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Analysis of Z_./(3985) as the axialvector tetraquark state *
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Abstract: In this study, we choose the scalar and axialvector diquark operators in the color antitriplet as the funda-

mental building blocks to construct four-quark currents and investigate the diquark-antidiquark type axialvector tet-
raquark states ccus in the framework of the QCD sum rules. The predicted tetraquark mass Mz = 3.99 +0.09 GeV is
in excellent agreement with the experimental value 3985.23:(1) +1.7MeV from the BESIII collaboration, which sup-

ports identifying Z.;(3985) as the cousin of Z.(3900) with quantum numbers JPC = 1+~ We take into account the

light flavor S U(3) mass-breaking effect to estimate the mass spectrum of the diquark-antidiquark type hidden-charm

tetraquark states with strangeness according to previous studies.
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I. INTRODUCTION

Recently, the BESIII collaboration observed an ex-
cess over known contributions of the conventional
charmed mesons near the D;D* and D™D’ mass
thresholds in the K* recoil-mass spectrum with the signi-
ficance of 53 o in the processes of
efe” > K*(D;D* +D;~D°) [1]. This is the first candid-
ate of the charged hidden-charm tetraquark state with
strangeness. The Breit-Wigner mass and width of the new
structure, Z.(3985), were determined to be
3985273 £1.7MeV and 13.8*%) +4.9 MeV, respectively.
According to the production mode, it is clear to draw the
conclusion that Z.,(3985) must be a cousin of the well-
known Z.(3885/3900) with strangeness. Z.(3885) was ob-
served in the process ete™ — (DD*)"n* [2], which means
that Z.(3885) and Z.;(3985) are governed by a similar
production mechanism and have a similar quark structure
ccqin with g=d or s. The discovery of Z.(3985) may
provide some unique hints to uncover the secrets of the
charged exotic Z, structures.

The existence of an exotic Z., state with a mass,
which lies near the D;D** and D*~D° thresholds 3975.2
and 3977.0 MeV respectively, has been predicted in sev-
eral theoretical models, including the diquark-anti-
diquark type tetraquark model [3, 4], the D,D* molecule
model [5, 6], the hadro-quarkonium model [4, 7], and the
initial-single-chiral-particle-emission ~mechanism  [8].

Similar to Z, states, the decay rate of Z.; to open-charm
final states is expected to be larger than the decay rate to
charmonium final states.

After the discovery of Z.,(3985), several possible ex-
planations for its nature were proposed, such as the tetra-
quark state [9, 10], D*D; — DD’ hadronic molecular state,
dynamically generated resonance with coupled-channel
effects [9, 11-16], and re-scattering effects [17, 18]. We
study its nature with the photo-production [19].

In Ref. [20], we investigate the spin-parity J* =1*
hidden-charm tetraquark states without strangeness in the
framework of the QCD sum rules, and examine the de-
pendence of the masses and pole residues on the energy
scales p of the spectral densities at the quark-gluon level,
at length, for the first time. Our reliable calculations sup-
port identifying X(3872) and Z.(3900) as the diquark-anti-
diquark type tetraquark states having hidden-charm with
the quantum numbers J©¢ = 1** and 1*~, respectively. In
Ref. [21], we take the diquark and antidiquark operators
in the color antitriplet and color triplet, respectively, as
the fundamental building blocks to construct the scalar,
axialvector, and tensor four-quark local currents to in-
vestigate the mass spectrum of the ground state tetra-
quark states with hidden-charm but without strangeness
in the framework of the QCD sum rules comprehensively,
and revisit the possible identifications of the existing tet-
raquark candidates with hidden-charm, such as X(3860),
X(3872), X(3915), X(3940), X(4160), Z.(3900), Z.(4020),
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Z.(4050), Z.(4055),
7.(4430), and Z.(4600).

In Refs. [20, 21], we choose the local axialvector
four-quark currents 7% (x) and 7, (x),

Z.(4100), Z.(4200), Z.(4250),

ijk oimn

=2 5l 0o Cel o
— U ()CYck(X)dn(x)ysCaL (1)),
ijk nimn _

(o) = {uf C)Cyserdn () Car(x)

V2
+ 1 () Cyuer(X)dm()y5CEn (1)), (1)

to investigate the lowest tetraquark states with the
quantum numbers J7¢ = 17~ and 1**, respectively, where
i, j, k, m, and n are color indices. The four-quark current
7 (x) has the quantum numbers J”© =1*" and poten-
tially couples to Z}(3900). In fact, Z*(3900) have non-
zero electric charge, do not have definite charge conjuga-
tion, and are not eigenstates of the charge conjugation.
Only the electric neutral state Z%(3900) has definite
charge conjugation. If Z_(3985) is truly a tetraquark state,
irrespective of whether it is the diquark-antidiquark type
or meson-meson type tetraquark state, its valence quarks
are ccsit, and it has no definite electric conjugation. In-
deed, to be more precise, we suppose that it has definite
conjugation, just like its cousins ccgg and ccss. In the
present work, we tentatively identify the Z_(3985) as the
diquark-antidiquark type axialvector tetraquark state with
the four valence quarks c¢si and examine its mass in the
framework of the QCD sum rules at length. Then ,we
take into account the light flavor SU(3) mass-breaking
effect to explore the mass spectrum of the diquark-anti-
diquark type tetraquark states with hidden-charm and
with strangeness according to our previous studies.

The article is arranged as follows: in Sec. II, we ob-
tain the QCD sum rules for the masses and pole residues
of the JP =1* tetraquark states with hidden-charm and
strangeness; in Sec. III, we obtain numerical results and
present the discussion; and Sec. IV presents our conclu-
sion.

II. QCD SUM RULES FOR
AXTALVECTOR TETRAQUARK
STATES WITH STRANGENESS

If we choose the favorable diquark configurations, the
scalar (S) and axialvector (4) diquark states in the color
antitriplet, as the fundamental building blocks to con-
struct the diquark-antidiquark type tetraquark states, we
obtain two nonets with the symbolic structures,

1=1:[ucls[de]a —[uclaldels , [dcls [ac]a — [dclalac]s ,
[uc]s [ac]a — [uclalacls — [dcls [dc)a + [dclalde]s
N ;

[ucls €l — [uclalie]s + [dcls[dela — [delalde]s
: 7 ,

[scls[5c]a — [sclal5cls ;

I1=0

I == :[gcls[3¢]a —[gclal3cls , [scls[gcla — [sclalgcls ,

2)

1
2
and

1=1:[ucls[dc]a +[uclaldcls , [dcls [ac]a + [delalac]s

[ucls [ac]a + [uclalucls —[dels[de]a — [dc)aldE]s
N ;

[ucls [c]a + [uc)aluc]s + [dcls[de]a + [delaldE)s
N ,

[scls[5c]a + [sclalscls

I1=0:

1
I= 5" lgcls[5C]a + [gclalscls , [scls[gcla +[sclalgcls ,
3)

1 . . .
where the 7=1, 0, = are the isospins of the hidden-

charm tetraquark states, ¢ = u, d.
In the first nonet, only the charge-neutral tetraquark

1 - -
states — ([ucls[a€]x~[ucl[ac]s ~[dcls [de]a+[dclaldels ),

V2

1 - -
$([u6]s (€] — [uclal@e]s +[dcls[de]a - [dclaldels) and
[scls[5¢la —[sclal5c]s are eigenstates of the charge con-
jugation operators, and have the definite charge conjuga-
tion C = —.

In the second nonet, only the charge-neutral tetraquark

1 - -
states — ([ucls [€]a +[uclalacls —[dcls [de]a—[dclaldels ),

V2

1 - -
\—5([ch5 (€] + [uclalacls +[dcls[dEla + [dclldels) and

[scls[5c]a + [sclal5¢]s are eigenstates of the charge con-
jugation operators, and have the definite charge conjuga-
tion C = +.

Thereafter, we assume that the first and second non-
ets have negative and positive charge conjugations, re-
spectively, such as to distinguish the two nonets, and we
must bear in mind that the charge conjugation is not a
good quantum number.

Routinely, we write down the two-point vacuum
Green's functions IT,,,(p),

M (p) =i [ d*xeP*(OIT {7, ()7} (0)}10), )

where the interpolating currents J,(x) = J) (x) and J} (x),
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ijk nimn
V2
— u] ()CYuC(X)Fn(x)ysCEf (1)),
ijk nimn
V2
+ 1] () Cyu k(D)5 (x)ysCEp (1), (5)

I (x) = {u] ICyse)5m (0, e (x)

IE0) =2 [l ()Cyser(0)5n(x0y,Cel (1)

the superscripts N and P stand for the negative and posit-
ive charge conjugations, respectively, as i, j, k, m, and n
are color indices. We suppose that the interpolating four-
quark currents J(x) and Jf(x) have the negative and
positive charge conjugations, respectively, in the sense of
the limit J,(x)l—u or J,(x)|u—s, which must be under-
stood in the same way as in the two tetraquark nonets in
Egs. (2), (3). In Refs. [20, 21], we choose the four-quark
currents 77 (x) and 7%, (x) to explore the axialvector tetra-
quark states ucdc, and observe that the ucdc states with
the quantum numbers J€ = 1*~ and 1** have almost de-
generate masses. The currents J(x) and Jf(x) are the
SU(3) partners of the currents 7, N(x) and M (x), respect-
ively, with the simple relation d « s. Now, we also ex-
pect that the four-quark currents J)(x) and J/(x) couple
potentially to the JP€ = 17~ and 1** tetraquark states with
almost the same masses.

At the hadron side, we insert a complete set of inter-
mediate tetraquark states with hidden-charm, strangeness
and other quantum numbers, such as the spin, parity,
charge conjugation, as the four-quark current operators
Ju(x), into the Green's functions II,,(p) to obtain the had-
ron spectral representation [22-24], and separate the low-
est tetraquark states Zy,p with hidden-charm and with
strangeness (or the lowest pole terms), and obtain the res-
ults:

% Pubv
I = Z |_g 4K )4_...’
ur(P) M2 —p2( St

:H(pz)( Guv + p;f")+..., (©6)

where the pole residues Az (in other works, the decay
constants) are defined by (0|J/,(0)|Zy,p(p)) = Az8,, the g,
are the polarization vectors of the axialvector tetraquark
states Zy,p. In contrast, there are two-particle scattering
state contributions from the two-meson pairs KJ/y, n.K*,
D,D*, D*Dy, ---, as the quantum field theory does allow
non-vanishing couplings between the four-quark currents
and two-particle scattering states in case that they share
the same quantum numbers. In Ref. [25], we investigate
the Z.(3900) as an axialvector tetraquark state with the
quantum numbers JPC =1*" in the framework of the
QCD sum rules at length by considering the two-particle
scattering state contributions and nonlocal effects

between the two colored constituents (diquark and anti-
diquark) in the four-quark current operator, and obtain the
conclusion that the contribution of the Z.(3900) as a pole
term plays a non-substitutable role, we can saturate the
QCD sum rules at the hadron side no matter with or
without the two-meson scattering state contributions. The
net effects of the two-particle scattering states of the in-
termediate meson pairs can be effectively taken into ac-
count by adding an energy-dependent finite width to the
pole term. In the present case, the energy-dependent
Breit-Wigner width 13.8*%) +4.9 MeV of the Z.,(3985) is
really small enough so as to be neglected safely.

On the QCD side, we carry out the operator product
expansion up to the vacuum condensates of dimension 10
in a consistent manner, as in our previous studies [20,
21], in the deep Euclidean region P?>=-p?> — oo or

> AQCD, which corresponds to the small spatial distance

) ) N 1 )
and time interval ¥~ ¢~ Nk We take into account or

calculate the vacuum condensates (Qq> (5s), (qgs0Gq),
GG\ _ GG
(5850Gs), <QT> (qq){5s), <qq>< > (s ><a - >

@@58,0Gs),  (9@g0Ga), (G EH{T2), and
(Ggs0Gq){5g;0Gs), which are the vacuum expectation

values of the quark-gluon operators of the orders O(at)
2

8
2% The vacuum con-

with the restriction k<1 as a, =

a/SGG> <asGG>
’ g

densates (g3 f.p.G*G"G®), < (GgsoGq),

and (Gq){g> f.pc:G*G"G®) are of the dimensions 6, 8, 9,
and 9, respectively, and are vacuum expectatlon values of
the quark gluon operators of the orders O(as), 0(a?),

O(as), and O(as), respectively. These are neglected in
the present study, as in our previous ones [21, 26-31], as
direct calculations confirm that those contributions are in-
deed miniscule [32]. In the calculations, we assumed va-
cuum saturation for the sake of factorizing the higher di-
mensional vacuum condensates into the lowest ones to re-
duce the number of fundamental parameters, which
works very well in the large color numbers limit.

Once we obtain the analytical expressions of the cor-
relation (or Green's) functions II(p?) at the degrees of
freedom of the quarks and gluons, we resort to dispersion
relation to obtain spectral densities at the quark level in a
straightforward manner, and match the two sides of the
correlation (Green's) functions I1(p?) (i.e., the hadron side
and QCD side), accomplish the quark-hadron duality (in
other words, the current-hadron duality) below the
thresholds sy of the continuum states or higher reson-
ances, complete the Borel transform in regard to the vari-
able or parameter P> =—p? and acquire the QCD sum
rules:
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M2 So s
/l% exp (_T_ZZ] = Lm? dSpQCD(S) exp(—ﬁ) N (7)
where the explicit expressions of the spectral densities
pacp(s) at the quark level are neglected for simplicity.
We differentiate both sides of the above equation with

regard to the parameter then eliminate the pole

_2 5
residues Az by introducing a fraction, and reach the QCD
sum rules for the masses of the hidden-charm axialvector

tetraquark states with strangeness,

So d )
_L‘mg dSmPQCD(S) eXp(_ﬁ)

2
MZ = So s
L , $pQcp(s) exp 72

®)

III. NUMERICAL RESULTS AND DISCUSSION

We adopt the standard or conventional values of all

vacuum condensates (gq) = —(0.24+0.01 GeV)?,

(38;,0Gq)=m3(Gq), (5sy=(0.8+0.1%gq), (58,0Gs)=
sGG

m(3s), m} = (0.8+0.1) GeV?, ¢ =0.012+0.004 GeV*

at the typical energy scale u =1 g}eV [22-24, 33-35], and
prefer the MS masses of the charm and strange quarks,
me(mc) = (1.275£0.025) GeV and m (i = 2 GeV) = (0.095+
0.005) GeV, from the Particle Data Group [36], just like
in our previous studies [20, 21]. Furthermore, we take in-
to account the energy-scale dependence of all the input
parameters at the quark level, such as the quark condens-
ates (gq), (3s), the mixed quark condensates (Gg;cGq),
(5g,0Gs), and the MS masses m.(u), my(u) in the light of
renormalization group equation [37],

,(1GeV) |7

|

,(1GeV) | =
as(u) } ’

(G = <51t1>(1GeV)[

(Ss)(u) = <§S>(1G€V)[

as(lGeV)]u%
() ’

(GgsoGq)(u) = <égschq>(1GeV)[

(58,0GS)(k) = (5g,0Gs)(1GeV) [LGGV)] ,
(1)
me(u) = mC(mc)[ @) } |
as(me)
ms(ﬂ) = ms(ZGeV) |:CL’Y(2GGV):| 5
-1 by logt bi(log*t—logt—1)+bob,
a/s(ll)—b—ot[l—b—%7+ bgtz ’ (9)

2 33— 2n 153191
o u ~ ro Fo
Wheresé3—310ggs, by = o = 2=
2857—Tnf+2—n§
7 L A=213, 296 and 339 MeV for the
12873

quark flavor numbers ny =5, 4, and 3, respectively [36].
In the present study, we investigate the hidden-charm tet-
raquark states ccus with strangeness. It is thus better to
adopt the quark flavor numbers 7 = 4 and then evolve all
the input parameters at the quark level to a typical energy
scale u, which satisfies the restriction of the energy scale
formula p= Mz —-(2M,)? with the updated effective
charm quark mass M, = 1.82 GeV [21, 26-31]. If we take
Z.5(3985) as the ground state tetraquark candidate for the
Zy/p with hidden-charm, with strangeness, and with
JP = 1%, the best energy scales (or our preferred energy
scales) of the spectral densities at the quark level are
u=16GeV.

Now, let us take a short digression to discuss the en-
ergy scale dependence of the QCD sum rules. In preform-
ing the operator product expansion, we can choose any
energy scale if the perturbative calculations are feasible at
this special energy scale, and the physical quantities ex-
tracted from the QCD sum rules must be independent on
selections of the energy scales. In this sense, the correla-
tion functions TI(p?) are independent on the energy

d
scales, d—l'[(pz) =0.

In contrast, the two-quark (three-quark, four-quark,
--+) currents J(x) are operators, and they are renormal-
ized at special energy scales, thus they are defined at spe-
cial energy scales and are energy scale dependent quantit-
ies,

J(X,/.l) = L%J(-xaﬂo)» (10)

a’sOJO)

where L =

, and the y; are the anomalous dimen-

sions of the Céilrrents J(x). We usually neglect renormaliz-
ation of the hadron states, and set the anomalous dimen-
sions of the pole residues (or decay constants) to be the
anomalous dimensions of the current operators,

OO, wIH(p)) = A (W),
= L7(01J(0, uo)lH(p))
= L” Au (o). an

In fact, even in the QCD sum rules for the conven-
tional D meson, where the radiative corrections of the
perturbative terms have been calculated up to the order
O(a?) and the radiative corrections of the quark condens-
ate have been calculated up to the order O(al) [38-41],
the relation for the decay constant fp(u) = L= fp(uo) can-
not take account of the energy scale dependence of the
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QCD sum rules in a consistent manner.

On the one hand, the non-local operators J(x)J(0)
have their own anomalous dimensions y;;, vy, # 2y, just
like re-normalization of the quark fields g(x) alone is not
sufficient for the conventional current operators J(x) =
g(x)I'q(x), where the T stand for some Dirac y-matrixes.
On the other hand, we usually neglect the radiative cor-
rections due to cumbersome calculations and factorize the
higher dimensional vacuum condensates to the lower di-
mension vacuum condensates in performing the operator
product expansion, the energy scale dependence of the
QCD sum rules is modified. Furthermore, we introduce
the continuum threshold parameters sy to exclude the
contaminations of the higher resonances and continuum
states, the correlation between the thresholds and con-
tinuum thresholds is not clear.

The energy scale dependence cannot be absorbed in-
to the pole residues alone, and we cannot obtain energy
scale independent QCD sum rules for the masses, selec-
tions of the energy scales of the QCD spectral densities
influence the masses extracted from the QCD sum rules.
We can rewrite the energy scale formula in another form,

M)y =12 +C (12)
where the constants C =4M?, and then explain the en-
ergy scale formula in another way. We conjecture that the
predicted tetraquark masses and pertinent energy scales
of the QCD spectral densities have a Regge-trajectory-
like relation, as in Eq. (12), where C is a free parameter
and fitted by the QCD sum rules. Direct calculations have
shown that C has universal values and works well for all
the tetraquark (molecular) states.

The standard values of the quark and mixed condens-
ates determined in the original works still survive [22, 23,
33-35], while the value of the gluon condensate was oc-
cassionally updated in literature; however, the standard
value determined in the original studies [22, 23] is still
feasible [35]. The gluon condensate is the vacuum ex-
pectation value of the gluon operator of the order O(al),
and plays a minor important role in the present work, the
standard and updated values do not make a significant
difference. The most important parameter is the c-quark
mass m.(m.). In 2006, R. D. Matheus et al. investigated
X(3872) as the diquark-antidiquark type tetraquark state
with QCD sum rules by carrying out the operator product
expansion up to the vacuum condensates of dimension 8

[42]. Thereafter, the QCD sum rules became a powerful
theoretical approach in studying the exotic X, Y, and Z
states. In Ref. [42], the MS mass
me(m.) = 1.23+0.05 GeV was chosen, and thereafter, the
value was adopted without or with slightly modified un-
certainty [43]. Only in the recent years, new values
me(m) = 12666 MeV [44] and 1.275+0.025GeV [9]
and 1.275*023 GeV [16] were chosen. The values of the
MS mass of the c-quark listed in The Review of Particle
Physics in 2012, 2014, 2016, 2018, and 2020 were 1.275+
0.025, 1.275+0.025, 1.27+0.03, 1.275*0925 "and 1.27+0.02
GeV, respectively. We fitted the constants C with the
value 1.275+0.025 GeV from The Review of Particle
Physics (2012) [26, 27], and adopted the value ever since.

The energy gaps between ground states (or 1S) and
first radial excited states (or 2S) of the hidden-charm tet-
raquark states without strangeness or with hidden-
strangeness are approximately 0.6 GeV [21, 29, 45-49].
We tentatively adopt the continuum threshold parameters
as +/so = Mz+0.55+£0.10 GeV =4.55+ 10 GeV, and vary
the Borel parameters T2 to satisfy the two requirements
that the pole contributions dominate the QCD sum rules
at the hadron side and the operator product expansions
converge rather quickly at the QCD side via trial and er-
ror. In doing so, we must bear in mind that if our numer-
ical results do no support identifying Z.4(3985) as the axi-
alvector tetraquark state, we must refit the best con-
tinuum threshold parameters and best energy scales of the
spectral densities at the quark level to obtain the real
ground state tetraquark masses.

Finally, we acquire the Borel windows (or working
Borel parameters) and pole contributions in the two QCD
sum rules for the currents JY(x) and J/(x), and show
them plainly in Table 1. The contributions of the lowest
pole terms are about 42-62%, while the central values ex-
ceed 50%, such that we can say confidently that the con-
tributions of the pole terms dominate the QCD sum rules
at the hadron side, and one of the fundamental criteria is
satisfied well. In Fig. 1, we plot the absolute values of the
contributions of the vacuum condensates with the
centroids of the values of all input parameters under the
condition that the total contributions are normalized to be
one. From the figure, we clearly see that the largest con-
tributions come from quark condensates (Gg) and (5s),
the vacuum condensates of the dimensions 7, 8, and 10
play a small role, the operator product expansion con-
verges efficiently. Now, we can confidently acquire the

Table 1. Borel windows, continuum threshold parameters, ideal energy scales, pole contributions, masses and pole residues for the
axialvector tetraquark states with strangeness.
JEC T2/GeV? V50/GeV u/GeV pole M/GeV 1/GeV?
1t 3.0-34 4.55+0.10 1.6 (42-63)% 3.99+0.09 (2.85+0.45)x 1072
1t 3.0-34 4.55+0.10 1.6 (41-62)% 3.99+0.09 (2.85+0.45)x 1072
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Fig. 1. (color online) Absolute values of contributions of va-
cuum condensates in condition of central values of input para-
meters, where the N and P stand for the negative and positive
charge conjugation, respectively.

on
T Z| 4
1

conclusion that it is reliable and reasonable to extract the
tetraquark masses in Borel windows.

We take into account all uncertainties of the input
parameters to accomplish the error analysis, and acquire
the values of the masses and pole residues of the axi-
alvector tetraquark states with hidden-charm and with the
strangeness S =1, which are presented explicitly in
Table 1 and Fig. 2. From Table 1, we see clearly that the
energy scale u=1.6GeV is consistent with the mass
3.99GeV inferred from the energy scale formula
1= \Mz—(2M,)? or the relation between the tetraquark
masses and the energy scales of the QCD spectral densit-
ies M2 =p?+4M2. In Fig. 2, we plot the predicted tetra-
quark masses with respect to variations of the Borel para-
meters at significantly larger regions than the Borel win-
dows; furthermore, we show the experimental value of
the mass of the Z.((3985) from the BESIII collaboration
for the sake of comparison [1]. From the figure, we see
clearly that very flat platforms appear in the Borel win-
dows. In the Borel windows, the mass of the Z.,(3985)

5.0 ——r——+——1——————1———
48
46| N
44

s |

2 42f
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Fig. 2.

overlaps with the central values of the masses of the tetra-
quark states with strangeness and sharing the quantum
numbers JC = 17*, From Table 1, we see plainly that the
axialvector tetraquark states with the negative and posit-
ive charge conjugation have degenerated masses. In fact,
the central values of the masses of the axialvector tetra-
quark states with the negative and positive charge conjug-
ation are 3.98669GeV and 3.99303 GeV, respectively,
and the axialvector tetraquark states with J°¢ = 1** have
slightly larger masses than the corresponding states with
JF€ =17~ [21]. In all the calculations, including the
present work, we observe that if we choose the same val-
ues of the input parameters, such as the quark masses, va-
cuum condensates, continuum threshold parameters, and
Borel parameters, the predicted masses of the J*€ = 1**
tetraquark states are slightly larger than that of the
JPC€ =17~ tetraquark states. However, we must bear in
mind that the miniscule mass difference cannot be quanti-
fied considering the uncertainties of the QCD sum rules.

In Fig. 3, we plot the predicted masses of the JF€ =
1*7 and 1** tetraquark states with variations of the en-
ergy scales of the QCD spectral densities in the condition
of central values of the input parameters. The predicted
masses decrease monotonously with the increase of the
energy scales. If we set M, = 1.82 GeV [21, 26-31], we
can obtain the dash-dotted line My = y/u? +4 x (1.82 GeV)2,
which intersects with the lines of the masses of the
JPC = 1%~ and 1** tetraquark states at the energy scales
about ¢ = 1.6 GeV. In this manner, we choose the energy
scales of the QCD spectral densities in a consistent man-
ner. As a byproduct, we can see clearly, if we choose the
same input parameters, the predicted masses of the
JPC = 1%+ tetraquark states are slightly larger than that of
the JPC€ = 17~ tetraquark states.

When we contract the quark fields in the correlation
functions II,,(p) with the Wick theorem, we obtain the
formula,

5.0 ———————— 11—

481 —— Central value
46 P |- - -Errorbounds | -
a4l —-—- Expt i
Sualf ]
[0
a0
N -
=38
36| N
34| N
32| N
30 [ " 1 " 1 " 1 " 1 " 1 " 1 " i
15 20 25 30 35 40 45 50

T’ (GeV?)

(color online) Masses of axialvector tetraquark states with variations of Borel parameter 72, where N and P stand for the neg-

ative and positive charge conjugation, respectively. Regions between the two vertical lines are the Borel windows, the Expt stands for

the experimental value of the mass of Z.;(3985).
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Fig. 3.
with variations of energy scales p in condition of central val-
ues of input parameters, where N and P stand for the negative
and positive charge conjugation, respectively, and ESF de-

notes the formula M = /u? +4 x (1.82 GeV)?2.

s gk oimn U J K m'n’ .
etk o g relp
2

X(TrysC* (xyysCUTT (x)C|
[ C (=07, 8™ (-x)C]|

+ T [7,C% () CUT (x)C|

X Tr [ysC""(=x)ysCS™ ™ (-x)C]

T [7,C% (x)ysCUTT (x)C|
[
[
[

Hyv(p) ==

X Tt [1,C""(=x)ysCS ™™ (=x)C]
T [ysC (e, CUTT ()|
X Tr|ysC""(=x)y,CS "™ (-x)C|}. (13)

where ¥ corresponds to the positive and negative charge
conjugations of the currents, respectively, the U;;(x),
Sij(x), and C;;(x) are the full u, s, and ¢ quark propagat-
ors, respectively. By carrying out the operator product ex-
pansion, we observe that the dominant contributions
come from the first two terms in the bracket, and the con-
tributions come from the last two terms in the bracket
play a miniscule role. Hence, we obtain the almost degen-
erated tetraquark masses.

From Table 1, we see clearly that the predicted tetra-
quark masses Mz =3.99+0.09 GeV are in excellent
agreement with the experimental value
3985273 £1.7MeV from the BESIII collaboration [1],
and support identifying Z.,(3985) to be the tetraquark
state with hidden-charm, with strangeness and with
JPC€ = 1*=. We prefer the quantum numbers J7¢ =1~ to
the quantum numbers JPC = 1%, as Z.,(3985) was ob-
served in the D;D* and D*~D° mass spectrum [1], just
like the Z.(3900), which was observed in the DD* mass
spectrum [2]. However, the assignment J7¢ = [** cannot
be excluded, as the charge conjugation is not a good
quantum number.

In Ref. [21], we introduce the four-vector # = (1,6) to
project the axialvector and vector components of the
tensor diquark operators, and take the color-antitriplet
diquark operators  &7qTCysq,  (S), &/q}Cq;  (P),

lj/( TC')’qu (A) slﬂ( TCO‘ qu (A) 81/1( TC'Yy)’SQk (V)
and s”k TCo- wd ( V) as the fundamental building blocks
to construct the four-quark currents to investigate the
mass-spectrum of the tetraquark states with hidden-charm
but without strangeness in a comprehensive way, where
the S, P, A/A and V/V stand for the scalar, pseudoscalar,
axialvector, and vector diquark operators, respectively,

1
t _ Dt At v
Oy = 2 [7/4’7V]’0—uv

Table 2, we plainly show the mass-spectrum of the hid-
den-charm tetraquark states ccud obtained via the QCD
sum rules in Ref. [21] with possible assignments.

If we assign Z.,(3985) to be the cousin of Z.(3900)
with strangeness, the mass gap or the light flavor S U(3)
mass-breaking effect Mz 3085y — Mz (3900) =94 MeV, then
we take the light flavor SU(3) mass-breaking effect
mys =0.09 GeV, and estimate the mass spectrum of the tet-
raquark states with hidden-charm and with strangeness
based on our previous work [21], which are shown expli-
citly in Table 3. We should bear in mind that the charge
conjugation is not a very good quantum number in the

1
= 5[7;,75],72 =Yty Y, =Yu—y tIn

Table 2. Possible assignments of ground state hidden-charm
tetraquark states, where the isospin limit is implied [21].

Z:(X,) JPC Mz /GeV Assignments Z (X))
[ucls [dcls 0** 3.88+£0.09 2 X(3860)
[uc)aldc)a 0** 3.95+0.09  ? X(3915)
[uclzldcl; 0"+ 3.98+0.08
[uclyldely 0+ 4.65+0.09
[uclyldcly 0"+ 5.35+0.09
[uc]pldclp 0** 5.49+0.09
[ucls [dela — [uclaldels 17 3.90+0.08 2 Z.(3900) 2 Z.(4430)

[uclaldcla 1"~ 4.02+0.09 ? Z,(4020/4055) ? Z.(4600)
[ucls[dcly - [uclzldels 17 4.01£0.09 ? Z.(4020/4055) ? Z.(4600)
luclzldela —[uclaldely 1= 4.02+0.09 2 Z.(4020/4055) ? Z.(4600)

luclgldely +[uclyldcly 1+~ 4.66+0.10 2 Z.(4600)
luclyldely 1"~ 5.46+0.09
[uclpldcly + [ucly[dclp 1%~ 5.45£0.09
[ucls[dcla + [uclsldels 17+ 3.91+0.08 2 X(3872)
lucls[delg + [uclzldels 1%+ 4.02+0.09 2 Z.(4050)
luclyldely — [ucly[dely 17+ 4.08+0.09 2 Z.(4050)
luclzldcla +[uclaldely 17+ 5.19=0.09
[uclpldcly — [uclyldclp 1%+ 5.46+0.09
[uclaldcla 2+ 4.08+0.09 2 Z.(4050)
[ucly[dcly 2+ 5.40+0.09
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Table 3. Possible assignments of ground state hidden-charm
tetraquark states with strangeness.
Ze(Xe) Jre Mz/GeV Assignments
[ucls [scls ot 3.97+0.09
[uclalscla 0t 4.04+0.09
[uclilsclz ot 4.07+0.08
[ucly[scly 0t 4.74+0.09
[uclylscly ot 5.44+0.09
[uclplsclp 0t 5.58+0.09
[ucls[5¢]a — [ucla[5cls 1+ 3.99+0.09 ? Z,,(3985)
[uclalscla 1+ 4.11+0.09
[ucls [sclz — [uclzlscls 1t 4.10+0.09
[uclzlscla —[uclalscl; 1+ 4.11+0.09
[uclylscly + luclv(scly 1+ 4.75+0.10
[uclv[scly 1 5.55+0.09
[uclplscly + [ucly[sclp 1+ 5.54+0.09
lucls [5€4 + [ucla[5cls 1+ 3.99.+0.09 ? Z.4(3985)
[ucls [sclz + [uclzlscls 1 4.11+0.09
[ucly[scly —[uclv[scly 1+ 4.17+0.09
[uclzlscla +[uclalscly 1 5.28+£0.09
[uclplscly —[uclv[sclp | 5.55+0.09
[uclaldcla 24 41720.09
[uclv[dcly 27 5.49+0.09

present case. We cannot exclude that the Z.,(3985) can be
identified as the axialvector hidden-charm tetraquark
state with the quantum numbers J”€ = 17+,

IV. CONCLUSION

In present study, we choose the scalar and axi-
alvector diquark operators (in color antitriplet) and anti-
diquark (in color triplet) operators as the fundamental

building blocks to construct the four-quark currents and
investigate the diquark-antidiquark type axialvector tetra-
quark states ccus with the QCD sum rules in the condi-
tion that we accomplish the operator product expansion
up to the vacuum condensates of dimension 10, consist-
ently based on our reasonable analysis and successful ex-
perience; then, we apply the energy scale formula
u=Mz—(2M.)? using the effective charmed quark
mass M, = 1.82 GeV to fix the best energy scales of the
spectral densities at the quark level. The predicted tetra-
quark mass Mz =3.99+0.09 GeV isin excellent agree-
ment with the experimental value 3985.2*3) +1.7 MeV
from the BESIII collaboration and supports identifying
Z.5(3985) as the cousin of Z.(3900) with the quantum
numbers JP¢ = 17~. Furthermore, we obtain the mass of
the corresponding tetraquark state ccus with quantum
numbers JP¢ = 17+, which can be compared to the inter-
national high energy experimental data in the future. We
take into account the light flavor SU(3) mass-breaking
effect at approximately 90 MeV and make crude estima-
tions of the mass spectrum of the diquark-antidiquark
type tetraquark states with hidden-charm and strangeness.

Note added:

After the manuscript was submitted to https://arxiv.
org/, the LHCb collaboration reported two new exotic
states with the valence quarks ccus in the J/¢K* mass
spectrum in the decays B* — J/y¢K* [50]. The most sig-
nificant state, Z.;(4000), has a mass of 4003 + 6’:‘1‘4 MeV, a
width of 131+15+26MeV, and spin-parity J© =1%,
while the broader state, Z.(4220), has a mass of
4216 £24*33 MeV, a width of 233 +52%97 MeV, and spin-
parity J* =1* or 17, with a 20 difference in favor of the
first hypothesis [50]. As there exist two tetraquark nonets
(see Egs. (2)-(3)) and there may exist mixings between
the two tetraquark nonets, there is sufficient room to ac-
commodate Z.,(3985) and Z.;(4000) as the diquark-anti-
diquark type axialvector tetraquark states with strange-
ness.
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