Chinese Physics C  Vol. 46, No. 2 (2022) 024108

Equal-time kinetic equations in a rotational field"

Shile Chen(%:15K)

Ziyue Wang(FAFE)'

Pengfei Zhuang(JEH5 %)

Physics Department, Tsinghua University, Beijing 100084, China

Abstract: We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the

Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8-

and 7-dimensional Wigner functions. While the particles are no longer on a mass shell in the general case due to the

rotation—spin coupling, there are always only two independent components, which can be taken as the number and

spin densities. With help from the off-shell constraint we obtain the closed transport equations for the two independ-

ent components in the classical limit and at the quantum level. The classical rotation—orbital coupling controls the

dynamical evolution of the number density, but the quantum rotation—spin coupling explicitly changes the spin dens-

ity.
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I. INDRODUCTION

Classical transport equations are often used to study
the dynamical evolution of multi-particle systems in
phase space. In high energy nuclear physics, they, togeth-
er with the hydrodynamic equations which are mo-
mentum moments of the transport equations and statistic-
al approaches which are the equilibrium limits of the
transport equations, successfully describe the non-equi-
librium properties, space-time evolution and equilibrium
distributions of the particles created in heavy ion colli-
sions [1]. Besides the classical motion, quantum anomal-
ous transport is also widely investigated in many fields
such as astrophysics [2] and condensed matter physics
[3]. In high energy nuclear collisions, the chiral magnetic
effect [4, 5] and chiral vortical effect [6-9] induced by the
spin of chiral fermions in electromagnetic fields and rota-
tional fields have recently been deeply studied, both ex-
perimentally [10, 11] and theoretically [12—17]. Different
from the electromagnetic field which rapidly decays in
time, the angular momentum conservation during the
evolution of the collisions may lead to a more visible ro-
tational effect on the final state particles. The other ad-
vantage of the rotation is that it may become stronger in
intermediate energy nuclear collisions at high baryon
density due to the stopping power effect [18, 19]. In this
paper, we aim to derive a group of quantum kinetic equa-

tions which can be directly solved as an initial value
problem in applications.

The vortical field w of a system can be either gener-
ated self-consistently by the curl of the medium velocity
w =V xv or considered as an external field, depending on
the particles we describe in the kinetic equations. For
light quarks which are constituents of the medium, the
quark vorticity is just the rotation of the medium, but for
heavy flavors which are considered as a probe of the me-
dium, the vorticity in kinetic equations can be treated as
an external field. In this paper we consider the latter. We
will neglect the collision terms among particles, in order
to focus on the coupling between particles and the extern-
al rotational field. This means that we treat the particles
quantum mechanically but use classical approximations
for the field.

In the general case, a moving particle in a medium is
not on the mass shell due to the interaction with the sur-
rounding constituents, especially for a massive particle
[20, 21]. Considering this off-shell effect, the Wigner
function W(x, p) defined in 8-dimensional phase space is
not directly related to physical distributions which are
controlled by the equal-time Wigner function W(x,p)
defined in 7-dimensional phase space [22]. Therefore,
one should consider the equal-time hierarchy constructed
by the energy moments of the 8-dimensional Wigner
function [23, 24]. We will calculate such equal-time
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quantum kinetic equations for fermions in an external ro-
tational field.

The paper is organized as follows. We review the Dir-
ac equation and its non-relativistic limit in a rotational
field in Section II, and then derive the kinetic equations
for the 8-dimensional Wigner function W(x,p) and its
spin components in Section III. By taking the energy in-
tegration of the 8-dimensional kinetic equations we ob-
tain the constraint and transport equations for the spin
components of the equal-time Wigner function Wy(x, p)
in Section IV. By taking a semi-classical expansion, our
main result on the classical and quantum transport equa-
tions for the number density and spin density is shown in
Section V. We briefly discuss quarkonium polarization in
heavy ion collisions in Section VI and summarize the
work in Section VII.

II. DIRAC EQUATION IN A ROTATIONAL FIELD

The starting point for deriving a relativistic kinetic
theory for quarks in Wigner function formalism is the
Dirac equation controlled by the Lagrangian density with
a rotational field. The covariant kinetic equations in
curved space for chiral fermions in a rotational field are
systematically calculated in Refs. [25, 26]. If we want to
derive a covariant kinetic theory in flat space, we can
start with the free Dirac equation. The point is then how
to include the rotation in the kinetic equations; see for in-
stances the discussion in Refs. [27, 28]. One often-used
way to describe particle motion in a rotational field in
textbooks is to choose the rotating frame. In this frame
the system under a rotational field is equivalently re-
garded as a system at rest. Many new physics phenom-
ena like the well-known Coriolis force and centrifugal
force are introduced in this frame. The solution to the
Dirac equation in this frame has been obtained and the
chiral symmetry restoration is strongly enhanced by the
rotation [29]. In this paper, we choose the rotating frame
to establish the kinetic equations for quarks moving in an
external rotational field. We will see very clear physics of
the transport equation in this frame: the quark motion in
phase space is controlled by the Coriolis force and centri-
fugal force. Since we have taken a specific frame, the
Lorentz covariance is broken, so the obtained 8-dimen-
sional kinetic equations are not covariant.

To avoid confusion, we use in the following the in-
dices {u,v.4,0} and {a,B,y,6} to separately describe
Lorentz vectors and tensors in curved and flat space,
known respectively as coordinate and non-coordinate
basis. The Lagrangian density for fermions under the
mean-field approximation in the non-coordinate basis has
the following form:

L= V=g (iy"0s —m)y, M

where +/—g is related to the coordinate we choose. Con-
sidering that in the coordinate basis the tangent space
Ty,M and cotangent space T,M are expanded in d, and
dx", the coordinate transformation between the two
spaces can be expressed as

A

o =40y, el' € GL(m,R), )
where {&,} is required to be orthonormal with respect to
g (= gwdx* ®dx"), which means the relation g(&,,ép) =
e(i‘.eﬁvg,lv =1qp Or inversely 8w = e(L ap. With the re-
quirement of local Lorentz invariance, the Lagrangian
density in coordinate basis becomes

L=+-gy [iyaeofl (6# + %E‘LBZ@») - m] W 3)

—

with the affine connection =%/ = pP7e, (0, +e T,
The Lagrangian density (3) is the starting point for deriv-
ing the covariant kinetic equations in curved space [25,
26].

We now consider a system under rotation with a con-
stant angular velocity denoted by w. The local velocity of
this rotating frame is given by v = wxx, and the space-
time metric is written as

1—V2 —Vi —V2 —V3

| - -1 0o o
=l oy 0 -1 0 |
-V3 0 0 -1
1 V1 —V2 —V3
—v; —1+? ViV ViV3
MY 1
§ ) ViV -1+ v% VoV3 )
—V3 ViVv3 Vo V3 -1+ V%
where we have introduced a specific tetrad [29],
e, =08% +0750vi, el =64 -0 i, 5)

and v is the velocity of the coordinate transformation. It is
worth noticing that the choice of the tetrad is not unique,
since the degrees of freedom of a n-dimensional metric is
(n+1)n/2 and of the tetrad n*. After plunging the chosen
tetrad into the Lagrangian, we obtain in the flat space

L=y 0, +7 0 (xx(=iV) +5) - m|y (6)

with s = —(1/2)y%y’y = (1/2)diag(o, ). Under the choice
of the space-time metric (4), the higher orders of the rota-
tional field, namely the terms ~ w?,w?, vanish automatic-
ally, and only the linear term ~ w appears in the Lag-
rangian density. From the structure of the Lagrangian, the
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rotational field w serves as a chemical potential coupled
to the total angular momentum J = x x p+§ which is con-
served during the evolution of the system.

With the known Lagrangian density it is easy to de-
rive the Dirac equation for quarks in the rotational field,

[iy'uaﬂ+’)/0w'j—m]lﬁ=0, @)

which is exactly the same as the result discussing the in-
ertial effect of Dirac field [30], when the acceleration is
taken to be zero. The exact solution for this Dirac equa-
tion is given in [29]. The Dirac equation (7) in the rotat-
ing frame is the starting point for us to derive kinetic
equations in the next section.

The Schrodinger equation for the corresponding non-
relativistic system under a rotational field can be ob-
tained by considering the limit of the Dirac equation in a
standard way, as shown in Appendix A.

II1. 8-DIMENSIONAL KINETIC EQUATIONS

The core ingredient in describing the transport phe-
nomena of a non-equilibrium system is the distribution
function in phase space. The Wigner function is the
quantum analogue to the classical distribution function,
and has been widely adopted in the investigation of
quantum transport phenomena. The Wigner function
W(x,p) is the ensemble average of the Wigner operator,
and the Wigner operator is the four-dimensional Wigner
transformation of the density matrix. Without consider-
ing gauge interaction, the Wigner function for fermions is
defined as [31]

ween= [ gV (e Jole-3)

where the quark field satisfies the Dirac Eq. (7).

The 8-dimensional kinetic equation in the Wigner
function formalism is derived by calculating the first-or-
der derivatives of the density matrix and using the Dirac
equations for the fields y and . After a straightforward
but tedious calculation, we obtain the equation of motion
for the Wigner function in phase space which is equival-
ent to the equation of motion for the field in coordinate
space,

h
YK, + zysy”wy —m|W(x,p) =0, ©)

with the definitions of K, =11, +(i#/2)D,, and w, = (0,w),
where the extended momentum and derivative operators
in phase space are defined as

IL, = (po+mo,p),
hZ
o :a).(l+ ZVXVP)+#B’

D, = (@, V),
di=0—w-(xxV+pxV,) (10)

with the orbital angular momentum /= x X p. Since the
kinetic equations are valid only in the rotating frame, the
rotational effect changes only the particle energy from py
to po+my and time derivative from 4, to d,, and the vec-
tor momentum p and space derivative V are not modified.
In comparison with nuclear collisions at extremely high
energy, the rotational effect will become more important
in heavy ion collisions at intermediate energy where the
baryon density becomes high. Aiming at a kinetic theory
in such case, we have included here the baryon chemical
potential pp which shifts the particle energy. In order to
semi-classically solve the kinetic equations below, we
have displayed the /i-dependence explicitly. It is clear that
the highest order quantum correction in the operators
comes from the term ~ /2.

Very different from the classical distribution which is
a scalar function, the Wigner function in the quantum
case is a 4 x4 matrix in spin space, including in the gen-
eral case 16 independent components. It is convenient to
choose the 16 matrices 1,iys,y,,yuYs,0u/2 as the basis
for an expansion of the Wigner function in spin space,

1 1
W:ZF+i75P+y”Vﬂ+y”75Aﬂ+EU'”VSW). (11)

All the components T’y ={F,P,V,,Au, S} are real
functions, since the basis elements transform under her-
mitian conjugation like the Wigner function itself, W* =
voWyo. The components can be interpreted as phase-
space densities; their physics meanings become clear in
the equal-time formalism which will be discussed below.

The expansion (11) decomposes the kinetic equation
into 5 coupled equations for the 5 spinor components I,
Since these components are real and the operators P, and
D,, are self-adjoint, one can separate the real and imagin-
ary parts of these 5 complex equations,

21V, + ha'A,, = 2mF,

hDMA, =2mP,

4T, F = 2hD" S — Ti€urapw”S *F = 4mV,,,

~hDyP + €uyapIl’S % — hw, F = 2mA,,

(D Vy = Dy V) + 2600117 AP + i€y qp™ VP = 2mS , (12)

and
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hD!V, =0,

20MA, +hat'V, =0,

hD,F +2I1'S ,, — hw, P = 0,

411, P + h€apD”S °F + 200"S 1y = 0,

2(1, V, — L, V,)) = hi€uap D" AP + B(w, A, — wyA,) = 0. (13)

These equations can be divided into two groups.
Those equations with explicit po-dependence appearing
in IT, form the constraint group which links the Wigner
function W and poW, and the others with explicit derivat-
ive 9, appearing in D, form the transport group which
describes the evolution of W in phase space. These will
be discussed in more detail in the equal-time formalism.

Similar to the Klein—Gordon equation for the wave
function ¥(x) which describes the plane-wave solution of
the Dirac equation satisfying the on-shell condition
p?>—m? =0, we can obtain the phase-space version of the
Klein—Gordon equation for the Wigner function W(x, p)
by acting on the kinetic equation (9) with the operator
YK, + (1/2)y>y*w, + m, which leads to

. hz
[K“Kﬂ— % [Kﬂ, KV] U’“’—hysK“wﬂ+ Zw“wﬂ—mz W(x, p)=0.
(14)

We will see in the following that this equation controls
whether the particle is on the mass shell.

IV. EQUAL-TIME KINETIC EQUATIONS

From the definition (8), it is easy to see that the
Wigner function at any time is related to the fields at all
times. Therefore, the 8-dimensional kinetic equations in
general case cannot be solved as an initial value problem,
and we should go to the equal-time formalism of the kin-
etic theory, by doing energy integration of the 8-dimen-
sional equations [23]. The equal-time Wigner function is
defined as

Wo(x,p)zf%e_ip'y<w(x+§,t)tﬁ+(x—%,t)>. (15)

It is clear that the 8- and 7-dimensional Wigner func-
tions are related to each other through the energy integra-
tion,

%mm=f@mwmw. (16)

This indicates that the equal-time Wigner function is
the zeroth-order energy moment of the §-dimensional
Wigner function. This is the reason why we label the

equal-time Wigner function using the subscript 0. In the
general case, particles moving in a medium are not on the
mass shell, and the 8-dimensional Wigner function is
equivalent to the collection of all the energy moments [24]

mmm:f@wmwww (17)

with n=0,1,2,.... Only in the quasi-particle approxima-
tion where particles are on the shell and the 8-dimension-
al Wigner function satisfies the on-shell condition
W(x,p)(p*—m?)=0 dothe two Wigner functions be-
come equivalent to each other.

Similar to the 8-dimensional scenario, the equal-time
Wigner function is decomposed into 8 components in
spin space,

1 .
Wo =Z(fo +vs5/1 —1yoysfa + Y03 +vsY0Y - o
+Y0Y - 81—y -8 — Y5V 83), (18)

where the equal-time components fi(x,p) and g;(x,p) (i =
0, 1, 2, 3) are the zeroth-order energy moments of the
corresponding 8-dimensional components ', (x, p).

By taking po—integration of the §-dimensional equa-
tions (12) and (13), one obtains two groups of equal-time
kinetic equations,

hi(difo+V-g1) =0,

h(di fi +V-go) = —2mfs,

hdif>+2p-g3 =2mf,

hdifs—2p-g =0,

hi(dgo+Vfi)—2pxg +hwxgy =0,

hi(dg1 + Vo) —2pX gy +hwx g = -2mg,

h(digr +VXg3)+2pfi+hwXx g =2mg,

hi(digs —VxXg)-2pfr+hwxgs =0, (19)

dpopoF =hV-gr —2m f3 +2mfy — hw- g3,

dpopoP = —hV -g3 —2m fo —hw- g,

dpopoAo = —-2p-go+2m f1 + hw- g1,
dpopoV = hV X gy —2pfo + 27081 — hwfi,

dpopoA = -V X g1 =2pfi +2r0go + hw fo — 2mg3,

2fdpmvovo=2p'g1—27T0f0+2mf3—7’160'80,
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2 fdPoPoSOiei =hVf3—2pxgs+2mog + hwf,

fdpopofi'/ijkei =hV fo —2m083 —2p X g — hw f3 +2mgp .
(20)

The kinetic equations (19) and (20) form, respect-
ively, the transport and constraint groups. The former is
an extension of the Boltzmann equation, describing the
phase-space evolution of the 8 equal-time distributions in
a rotational field. The latter is an extension of the on-shell
condition  f(x,p)(p>-m?)=0 associated with the
Boltzmann equation. Since particles are generally not on
the mass shell, the off-shell constraints cannot be neg-
lected arbitrarily, and only the two groups together form a
complete description of the quantum system. This was
firstly pointed out by Zhuang and Heinz for a QED sys-
tem [23, 24].

The constraints play a tremendous role in calculating
some of the physical distributions. Let's consider the en-
ergy density as an example. From the energy-moment
tensor,

Ty (%) = (PO (0) = Py € w b ,ud (), (21)

the energy distribution in phase space is the first-order
energy moment of the 8-dimensional component Vp,

&(x,p) = Too(x,p) = f dpopoVo(x, p). (22)

Without the constraints (20) which link the zeroth-
and first-order energy moments, there is no way to calcu-
late the energy distribution in kinetic theory. With help
from the constraints (20), € is a combination of the equal-
time spin components,

fi
&= P'gl_”0f0+mf3_§w'80a (23)

where the components fi, 3,80 and g; are controlled by
the transport Eq. (19).

V. SEMI-CLASSICAL EXPANSION

The equal-time kinetic equations can directly be
solved for some non-perturbative problems like pair pro-
duction in electromagnetic fields [22, 32]. As a systemat-
ical method the semi-classical expansion is widely used
in 8-dimensional [33-35] and 7-dimensional [23, 24] kin-
etic theories for massive [20, 36] and massless [37, 38]
fermions. We discuss in this section the semi-classical ex-
pansion of the equal-time kinetic Egs. (19) and (20). Con-

sidering the fact that the rotational field appears in the co-
variant kinetic Eq. (9) only up to the second order in #,
the equal-time kinetic equations at zeroth, first and
second order of 7 already include the entire quantum ef-
fect, since the higher-order kinetic equations will not con-
tain any new term in comparison with the lower-order
equations.

We now take the % expansion for the 8- and 7-dimen-
sional Wigner functions W(x, p) and Wy(x, p) and the op-
erator 11,

W= WO+aw® + 2w 4.

Wo = WO +hW" + BPWD + -,

M, = 09 +12107,

M = (po+w-1+p.p).

M = (w- (VX V,)/4,0). (24)

Note that the other operator D, contains only the classic-
al part.

We first consider the Klein—Gordon Eq. (14) at the
zeroth order in 7,

[T — 2 | WO, p) = 0. (25)
This is just the on-shell condition for classical particles,
po=E;, =+€,—(w-1+up) (26)

with €, = ym? + p?. Different from the kinetic theory for
QED where the electromagnetic fields do not affect the
free-particle shell [20], the rotational field here changes
the shell from ¢, to E,, due to the interaction of the orbit-
al angular momentum with the rotational field. The reas-
on is clear: the electromagnetic fields E and B are deriv-
atives of the gauge potential but w appears directly in the
effective gauge potential w xx [39]. The derivative leads
to the appearance of E and B at least at the first order in
71, but w starts to contribute at the zeroth order.

Considering the two elementary solutions of the clas-
sical Wigner function, corresponding to the positive and
negative energies,

WO, p) =W (x, p)s(po - E}y)
+ WO (x, p)d(po - E;), 27)

the constraint equations (20) reduce the number of inde-
pendent spin components from 8 to 2. The independent
components can be chosen to be fy and gy, and the oth-
ers can be expressed in terms of them explicitly,
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1
0)+ 0)+
o _ 1, g0
€
O)+ _
=0,
O _ M 0=
3 = EF_Jo s
P
0)+ D 0=
g =%,
€p
g0 = lpx g0
> - 0
1
O+ _ 2500 o0
g =t low e @

It is now important to understand the physics of the
spin components at quasi-particle level. Expressing the
charge current and total angular momentum tensor in
terms of the equal-time Wigner function, it is clear that
the independent components f; and gy are, respectively,
the particle number density and spin density, and g; is the
number current density [22]. Taking the classical relation
f1=p/|pl-go for massless fermions, f; can be interpreted
as the helicity density. The components f3 and f; de-
scribe the contribution from spontaneous chiral sym-
metry breaking and isospin symmetry breaking to the
particle mass [21]. From the non-relativistic limit g3 — go
and the comparison of the term -m/(2m)o-w in the
Schrodinger equation (A4) in a rotational field for
particles with effective charge m with the term
—e/(2m)o-B in the Schrodinger equation in QED for
particles with charge e, g3 which is known as the magnet-
ic moment density [22] in electromagnetic fields can be
understood as the rotational moment density. Consider-
ing the classical relation g, = pxgo/m, g describes the
spin property in the direction perpendicular to the particle
momentum. Using the above classical relations, the en-
ergy density in the quasi-particle approximation is simply
expressed in terms of the number distributions with posit-
ive and negative energy,

e(x.p) = E; £ (r.p) + E, £ (x.p). (29)

Since any derivative is multiplied by a factor of 7, the
classical limit of the transport equations (19) cannot de-
scribe the phase-space evolution of the classical compon-
ents but shows again some of the relations appearing in
the classical constraints (28). To describe the dynamical
evolution of the equal-time Wigner function, we should
go to the first order of the transport equations (19),

af)" +v-g” =0,
df?+v-g +2mfd =0,
af” +2p-g” -2mf) =0,
dify" ~2p-gy =0,

d,gg)) + Vfl(o) —-2pX g(ll) +wXxg

dtg(lo) + Vféo) - 2pxg(()1) +wXg

dgd +Vxg? +2pf + wx gl - 2mg"” = 0,

3
dgy’ -Vxg) -2pfi’ +wxgl’ =0. (30)

1) _
o =0
0)
1

s

omg =0,

Eliminating the first-order components fi(l) and ggl)

by simple algebra and taking into account the classical re-
lations (28) (see the details in Appendix B) we obtain the

transport equations for the two independent components
(0)
0

c’),+(i£ +xxw)'V—(w><p)'Vp]fo(O)i =0,

€p
6t+(i£ +x><w)'V—(w><p)-V,,]gf)O)+ = —wxggo)i.
€p
GD

The two equations are both in the Boltzmann form.
The particle velocity appearing in the free-streaming
terms is modified by the rotation induced linear velocity
xXw, and the classical part of the rotational potential
—w-1 in the Dirac equation leads to a mean-field force
(Coriolis force) —V(-w-1) = —w x p. For the spin density
g0, there is an extra term w x gy indicating the spin-rota-
tion interaction, similar to the term B x gy in spinor QED.
From the transport equations we obtain the equations of
motion of the system,

X = J_r£+x><w,
€p
P =—-wXp. (32)

Considering positive energy, the total force acting on
the particles

F=¢gk=-wxp-e,0X(xXw) (33)

contains both the Coriolis force and centrifugal force.
Note that the spin evolution equation in (31) is the equal-
time  phase-space  version of a  generalized
Bargmann—Michel-Telegdi equation [40, 41] on spin pre-
cession.

In order to investigate spin-induced anomalous phe-
nomena in a rotational field, one needs to go beyond the
classical limit and derive quantum transport equations. To
this end, we consider the Klein —Gordon equation (14)
again to see if quantum particles are still on a mass shell.
At the first order in 7, the whole operator acting on the
Wigner function becomes
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iDL —(i/2)(@xp)- [y yol +ysp@,  (34)
which is y-matrix dependent. Therefore, there is no
longer a common mass shell for all the spin components,
(p% —8]2,) WO (x,p) #0. To confirm this conclusion, we
tried the quasi-particle solution of the first-order con-
straint equations, but the procedure fails: we cannot find a
new mass shell pp = +&, (see the detailed calculation in
Appendix C). The case here is very different from the
chiral limit where massless particles are always on a shell
at any order of 7 [42]; massive particles cannot be on the
shell when quantum effect is included. How about a spin-
dependent on-shell condition? Unfortunately, this condi-
tion fails again, (pg—afm)rﬁ,“(x, p) # 0. Neither a com-
mon on-shell nor a component-dependent on-shell condi-
tion can be the solution of the constraint equations for
massive fermions [20]. The quantum effects in a general
kinetic theory are essentially reflected in two aspects: one
is the spin, and the other is the off-shell constraint.

Without the on-shell condition, the constraint equa-
tions (20) at the first order in / become

+26, AV +20E,; = Vg +2mf" - w-g),
+26, /i) +24E = -V-g - w-g,

+26, /i) +2AEy = 2p-g\" +2mfV —w-g),
+26,f) +2AE, = 2p-g’ - w-g?,

+2e,8" +2AE, = Vxg"+2pf" - wf,
+26,8)) +2AE,) = ng(0)+2pf(l) (0)+2mg(1)

+2e,8) +2AE,» = ~V£” +2pxg) —wf”,
+26,8) +2AE 3 = VA" -2px g - a)f(o) +2mg]
(33)
with the energy shifts
AEp =2 [ appo- BT, (36)

To close the equal-time constraint equations (35)
which are related to the 8-dimensional components
through the energy shifts (36), we semi-classically ex-
pand the 8-dimensional kinetic equations (12) and (13).
At classical level, the vector component is proportional to
Hf,o), and both the vector and axial-vector are on the mass
shell,

V) =10 fOsI IO —m?),
AY = gPsmPmO —m?), (37)

where f(x,p) and g,(x, p) are arbitrary Lorentz scalar and

vector distributions. After a straightforward but a little bit
tedious algebra, the vector and axial-vector at first order
in /i can be decomposed into
1 0 0
Vi =10 FOS1 gy, — )
+1Y 0’ AV 0TI —m?),
1 1 0
Ay =g e@mPTO —m?)
0 0 0
+11Y W VIO (I T — m?)
0 0
— w1V (@ TP - m?), (38)
where ¢’ means the derivative of the J-function.
Taking together the first order transport and con-
straint equations (30) and (35) for the equal-time com-

ponents and (38) for the covariant components, we de-
termine uniquely the energy shifts

AE;] _ 2; (;O)ir,
AEy, = —21 w-(pxgy"™),
AE = 2n1€p |G-y ~ (@ pp-g")].

1 +
AE}, = ~5a [m2w+p(p~w)] 50)*,
P

0
AE_] = "'_I’ gé),

26,
AEZ, = _ P'(pxw) éO)i’
b 2me;
o 1 0=
AEP3_+%[ w-pp-w)| £, (39)

All the energy shifts will disappear when the external
field is turned off. The reason is, without the coupling
between the total angular momentum and the rotational
field, particles will keep at the classical shell. Note that
there are two solutions for any energy shift, correspond-
ing to the two classical shells E7.

The transport and constraint equations (30) and (35)
not only fix the quantum correction from the off-shell ef-
fect to the classical mass shell, but also reduce the num-
ber of independent spin components at quantum level.
Again there are only two independent components. Simil-
ar to the classical limit, we can still choose the number
density fo(l) and spin density ggl) as the independent com-
ponents, and the others are determined by them self-con-
sistently,
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()= 1 (=
1

=+ —p- y
€pp £
A7 == [gv-g) - -V -g)].
Zmep
M _ M V x o 0=
3 - Ep O + 2m p ( g )’

e _ Pz, Ly on
g —fpfo %6, g

D=+

1 + 3 1 +
gl = —pxglt - Dy s (px V)£
m 2

22 2m

(D= 25D

1
0
= 4+ —
& me, [ “r8o

(n)
~p(p-g)|+ 2 e,

to [p w-p(p- o) £,

(40)

There are here three kinds of quantum corrections.
The first is a direct analogy to the classical relations
shown in (28), by simply replacing the classical compon-
ents f(o) and g(O) by the first-order components f(l) nd

(1) . The second comes from the derivative of the classic-
al components, remembering that a derivative in kinetic
equations is always accompanied by a factor of /. The
third correction is from the interaction with the external
field which appears only in the rotational moment g3.

The dynamical evolution of the equal-time Wigner
function Wy(x,p) at the first order in 7 is controlled by the
transport equations (19) at the second order in %,

df(1)+v g<1) 0,
df<1>+v g(1)+2mf(2) 0,

dif" +2p-g% —2amf® =0,

dtf“) 2p-g? =0,

digl + VY —2pxg? +wxg) =0,

dig" + VY -2px gl +wx gl +2mgl’ =0,

dig” +Vxgl" +2pfP + wx gl —2mg? =0,
dgl’ -vxg -2pfP +wxgl’ =0. (41)

By eliminating the second-order components and tak-
ing into account the classical and first-order kinetic equa-
tions (28), (30) and (35), we obtain the transport equa-
tions for the two independent quantum distribution func-

tions, namely the number density fél) and spin density

1
g,

6,+(i£+x><w)-V—(w><p)-V ]f”* -0,
€

3t+(i£ +x><w)-V—(w><P)'Vp}gél)t
€p

! .
——oxg) - X pxep VL @)
P

While the number density satisfies the same transport
equation as the classical equivalent, the coupling between
the two independent components leads to a new term on
the right-hand side of the quantum transport equation for
the spin density.

Following the method we used to derive transport
equations in the classical case and to the first order in 7, it
is not a problem to obtain transport equations for the
second-order components of the Wigner function. As has
been mentioned above, the rotational field appears only
up to the second order of 7/ in the kinetic equations, so
there should be no more new information when going
beyond the second order.

VI. QUARKONIUM POLARIZATION

When we define the rotation as an external field, it
means that the heavy quark motion is separated from the
surrounding thermal matter. This is quite different from
the light quarks, which share the thermal vorticity with
the medium. Like Lambda hyperon polarization, which is
dominated by s quarks and is a hot topic in recent heavy
ion collisions, quarkonium polarization is already meas-
ured in nuclear collisions at LHC energy [43]. The equal-
time Wigner function under rotation can shed light on the
study of quarkonium polarization.

At the quark level, the quarkonium polarization
comes from the heavy quark polarization. For the en-
semble of heavy quarks, the density operator in phase
space is a Wigner transformation of the operator in co-
ordinate space,

o= 3 nson e

8. X.p

3 e

Sz, X+ -;><SZ’

where s;,x and p are the quark spin, coordinate and mo-
mentum, |s;,x) is the quark state, and w, is the quark dis-
tribution function. For the ensemble of heavy quark pairs,
the density operator in the non-coupling representation
can be expressed as

P = ),
S12552:5X15X2, P12

o 5
xZe“"y‘elpzyz><|s1z,szz,x1+y2 x2+y?>
iy

wy(s12, X1, P1)Wg(822, X2, P2)

1 J’|
X2~ =

y
> > (44)

X<Slz,32z,x1 -
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where si;,x1,p; and so;,x5,p, are the quark and anti-
quark spin, coordinate and momentum, and |sy, s2;, X,
X2) = |51z, %1522, X2) 1s the pair state in non-coupling rep-
resentation.

Taking replacement of quark variables xi,x,p1,
D2.y1,y2 by pair variables X,x,P,p,Y,y, the Wigner
transformation of the diagonal element of the pair dens-
ity operator in the coupled representation constructed by
the pair state |S,S;, X, x) can be factorized as

. . Y
(S, X, P.x,p) = Y e Ve PS5 X+ x
2
Yy
YA Y y
+§|pqq|S,SZ,X—E,x—§>

= Z Wq(S12, X1, POWG (522, X2, P2)

S1z582:

xW(S,S.,X,P,x,p), (45)

where W is the coalescence probability for two quarks to
form a meson state,

Y
W(S.S.X.P.x.p) = » ¥ (S,SZ,X+ X+ g)
»Y

Y 'y
X\P(S,SZ,X—E,X—E)

XW(S]Z,JQ + %)W(Szz,x2+%)
* Y1) Y2
O A
(46)

with the quark and meson wave functions (s;;,x;) and
¥(S, S, X, x).

0(S,S;,X,P,x,p) is the statistical probability for the
qq pair to be in the meson state. By integrating out the
center-of-mass coordinate X and the relative coordinate
and momenrum x and p, one obtains the meson polariza-
tion probability as a function of the meson momentum P,
p(S,S;, P). In the calculation on quarkonium polarization,
the quarkonium wave function ¥(S,S;, X, x) is controlled
by the two-body Dirac equation [44—46], and the key
point is the heavy quark potential between the quark ¢
and antiquark g [47]. The heavy quark wave function
W(s;,x) 1s the solution of the one-body stationary Dirac
equation (A1) shown in Appendix A. The quark distribu-
tion function w, is controlled by the number distribution
fo and helicity distribution fi,

wy(sz,x,p) = f(x,p) = folx,p) +xfi(x,p) 47)

with y = +. To the zeroth and first order in 4, the trans-
port equations for the number density fy and spin density

go and the relation between f; and g, are as shown in
Section V. The particle equilibrium distribution is con-
trolled by the detailed balance for the collision terms,
namely the lose term and gain term cancel each other
when the system is in equilibrium state [38]. For quarks
moving in an external rotational field, the quark equilibri-
um distribution f, is the Fermi—Dirac function

1
T (WPl s))/T 4 ]

fe (48)

with medium temperature 7, where we have chosen the
rotational field along the z—axis. We will study J/y po-
larization in detail in a separate paper.

VII. SUMMARY AND OUTLOOK

We investigated the quantum kinetic theory for a
massive fermion system under a rotational field in Wign-
er function formalism. We derived two groups of 8-di-
mensional kinetic equations (12) and (13) and their 7-di-
mensional (equal time) version (19) and (20); one is the
constraint group which describes the off-shell effect in
quantum case, and the other is the transport group which
is the quantum analogy to the classical Boltzmann equa-
tion. For the structure of a quantum kinetic theory, the
off-shell constraint is essentially important. It provides
the physical interpretation for all the equal-time spin
components, reduces the number of independent distribu-
tion functions, and closes the transport equations for the
number density and spin density in classical limit and at
quantum level.

The interaction between the external rotational field
and total angular momentum significantly changes the
transport properties of the particles. The classical rota-
tion—orbital coupling controls the dynamical evolution of
the number distribution fy. It adds a linear velocity x X w
to the particle velocity, and the induced Coriolis force
pxw behaves as a mean field force acting on the
particles, see Egs. (31) — (33). Apart from the classical
coupling, the quantum rotation—spin coupling changes the
spin distribution gy. While the two distributions, f; and
go, are independent in the classical limit, the number
density influences the spin density at the quantum level.

An important application of the obtained transport
equations for heavy quarks is the quarkonium distribu-
tion in high energy nuclear collisions. The rotation intro-
duces a specific direction in coordinate space. The
particles moving in the plane perpendicular to the rota-
tion are strongly accelerated by the rotation, but those
moving along the rotation direction are not affected.
Therefore, the final state distribution, especially the col-
lective flow, will largely be changed by the rotation, even
at the classical level. In the quantum case, the
rotation —spin coupling will induce spin polarization of
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heavy quarks and may lead to quarkonium polarization in
heavy ion collisions.

APPENDIX A: SCHRODINGER EQUATION

Considering the stationary solution of the Dirac equa-
tion (7), w(x)=y(x)e ", the stationary wave function
Y(x) satisfies the equation

|(voy - p--J)+myo|w = Eu. (A1)

To move to the familiar non-relativistic expression,
we separate the quark energy into the mass and the kinet-
ic energy, E = m+ €, write the stationary wave function in
a two-component form, y(x) = (¢(x),x(x))’, and take the

Pauli —Dirac representation for the vy-matrix,
I 0 0 o
=g _; ) and y —( o 0 ) The two-component

Dirac equation is then written as

prop—(w-J+2m)y =ey (A2)

with the total angular momentum J =xx p+0/2 in its
two-dimensional form. From the second equation, the
small component y can be expressed as

B p-o b~ p-o
T 2m+e+w-JT 2m

X ¢ (A3)

to the first order in 1/m. Substituting this into the first
equation leads to the Schrodinger equation for the large
component ¢,

)
[p——w-f}qﬁ:e(p (A4)

2m

which is the same as obtained using a non-relativistic Ga-
lilean transformation [39].

To the second order in 1/m, the small component y
becomes

1 ( e+w-J
X 1-

- b0, A5
o o )p o (AS5)

Taking the commutation relations between x; and p;
and between o; and o; and employing the above
Schrédinger equation to the first order in 1/m, we obtain
the Schrodinger equation to the second order,

[p——%—arf]qﬁzeqﬁ. (A6)

The only relativistic correction is to the kinetic energy.

APPENDIX B: ELIMINATING THE FIRST
-ORDER COMPONENTS

Taking the transport equations for the classical com-
ponents f(o), 1(0) and ggo) in Eq. (30),

df”+v-g¥ =0,
dif”+V-g0 +2mfd =0,
digd -Vxgl -2pfV +wxg =0, (B1)

and multiplying the second equation by p and the third
equation by m, one can eliminating the first-order com-
ponent f;' by subtracting the two equations. Then em-
ploying the classical relations among gg())’g(zz) and g(30)
shown in Eq. (28), one obtains the transport equations

(31) for féo) and g(()o).

APPENDIX C: OFF-SHELL EFFECT ON THE
FIRST-ORDER COMPONENTS

To see clearly why it is impossible for the first-order
Wigner function to be on a mass shell, we try a on-shell

solution ( pi- 83,) W®(x,p) =0 ofthe constraint equa-
tions (20),

£28,10 = Vg 4 2mf -0,

+26, ) = -V-gV - w g,

£26,f0 = 2p- g0+ 2mf0 — 0-g2,
+28, 1(1) = 2p-g((31)—w-g(10),

+26,8" = Vxgl’ +2pfi" —wf,

+26,8)) = Vxg”+2pf" —wf” +2mgl",
+28,8)" = VA" +2pxg’ - wf”,

+28,8)) = VAY —2pxgl’ —wf” +2mgl).  (Cl)

To be specific, we choose the first, third, and fifth
equations which construct a set of closed equations for

), 3(1) and g(ll). After some

the first-order components f;
simple algebraic calculus to eliminate the first order com-

ponents, we obtain
~(@-p)f” -mw-g’ =0. (C2)

Taking into account the classical relations shown in
Eq. (28), it leads to
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ew-g")=0. (C3)

Since we are not interested in the trivial solution

go =0 in general case, the rotation w should disappear to
guarantee the above result. This means that the first -
Wigner function in a rotational field cannot be on a mass
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