters
In these cases, one has

D-1-€( 2nJ
M8, =D=3- 2= (S+2M)>o for
D>5andJ < oo, (41)
Can=xES.NDS. T, (42)
where
7 _D-l-€¢ 21/ X9 xS.9)
DS =G5 T b5 s

_ (D=4)(DrJ+5)* +(D-2)’S?

<0 for D> 5.
D(D-2)S21J+S5)? o

One thus concludes that for all D >5, the heat capa-
city (42) is always negative, indicating that the higher di-
mensional Myers-Perry black holes with equal rotation
parameters are all thermodynamically unstable.

Before concluding this section, note that the negative-
ness of the heat capacity of Myers-Perry black holes has
already been studied in previous works using different
methods in various limiting cases; see [28, 29]. However,
to the best of my knowledge, the representation of the
heat capacity purely in terms of the extensive variables
has not been previously presented.

VIII. SUMMARY AND CONCLUSIONS

The major achievements and conclusions of the
present paper are summarized as follows.

1) The variable Newton constant formalism for black
hole thermodynamics holds for general rotating black
hole solutions in higher dimensional Einstein gravity with
or without a cosmological constant. In this formalism, the
first law and the Euler relation hold simultaneously, and
the physical mass is fully extensive.

2) It can be inferred from the zero of the chemical po-
tential u = GTIp/LP~? that the HP transitions appear only
in asymptotically AdS cases and only when the radius of
the event horizon approaches the AdS radius. The HP

temperature can be expressed analytically in terms of the
AdS radius ¢ and the rotation parameters a;.

3) For Myers-Perry black holes, the physical mass
and the intensive variables can be written as explicit func-
tions in the extensive variables, and the results have a re-
markable simple and compact form. The homogeneity be-
haviors of these macro state functions are transparent.

4) The calculation for the heat capacity of Myers-
Perry black holes can be carried out analytically and can
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be shown to be always negative in the example cases with
zero, one, and k equal rotation parameters. The results in-
dicate that the corresponding black holes are thermody-
namically unstable. The thermodynamic instability might
also be inferred from the strict positivity of the chemical
potential in the asymptotically flat cases.

The above results provide more evidence for the ap-
plicability and strength of the new formalism for black
hole thermodynamics proposed in [1-3]. It is expected
that this formalism should also be applicable to black
holes in extended theories of gravity. Further studies in
this direction are currently underway, and progresses will
be reported soon.
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