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Abstract: We develop the regular black hole solutions by incorporating the 1-loop quantum correction to the New-
ton potential and a time delay between an observer at the regular center and one at infinity. We define the maximal
time delay between the center and the infinity by scanning the mass of black holes such that the sub-Planckian fea-
ture of the Kretschmann scalar curvature is preserved during the process of evaporation. We also compare the dis-
tinct  behavior  of  the  Kretschmann curvature  for  black  holes  with  asymptotically  Minkowski  cores  and  those  with
asymptotically de-Sitter cores, including Bardeen and Hayward black holes. We expect that such regular black holes
may provide more information about the construction of effective metrics for Planck stars.
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I.  INTRODUCTION

Before  establishing  a  complete  theory  of  quantum
gravity,  it  is  desirable  to  construct  regular  black  hole
solutions that are non-singular everywhere and character-
ized by  finite  Kretschmann  scalar  curvature  to  under-
stand  the  final  stage  of  stellar  collapse  and  black  hole
evaporation [1-8]. In literature [9-22], such regular black
holes  have  been  constructed  by  heuristically  considering
the quantum effects of gravity, and they can be classified
into two categories  based on their  asymptotical  behavior
at the central core, which becomes regular. The first cat-
egory is regular black holes with asymptotically de-Sitter
cores, which includes the well known Bardeen black hole
[9], Hayward black hole [10], and Frolov black hole [11].
The second  category  is  regular  black  holes  with  asymp-
totically  Minkowski  cores,  originally  proposed  in  [18],
and  developed  further  in  [20-22].  Recently,  in  [23],  we
proposed an exponentially suppressing form of mass de-
pendent  gravitational  potential,  such  that  the
Kretschmann  scalar  curvature  is  bounded  above  by  the
Planck mass density,  regardless of the mass of the black
hole. Furthermore,  we  established  a  one-to-one  corres-
pondence  between  regular  black  holes  with  Minkowski
cores and de-Sitter cores. This correspondence provides a
scheme to construct new regular black holes with dS core

as well.
With the  aim  of  constructing  effective  metrics  de-

scribing the evolution of  black holes  and the collapse of
matter stars without a central singularity, in this study, we
further  develop  the  regular  black  holes  proposed  in  [23]
based  on  the  following  considerations.  Firstly,  at  the
Planck  scale,  quantum  gravity  effects  are  sufficiently
strong  to  change  the  quantum  mechanical  behavior  of
matter, which is  usually reflected by the generalized un-
certainty  principle  (GUP).  It  is  well  known  that  GUP
provides a  lower  bound for  the  size  of  any quantum ob-
ject, whose size should be larger than the minimal length
at Planck scale.  As a result,  any quantum object  with fi-
nite size placed in a curved spacetime must be affected by
tidal gravitational forces. In [23], we presented an altern-
ative point of view on this scenario. One can assume that
quantum objects  still  obey the  usual  Heisenberg's  uncer-
tainty  relation,  implying  that  quantum  theory  holds,  but
introduce an  effective  gravitational  field  strength  ac-
counting for the effects of gravity on the quantum object.
In this scenario, the black hole background will be modi-
fied  to  a  metric  characterized  by  an  effective  Newton's
constant, leading to the regular black holes constructed in
[23].  Specifically,  the  regular  black  holes  in  [23]  were
constructed by  considering  strong  quantum  gravity  ef-
fects such as GUP. In this study, we hypothesize that the
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effective metric  not  only  contains  strong  quantum  grav-
ity effects from the GUP, but also 1-loop quantum correc-
tions to the Newtonian potential via an effective field the-
ory [24, 25]. Secondly, we expect that the effective met-
ric leads to time delay between an observer at the central
core  and  another  observer  at  infinity.  This  should  be  a
more  practical  setup,  since  any  clock  in  a  gravitational
potential well should be slowed down in comparison to a
clock in an asymptotically flat region. A similar modific-
ation  has  been  performed  on  the  Hayward  black  hole  in
[26].  Here,  we  follow  up  and  improve  this  strategy  to
general  regular  black  holes  with  spherical  symmetry.  In
particular,  we  compare  the  distinct  behavior  of  the
Kretschmann  curvature  for  these  two  types  of  black
holes.

This paper is organized as follows. In next section we
will  present  the  general  metric  for  regular  black  holes
with spherical symmetry, with the basic features of these
regular  black holes  reviewed in  the  Appendix.  Then,  we
focus  on  the  mass  dependent  behavior  of  the
Kretschmann curvature  when  1-loop  quantum correction
and time delay are taken into account. Next, we propose a
scheme to evaluate the maximum time delay at the center
by  scanning  the  mass  of  black  holes  such  that  the  sub-
Plackian features  of  the  Kretschmann  curvature  are  pre-
served during  the  evaporation  process.  Then,  from  sec-
tion three to section five, we numerically demonstrate the
dependent  behavior  of  the  Kretschmann  curvature  on
sevaral  parameters  in  different  regular  black  holes.  The
distinct  behaviors  are  compared  for  regular  black  holes
with  asymptotically  Minkowski  cores  and  those  with
asymptotically de-Sitter cores.  In particular,  we find that
the Kretschmann curvature can always be sub-Planckian,
irrespective of  the  mass  of  black  holes.  Finally,  we  pro-
pose a scheme to fix the time delay parameter in the con-
clusion and discussion section. 

II.  THE GENERAL SETUP FOR STATIC SPHER-
ICALLY SYMMETRIC BLACK HOLES

We consider a static spherically symmetric black hole
with a general form of the metric 

ds2 = −G(r)F(r)dt2+
1

F(r)
dr2+ r2dΩ2, (1)

with 

F(r) = 1+2ϕ(r), (2)

ϕ(r)
F(r)

G(r)

where  is the gravitational potential. Generally, we in-
troduce  to include  the  strong  quantum  gravity  ef-
fects that modify the singularity at the Planck scale, while

 accounts  for  the  weak  quantum  gravity  effects  as

G(r)

rh grr = F(rh) = 0

well  as  the  finite  time  delay  between  an  observer  at  the
center and one at infinity. Thus, we assume that  is a
regular  function  of  the  radius,  while  the  position  of  the
horizon  is  solely  determined  by .  With
this  ansatz,  it  is  straightforward  to  derive  the
Kretschmann scalar curvature which has been included in
Appendix A.

ϕ(r) G(r)

In this study, we consider a specifical modification of
the  regular  black  hole  proposed  in  [23]  by  adopting  the
strategy presented in  [26]. Thus,  the  gravitational  poten-
tial  and modified function  are specified as 

ϕ = −M
r

e−αMx/rn

, G(r) = 1− βMγ
γr3+βM

, (3)

lp = Mp = 1

lp mp

ϕ(r)
n > x ⩾ 0 n ⩾ 1

G(r) = 1

where α, β, and γ are  dimensionless  constants.  We  have
also set  throughout  the paper,  which implies
that  to  recover  the  correct  dimensions  of  any  physical
quantity,  or  should  be  inserted  appropriately.  The
above form of  was originally proposed by us in [23].
When x and n are  specified  with  and ,  it
produces several  regular black holes with asymptotically
Minkowski  cores.  With ,  the  sub-Planckian  and
and  thermodynamical  features  of  the  Kretschmann
curvature have been investigated in detail in [23].

G(r)

G(r) = 1
G(r)

G(r)
g00

The  above  form  of  was  first  proposed  in  [26],
resulting in a modified Hayward black hole. Here, we ad-
opt the  same form to  introduce  the  1-loop  quantum cor-
rection  to  the  gravitational  potential  and  a  time  delay
between  the  center  and  infinity.  It  is  evident  that  with

,  the  regular  black  hole  proposed  in  Ref.  [23]  is
recovered. Now, with non-trivial , it  is also straight-
forward to obtain the location of the outer horizon and the
thermodynamics  of  the  above  modified  black  holes,
which are presented in Appendix B and Appendix C, re-
spectively. Here, we intend to demonstrate how a 1-loop
quantum  correction  and  time  delay  can  be  incorporated
by  the  function .  For  such  modified  regular  black
holes, the metric component  at large scale behaves as 

g00 = 1− 2M
r
− βM

r3 +
2βM2

r4 +
2αMx+1

rn+1 +o
(

1
rn+2

)
. (4)

Furthermore,  the  leading  quantum  correction  to  the
Newtonian  potential  has  been  perturbatively  computed,
and  the  large  scale  behavior  of  gravitational  potential
takes the following form [24, 25] 

ϕ(r) = −M
r

(
1+

41
10π

1
r2 + ...

)
, (5)

n ⩾ x ⩾ n/3 n ⩾ 2
where the leading term is described with a positive sign.
In  this  paper,  we require  that  and  such
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β = 41/(5π)

that Kretschmann  curvature  can  be  sub-Planckian,  irre-
spective  of  the  mass  of  the  black  holes,  as  analyzed  in
[23]. Therefore, the exponential form of the gravitational
potential has  no contribution to  the  1-loop quantum cor-
rection, and we simply set  to reproduce such
a 1-loop quantum correction1).

G(r)
g00

(δt∞−δt0)/δt∞ =1−
√
|g00(0)|

G(r)
F(r)→ 1 r→ 0

1 > γ ⩾ 0 G(r)

r→ 0 G(r)→ 1−γ F(r)→ 1

Next,  we  explain  how  time  delay  is  incorporated  by
 with  the  parameter γ.  First,  we note  that  the  metric

component  at  the  center  remains  time-like,  which  is
in  contrast  to  the  standard  Schwarzschild  black  hole.
Thus, we may compare the times for two clocks placed at
the  center  and  infinity.  Specifically,  the  time  delay  may
be defined as  as proposed in
[26].  Before  introducing  the  function ,  it  is  easy  to
see that  as , which means there is no time
delay between  these  two  clocks.  This  is  an  unusual  fea-
ture,  since  the  distribution  of  matter  generally  leads  to
time delay effects during stellar or matter collapse. There-
fore, we introduce a parameter γ with  in  to
generate a desired time delay at the center. It is evident as

,  and ,  and  then,  the  time
delay  between  two  clocks  at  the  center  and  infinity  is
measured by γ.

G(r)

G(r) = 1 n ⩾ x ⩾ n/3 n ⩾ 2

Kmax
x = n/3

Kmax
n = 2 n = 3

G(r)

Now, we are concerned with the effects of  on the
Kretschmann  scalar  curvature.  As  demonstrated  in  [23]
with ,  if  and ,  the  Kretschmann
curvature can be always sub-Planckian, because its max-
imal  value  is  inversely  proportional  to  the  black
hole  mass.  The  saturated  case  is  reached  at ,
where the maximal value  is independent of the mass
of  black  holes.  Specially,  when  and  regular
black holes with asymptotically Minkowski cores corres-
pond to the Bardeen black hole and Hayward black hole,
respectively, in the sense that they have the same asymp-
totic  behavior  at  large  scales.  Now,  once  the  function

 is  introduced,  it  should  be  noted  that  the  maximal
value of the Kretschmann curvature generally becomes a

Kmax(m,α,γ) γ→ 1
gtt

Kmax(γmax) = 1
n ⩾ x ⩾ n/3

n ⩾ 2 Kmax

γmax
γmax > γ ⩾ 0

γmax
γmax

γmax→ 1

γmax > γ ⩾ 0

function of the mass M, and parameters α and γ, denoted
as . In particular, in this form as in this
form, the metric component  becomes vanishing, such
that  the  Kretschmann  scalar  curvature  can  easily  exceed
the Planckian mass density, as demonstrated explicitly in
the  next  sections.  This  behavior  is  not  unexpected,  and
implies that an arbitrarily large time delay is not possible.
This is  quite  reasonable  from  physical  perspectives,  be-
cause  any  time  delay  induced  by  the  matter  distribution
should be finite.  Therefore,  with a given α,  we intend to
define  a  maximal  value  of γ that  saturates  the  bound  of
the  Kretschmann  scalar  curvature  by  scanning  the  black
hole mass with  for a certain mass m. More
importantly,  we  note  that  in  the  region  and

,  this  assumption  always  holds,  because  will
not  increase  with  the  mass M forever  in  this  region,  but
becomes saturated at large M for black holes. This will be
justified  by  the  numerical  analysis  described  in  the  next
sections. Therefore, for a given α, we can obtain the max-
imum time delay  such that given a γ under the con-
dition , the  Kretschmann  curvature  is  main-
tained  at  the  sub-Planckian  scale  for  all  black  hole
masses.  This  behavior  is  expected,  because  once  all  the
parameters are specified in Eq. (3), the sub-Planckian fea-
ture of K is  preserved during the evaporation process,  in
which the  black  hole  mass  changes.  Therefore,  we  nu-
merically plot  as a function of α for  typical  regular
black holes in Fig. 1. It can be seen in the figure that 
increases  rapidly  with  increasing α,  and  then  becomes
saturated  as .  In  particular,  for  a  Bardeen  black
hole it  approaches unity rapidly in the region with smal-
ler α.  However,  for  the black holes  described below,  we
consider  the  time  delay  with ,  such  that  the
sub-Planckian  feature  is  always  guaranteed  for  the
Kretschmann scalar curvature.

We argue that  our  above treatment  is  a  dramatic  im-
provement  in  comparison  with  the  scheme  adoptedin

γmax Kmax(γmax) = 1Fig. 1.    (color online)  as the function of α, which is defined as  and obtained by scanning the mass of black holes.
The left plot is for the regular black holes with asymptotically Minkowski core while the right plot is for the regular black holes with
asymptotically de-Sitter core.
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M = 105

Kmax
M = 102 Kmax ≃ 6000

γmax

[26], where the maximal value of γ is defined for a given
mass.  In  the  next  sections,  will  show  that  for  a  given α
and γ,  the  Kretschmann  curvature  is  sub-Planckian  at
some large mass. However, this does not guarantee that it
must  be  sub-Planckian  at  any  mass,  even  if  it  becomes
saturated  in  a  large  mass  limit  (which  is  generally  true).
On the contrary,  the Kretschmann curvature may exceed
the Planck scale easily when the mass decreases. For in-
stance, in Fig. 6 of [26], which describes a modified Hay-
ward  black  hole, K is  sub-Planckian  for .
However,  if  the  mass  decreased  with  other  parameters
fixed,  can  easily  exceed  unity.  For  instance,  if

, then . In summary, the introduction
of  a  independent  of  mass in this  work enables  spe-
cifying the parameter  values such that  the sub-Planckian
feature  of  the  Kretschmann  curvature  can  be  preserved
during evaporation. 

x = 1 n= 2

III.  MODIFIED REGULAR BLACK HOLE WITH
 AND 

n = 2 x = 1
G(r) = 1

G(r)

M ⩾
eα
2

rh =
√

eα0

M→ eα0

2
rh→

√
eα0

In this section, we describe the modified regular black
hole with  and . The main features of this black
hole  with  have  been  investigated  in  [23].  We
note that the following features are maintained when the
metric is modified by . Firstly, the mass of the black
hole  is  bounded  by .  In  particular,  when  this
bound is saturated, the black hole is characterized by the
minimal  radius ,  which  may  be  treated  as  the
remnant  of  the  black  hole  evaporation,  since  the  final
stage of  the  black hole  is  characterized by  (or

). This effect results from the exponential sup-
pressing  potential,  and  is  controlled  by  the  parameter α.
In this  limit,  the Hawking temperature is  always vanish-
ing, even when 1-loop quantum correction and time delay
are  incorporated,  as  shown in Fig.  2.  It  can  be  seen  that
the maximal  value of  the  temperature  decreases  with  in-
creasing γ. In  addition,  based  on  the  equations  in  Ap-
pendix C, we plot the heat capacity and entropy as func-
tions  of  the  black  hole  mass.  When  the  temperature

S min

reaches the maximal value, the heat capacity becomes di-
vergent,  as  shown  in Fig.  3.  This  means  the  black  hole
undergoes  a  transition  from a  system with  negative  heat
capacity  to  a  system  with  positive  heat  capacity  during
evaporation. Since the black hole has a remnant with the
minimal  mass  with  entropy , we  also  plot  the  en-
tropy  difference  between  the  black  hole  with  arbitrary
mass and one with the minimal mass, as shownin Fig. 3.
It is found that the entropy difference decreases monoton-
ically with decreasing M, but does not change much with
changing γ. The inset of Fig. 3 shows that the entropy in-
creases slightly with increasing γ for a given mass.

αmin ≃ 2.747 Kmax(αmin) = 1

αmin α ⩾ αmin

Kmax G(r) = 1
K(0) = 0 Kmax

Kmax

γmax

Secondly,  these  exists  a  minimal  value  for α at  the
Planck scale , such that . When
1-loop quantum  correction  and  time  delay  are  incorpor-
ated, we find  does not change. For , we may
plot the Kretschmann curvature K as a function of the ra-
dial coordinate r, as shown in Fig. 4. In general, the max-
imal value of K appears at some position in space, and we
denote it as . As in the case for , we find that

 always,  but  the  location  of  moves  to  the
right  side  with  increasing M.  We plot  as  afunction
of γ in the right plot of Fig. 4, indicating that it increases
monotonously  with  the  parameter γ once α is  fixed.
Therefore,  we  need  to  define  a  to  preserve  the  ub-
Planckian Kretschmann curvature.

Kmax G(r) = 1
Kmax ∝ 1/M

Kmax G(r)
Kmax

Kmax

Finally, we illustrate the mass dependent behavior of
 in Fig. 5. For , we have demonstrated in [1]

that , such that the black hole with the minim-
al mass is described by the maximal . When  is
included, it can be seen in this figure that  mantains a
linear relation with the logarithm of the mass, thus decay-
ing with increasing mass. The main difference is that the
value of  is increased due to the presence of γ. 

x = 2/3 n= 2

IV.  MODIFIED REGULAR BLACK HOLE WITH
 AND 

n = 2 x = 2/3
In this section, we describe the modified regular black

hole  with  and ,  which  corresponds  to  a
Bardeen black hole at  large scales.  The gravitational  po-

Fig. 2.    (color online) Left: The temperature as the function of M. Right: The maximum value of temperature as the function of γ.
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ϕ(r)tential  of a Bardeen black hole is given as
 

ϕ(r) = − Mr2(
2
3
αM2/3+ r2

)3/2 . (6)

It can be verified that these two black holes have the
same  expansion  behavior  for  large  radius.  Nevertheless,
they  have  distinct  behavior  near  the  central  core.  The
former  has  an  asymptotically  Minkowski  core,  while
Bardeen black hole has a de-Sitter core.

Similarly, we note that for the regular black hole with

x = 2/3, n = 2 M ⩾
( e
2

)3/4
α3/4

G(r)

αmin ≃ 0.875
Kmax(αmin) = 1 γ = 0

M ⩾
(

9α
4

)3

Mmin α3 Mmin
α > 1

,  the  mass  is  bounded  by ,
which is solely determined by the exponentially suppress-
ing  potential  controlled  by  the  parameter α.  Thus,  the
presence  of  does  not  affect  black  hole  evaporation
significantly,  and black hole  remnants  maintain  the  final
stage. Again, α has the minimal value , which
is defined by  with . However, for the

Bardeen black hole, it is worth noting that , in-
dicating  that  increases  with .  Thus,  grows
rapidly  with .  This  behavior  is  in  contrast  with  the
other regular black holes described in this paper.

K(r)
γ = 0.5 γmax
K(0) = 0 x = 2/3 n = 2
K(0) = Kmax

γmax
γ = 0.8

Now,  we  compare  the  Kretschmann  scalar  curvature
K as a function of the radius r for these two black holes.
In Fig.  6,  we  plot  the  Kretschmann  curvature  for

,  which  is  much  smaller  than .  One  finds
 for  black  holes  with  and ,  while

 for  Bardeen  black  holes,  irrespective  of  the
black  hole  mass  .  However,  for γ close  to , for  in-
stance , as illustrated in Fig. 7, the maximal value
of K deviates from the center for the Bardeen black hole.

Kmax
G(r) = 1

Kmax
G(r)

Next,  we  focus  on  the  mass  dependent  behavior  of
 for these two black holes. It has been shown in [23]

that when , both black holes are characterized by
the fact that  is independent of the black hole mass.
However, when  is included, we find that this feature

Fig. 3.    (color online) Left: The heat capacity as the function of M. Right: The entropy as the function of M, while the inset shows the
entropy as the function of γ with a given mass.

 

γ = 0.5Fig.  4.    (color online) Left:  The  Kretschmann scalar  curvature K as  the  function  of  the  radial  coordinate r with .  Right:  The
maximum value of the Kretschmann scalar curvature K as the function of γ.

 

 

Fig.  5.    (color online) The  maximum  value  of  the
Kretschmann scalar curvature K as the function of M.
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Kmax

G(r) = 1 γ = 0 Kmax

Kmax

γmax Kmax

x = 2/3, n = 2
γ = 0.4

γ = 1−3×10−5 Kmax

γmax

γmax

Kmax

γmax Kmax

Kmax

γ→ γmax

x = 2/3, n = 2
Mmin ∝ α3 α = 20

does not hold anymore. This can be anticipated consider-
ing the fact that an arbitrarily large time delay renders the
metric singular again. Therefore, in this case, we demon-
strate  the  mass  dependent  behavior  of  for  different
values of γ in Fig. 8. First, when , i.e., , 
is  a  constant  (see  the  left  plot  of Fig.  8), while  with  in-
creasing γ,  we  note  that  becomes  larger  and  mass
dependent.  In  particular,  it  is  observed  that  as γ ap-
proaches ,  with  small  masses  becomes  larger,
and this phenomenon is observed for the black hole with

 and for  the  Bardeen  black  hole,  as  illus-
trated  in Fig.  8 (  in  the  left  plot  while

 in  the  right  plot).  Thus,  with  small
masses  always  approaches  unity  at  first,  and  determines
the value of  when scanning the mass of black holes.
This  tendency  also  makes  it  more  difficult  to  figure  out

 by  scanning  the  mass  of  black  holes,  as  shown  in
Fig.  1.  Moreover,  always  becomes  saturated  in  the
large  mass  limit.  This  feature  is  important  in  selecting

 to  preserve  the  sub-Planckian  features  of .  In
addition,  the  mass  dependent  behavior  of  in
Bardeen  black  holes  does  not  change  significantly  until

, and the mass scale is much larger than that for
the  black  hole  with ,  which  indicates  that

, since we have set .
Finally,  the  thermodynamical  behavior  of  the  black

hole is illustrated in Fig. 9 and Fig. 10. We find that the
maximal  value  of  the  Hawking  temperature  decreases
slightly  with  increasing γ,  while  the  entropy  increases
slightly with increasing γ. 

x = 1 n= 3

V.  MODIFIED REGULAR BLACK HOLE WITH
 AND 

n = 3 x = 1
In this section, we describe the modified regular black

hole  with  and , which  corresponds  to  a  Hay-
ward black hole  at  large  scales.  The gravitational  poten-
tial for a Hayward black hole is given by 

ϕ(r) = − Mr2

r3+Mα
. (7)

M =
1
2

√
3eα

2

x = 1 n = 3 M =
3
4

√
3α
2

Kmax

x = 1 n = 3
Kmax

We plot the Kretschmann curvature K as a function of

the radial coordinate r in Fig. 11, where  is
the minimal value allowed for the regular black hole with

 and ,  while  is  the minimal  value
allowed for the Hayward black hole. It is found that 
moves to  the  right  with  larger  radius  as  the  mass  in-
creases for the black hole with  and , while for
the Bardeen black hole  deviates from the center.

γ = 0.5
x = 2/3, n = 2

Fig. 6.    (color online) Kretschmann curvature K as the function of the radial coordinate r for .  The left plot is for the regular
black hole with , while the right plot is for Bardeen black hole.

 

γ = 0.8
n = 2, x = 2/3

Fig. 7.    (color online) Kretschmann curvature K as the function of the radial coordinate r for .  The left plot is for the regular
black hole with , while the right plot is for Bardeen black hole.
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Kmax Kmax

Kmax
γ = 0

γ = 0.2 γ = 0.6,0.7
Kmax

Kmax

γ = 0.3,0.4 γ = 0.8
Kmax

Next,  we  focus  on  the  mass  dependent  behavior  of
.  We  plot  as  a  function  of M for  both  black

holes, as illustrated in Fig. 12. The phenomenon is simil-
ar  to  that  described  in  the  previous  section.  This  figure
explicitly exhibits that  does not depend on the mass
of  black  holes  when ,  as  expected.  However,  when
the  time  delay  parameter γ is  included,  for  instance

 in the left plot and  in the right plot, we
find  increases with the mass and becomes saturated
in the large mass limit. On increasing γ further,  be-
comes larger on the side with small  masses,  for instance
when  in  the  left  plot  and  in  the  right
plot.  In  this  situation,  decreases  with  the  mass  and
then becomes saturated in the large mass limit.

Finally, we remark that the thermodynamical behavi-
or  of  this  modified regular  black hole is  similar  to  those
described in previous sections. The maximal value of the
Hawking temperature  becomes  slightly  smaller  with  in-
creasing γ,  while  the  entropy  becomes  increases  slightly
with increasing γ. 

VI.  CONCLUSION AND DISCUSSION

In this study, we developed the regular black holes re-
cently  proposed  in  [1]  by  incorporating  the  1-loop
quantum  correction  to  the  gravitational  potential  and  a
time delay  between an  observer  at  the  center  and  one  at
infinity.  Our  analysis  covers  two  types  of  black  holes.

Fig. 10.    (color online) Left: The heat capacity as the function of M. Right: The entropy as the function of M, while the inset shows the
entropy as the function of γ with a given mass.

 

Kmax n = 2, x = 2/3Fig. 8.    (color online) The maximum value of Kretschmann curvature  as the function of M for the black hole with 
(left) and Bardeen black hole (right).

 

Fig. 9.    (color online) Left: The temperature as the functions of M. Right: The maximum value of temperature as the functions of γ.
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Kmax

Kmax

One  is  featured  by  an  asymptotically  Minkowski  core,
while the other is featured by an asymptotically de-Sitter
core. We have proposed a scheme to determine the max-
imal time delay at the center by scanning the mass of the
black  holes  such  that  the  sub-Planckian  feature  of  the
Kretschmann curvature  is  preserved for  black holes  dur-
ing  the  evaporation  process.  This  improved  the  strategy
presented  in  [26]  significantly,  where  the  maximal  time
delay  is  considered  for  a  given  mass  in  the  context  of  a
modified  Hayward  black  hole.  Therefore,  such  effective
metrics may  be  more  appropriate  to  describe  the  evolu-
tion of Planck stars or the evaporation of black holes. We
have  also  compared  the  distinct  behavior  of  the
Kretschmann  curvature  for  these  two  types  of  black
holes. In general, we have found that the mass dependent
behavior  of  becomes  complicated  when  the  1-loop
quantum correction and time delay are taken into account.
Nevertheless, it is still plausible to define a modified reg-
ular black hole with sub-Planckian curvature irrespective
of the mass,  owing to the saturating behavior of  in
the large mass limit.

G(r)

G(r) G(r) = 1−γ+γe
−βM
γr3

Next,  it  should  be  noted  that  the  form of  adop-
ted  in  this  paper  is  not  unique.  One  may  consider  other
forms  of ,  for  instance,  as pro-
posed in [27], to introduce 1-loop quantum correction and
time delay, and similar results may be obtained. More im-

γ = 1− (αmin/α)1/n

γ = 1− (αmin/α)1/(n−1)

γmax

portantly,  we  may  further  improve  the  form of  effective
metric to describe stellar collapse or black holes more ac-
curately.  One  prominent  issue  in  all  previous  papers  is
that one just introduces the time delay by hand, since γ is
introduced  as  a  free  parameter.  A  more  realistic  setup
would be when the time delay is fixed to a specific value
by  the  distribution  of  matter  surrounding  the  center.  At
the phenomenological level, it implies that γ could be de-
termined by other parameters or quantities.  For instance,
we  could  assume  that  or

;  then,  we  remarkably  find  that  this
value is always smaller than  for arbitrary value of α,
such  that  a  sub-Planckian  Kretschmann  scalar  curvature
is always guaranteed. We expect that this conjecture can
be justified by more detailed investigations in future.

Finally,  we  have  strictly  considered  regular  black
holes  with  spherical  symmetry.  We  expect  the  proposed
construction may be extended to rotating black holes,  as
demonstrated previously for Hayward black holes in [17,
27].
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n = 3, x = 1
Fig. 11.    (color online) The Kretschmann scalar curvature K as the functions of the radial coordinate r. The left plot is for the regular
black hole with , while the right plot is for Hayward black hole.

 

n = 3, x = 1Fig. 12.    (color online) The maximum value of the Kretschmann scalar curvature K as the function of M for (left) and Hay-
ward black hole(right).
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APPENDIX A: THE KRETSCHMANN SCALAR
CURVATURE

For the  ansatz  in  Eq.  (1),  it  is  straightforward  to  de-
rive the Kretschmann scalar curvature as
 

K =RµνρλRµνρλ =
(2ϕ(r)+1)2G′(r)4

4G(r)4

+4

4
(
r2ϕ′(r)2+ϕ(r)2

)
r4 +ϕ′′(r)2


+

1
r2G(r)2 (r2(2ϕ(r)+1)2G′′(r)2

+G′(r)2(−2r2(2ϕ(r)+1)ϕ′′(r)

+9r2ϕ′(r)2+8ϕ(r)2+8ϕ(r)+2)

+6r2(2ϕ(r)+1)G′(r)G′′(r)ϕ′(r))

− 1
G(r)3

(
(2ϕ(r)+1)G′(r)2(2ϕ(r)+1)G′′(r)

+3G′(r)ϕ′(r)
)

+
1

r2G(r)

(
4r2(2ϕ(r)+1)G′′(r)ϕ′′(r)

+G′(r)ϕ′(r)
(
3r2ϕ′′(r)+4ϕ(r)+2

) )
. (A1)

G(r)

G′(0) =G′′(0) = 0 r→ 0

Furthermore, if we consider that  only affects the
time delay at the center without changing the asymptotic-
al  behavior,  it  is  reasonable  to  require  that

.  Then,  as ,  we  find  that  the
Kretschmann scalar curvature behaves as
 

K ∼ 4ϕ′′(r)2+
16ϕ′(r)2

r2 +
16ϕ(r)2

r4 . (A2)

G(r)

G′(0) =G′′(0) = 0

Remarkably, we find that the function  would not
change the  value of  the  Kretschmann scalar  curvature  at
the center under the condition .
 

APPENDIX B: THE HORIZON OF THE
MODIFIED REGULAR BLACK HOLE

G(r) F(rh) = 0
rh

In this section, we derive the location of the outer ho-
rizon for the modified regular black hole, where the met-
ric components are specified by Eq. (3).  First,  we notice
that  the  location  of  the  outer  horizon  is  not  affected  by

,  and  it  is  solely  determined  by ,  which
yields the relationship between  and M:
 

2M = rheαMx/rn
h . (B1)

rhWe rewrite the radius of the horizon  as
 

rh = 2M
(
θ

W(θ)

)1/n

, θ = − α

2M2−x , (B2)

where
 

W(θ) =
∞∑

n=1

(−n)n−1

n!
θn, (B3)

W(θ) ⩾ −1
θ ⩾ −e−1

is  the  Lambert-W function with .  A real W re-
quires ,  and  thus,  the  mass  of  modified  regular
black hole is bounded by
 

M ⩾
1
2

(eα)
1

2−x . (B4)

 

APPENDIX C: THE THERMODYNAMICS OF THE
MODIFIED BLACK HOLES

G(r)For  the  modified  black  holes  with  non-trivial ,
the black  hole  temperature  and  luminosity  are  respect-
ively given by
 

T =
[
− 1

4π

√
−gttgrr d

dr
gtt

]
r=rh

=
(2ϕ (rh)+1)G′ (rh)+2G (rh)ϕ′ (rh)

4π
√

G (rh)
,

L =σT 4A =
σr2

h ((2ϕ (rh)+1)G′ (rh)+2G (rh)ϕ′ (rh)) 4

64π3G (rh) 2 .

(C1)

Using Eqs. (11) and (14), the heat capacity can be de-
rived as
 

C =
dM
dT
=

dM/drh

dT/drh
. (C2)

Moreover,  according  to  the  first  law  of  black  hole
thermodynamics,  the  entropy of  the  modified  black  hole
is given by
 

S =
∫

dM
T
. (C3)

Generally, due to the correction of the Hawking temperat-
ure,  it  is  well  known  that  the  entropy  of  the  modified
black  holes  will  deviate  from  the  area  law,  and  include
higher  order  corrections.  For  instance,  for  the  Hayward
black hole in [28], the integrated form of the entropy can
be expanded as
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S = πr2
h +πα log

(
2r2

h −α
)
− πα

2
− πα2

2
(
2r2

h −α
) . (C4)

For the Bardeen black hole in [29], the integrated form of
the entropy is given by 

S = 2π
((

rh

2
− α

rh

) √
α+ r2

h +
3
2
α log

(√
α+ r2

h + rh

))
. (C5)

For the regular black hole in [18], the integrated form of
the entropy can be written as 

S =
∫

dM
T
= e

α

r2
h πr2

h +2πα
∫

e
α

r2
h

rh
drh. (C6)

For the  black  hole  discussed  in  this  paper,  such  expan-
sions  become  very  complicated  and  we  just  present  the
numerical results in the main body of the text.
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