An improved semi-empirical relationship for cluster radioactivity^{*}

Yanzhao Wang(王艳召)^{1,2,3†} Fengzhu Xing(邢凤竹)^{1,2} Yang Xiao(肖洋)^{1,2} Jianzhong Gu(顾建中)^{3‡}

¹Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China ²Institute of Applied Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

³China Institute of Atomic Energy, P. O. Box 275 (10), Beijing 102413, China

Abstract: An improved semi-empirical relationship for cluster radioactivity half-lives is proposed by introducing an accurate charge radius formula and an analytic expression of the preformation probability. Moreover, the cluster radioactivity half-lives for the daughter nuclei around ²⁰⁸Pb or its neighbors and the ¹²C radioactivity half-life of ¹¹⁴Ba are calculated within the improved semi-empirical relationship. It is shown that the accuracy of the new relationship is improved significantly compared to its predecessor. In addition, the cluster radioactivity half-lives that are experimentally unavailable for the trans-lead and trans-tin nuclei are predicted by the new semi-empirical formula. These predictions might be useful for searching for the new cluster emitters of the two islands in future experiments.

Keywords: cluster radioactivity, released energy, half-life, improved semi-empirical relationship

DOI: 10.1088/1674-1137/abe112

I. INTRODUCTION

The cluster radioactivity of heavy nuclei was first predicted by Sandulescu, Poenaru, and Greiner in 1980 [1]. It is usually called heavy-ion radioactivity because the emitted clusters are heavier than the α -particle and lighter than fission fragments. In 1984, cluster radioactivity was first observed by Rose and Jones through the decay of ²²³Ra by emitting ¹⁴C [2]. Since then, many clusters heavier than ¹⁴C have been experimentally observed in many parent nuclei from ²²¹Fr to ²⁴²Cm, such as ²⁰O, ²³F, ^{22,24–26}Ne, ^{28,30}Mg, and ^{32,34}Si, and the daughter nuclei are the doubly magic nucleus ²⁰⁸Pb or its neighbors [3-7]. This implies that the shell effect plays a crucial role in cluster emitting for heavy nuclei.

To describe the cluster radioactivity, various theoretical models were proposed [8-32]. Generally, these models can be divided into two categories: cluster-like model [8-16] and fission-like model [17-32]. For the cluster-like model, the cluster is assumed to be preformed in the parent nucleus before it penetrates the barrier. Concerning the fission-like model, the nucleus deforms continuously as it penetrates the nuclear barrier and reaches the scission configuration after running down the Coulomb barrier. Experimental half-lives can be approximately reproduced in a satisfactory manner by both types of models [8-32]. In addition, many scaling laws and semi-empirical relationships were developed for systematic calculations of the cluster decay half-lives [33-41].

Recently, a semi-empirical relationship for charged particles and exotic cluster radioactivity was developed by Sahu et al. based on the basic phenomenon of resonances occurring in quantum scattering process under Coulomb-nuclear potential [42]. It is usually called the Sahu formula and its form is similar to the universal decay law (UDL) proposed by Qi et al. [33, 34]. Although the coefficients are obtained naturally and the angular momentum dependence is included in the Sahu formula, there exist some deviations between the calculated halflives of the charged particles of the parent nuclei and the experimental values. For example, the calculated α -decay half-life of ²⁵⁷Md is 10³ times as short as its corresponding experimental value. Consequently, it is necessary to improve the accuracy of the Sahu relationship by taking into account some physical factors. Recently, we proposed an improved Sahu (ImSahu) semi-empirical relationship for α -decay half-lives by introducing a precise charge radius formula and an analytic expression for preformation probability [43, 44]. It is shown that the 421 experimental α -decay half-lives can be reproduced accurately with the ImSahu relationship. In this study, we continued to improve the Sahu relationship for the analysis of

Received 2 December 2020; Accepted 14 January 2021; Published online 1 March 2021

^{*} Supported by the National Natural Science Foundation of China (U1832120, 11675265), the Natural Science Foundation for Outstanding Young Scholars of Hebei Province of China (A2020210012, A2018210146), the Continuous Basic Scientific Research Project (WDJC-2019-13) and the Leading Innovation Project (LC 192209000701)

[†] E-mail: yanzhaowang09@126.com

[‡]E-mail: jzgu1963@ciae.ac.cn

^{©2021} Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

cluster radioactivity on the basis of a recent work of ours.

This article is organized as follows. Sec. II describes the theoretical approaches. In Sec. III, numerical results and discussions are presented. In the last section, some conclusions are drawn.

II. SAHU AND IMSAHU SEMI-EMPIRICAL RELATIONSHIPS

The Sahu relationship is derived by considering the metastable parent nucleus as a two-body quantum system composed of the emitted particle and the daughter nucleus exhibiting resonance scattering phenomena under the combined effect of nuclear, Coulomb, and centrifugal forces [42].

In a series of papers by Sahu [45-48], the cluster+nucleus system was considered as a Coulomb-nuclear potential scattering problem and the resonance energy of the quasibound state was taken as the Q_c -value (released energy) of the decaying system. The width or life-time of the resonance state accounts for the decay half-life. The normalized regular solution u(r) of the modified Schrödinger equation is matched at radius r = R with the outside Coulomb-Hankel outgoing spherical wave $f(r) = G_l(\eta, kr) + iF_l(\eta, kr)$ such that

$$u(r) = N_0 [G_l(\eta, kR) + iF_l(\eta, kR)], \qquad (1)$$

where R is the radial position outside the range of the nuclear field.

For a typical cluster – daughter system, the cluster particle serves as the projectile and the daughter nucleus as the target. The mean life T (or width Γ) of the decay is expressed in terms of the amplitude N_0 as

$$T = \frac{\hbar}{\Gamma} = \frac{1}{|N_0|^2} \frac{\mu}{\hbar k},\tag{2}$$

where μ represents the reduced mass of the system, and *k* and η denote the wave number and Coulomb parameter, respectively.

Given that the wave function u(r) decreases rapidly with the radius outside the daughter nucleus, it can be normalized by requiring that $\int_0^R |u(r)|^2 dr = 1$. Furthermore, using the fact that for a sufficiently large value of radial distance, the value of $G_l(l,kR)$ could be several orders of magnitude larger than that of $F_l(l,kR)$, Eq. (2) can be expressed as

$$T = \frac{\mu}{\hbar k} \frac{|G_l(\eta, kR)|^2}{|u(R)|^2}.$$
 (3)

Eq. (3) gives the mean life T or half-life $T_{1/2}$ =

0.693T of the charged particle decay. This formulation is valid for the emission of all types of positively charged particles.

In the derivation of the Sahu relationship, the function G_l was consulted from a handbook of mathematical functions [49]. The derived details can be found in Ref. [42]. We will not present it here. The obtained expression of the Sahu relationship is written as

$$\log_{10}[T_{1/2}(\mathbf{s})] = aZ_c Z_d \sqrt{\frac{\mathcal{A}}{Q_c}} + b \sqrt{\mathcal{A}Z_c Z_d} + c + d, \quad (4)$$

where Z_c and Z_d are the proton numbers of the emitted cluster and daughter nucleus, respectively, and $\mathcal{A} = A_c A_d / (A_c + A_d)$, where $A_c(A_d)$ denotes the mass number of the emitted cluster (daughter nucleus). The coefficients *a*, *b*, *c*, and *d* in Eq. (4) are derived naturally and are different from those of the UDL formula. These parameters are expressed as follows [42]:

$$a = \frac{2a_0 e^2 \sqrt{2m}}{\hbar \ln 10},$$
 (5)

$$b = \frac{-b_f \sqrt{2me^2 R}}{\hbar \ln 10},\tag{6}$$

$$c = \frac{\ln\left[\left(0.231 \times 10^{-23}\right)\sqrt{\frac{mR\mathcal{A}}{2e^2 Z_c Z_d}}\frac{1}{P}\right]}{\ln 10},$$
(7)

$$d = \frac{\ln M_l - \sum_{l=0}^{l} ln(\eta_l)}{\ln 10},$$
(8)

where

$$b_{f} = 2 + a_{0} - 2a_{1} + \left(\frac{a_{0}}{4} + a_{1} - 2a_{2}\right)t^{1/2} \\ + \left(\frac{a_{0}}{8} + \frac{a_{1}}{4} + a_{2} - 2a_{3} - 1\right)t \\ + \left(\frac{5a_{0}}{64} + \frac{a_{1}}{8} + \frac{a_{2}}{4} + a_{3}\right)t^{3/2} \\ + \left(\frac{5a_{1}}{64} + \frac{a_{2}}{8} + \frac{a_{3}}{4} - \frac{1}{4}\right)t^{2} \\ + \left(\frac{5a_{2}}{64} + \frac{a_{3}}{8}\right)t^{5/2} \\ + \left(\frac{5a_{3}}{64} - \frac{1}{8}\right)t^{3},$$
(9)

$$\begin{split} \sqrt{M_l} &= 1 + \frac{4(2l+1)^2 - 1}{16(2me^2 R Z_c Z_d \mathcal{A}/\hbar^2)^{1/2}} \\ &+ \frac{[4(2l+1)^2 - 1][4(2l+1)^2 - 9]}{2[16^2(2me^2 R Z_c Z_d \mathcal{A}/\hbar^2)]} \\ &+ [4(2l+1)^2 - 1][4(2l+1)^2 - 9] \\ &\times \frac{[4(2l+1)^2 - 25]}{2[16^3(2me^2 R Z_c Z_d \mathcal{A}/\hbar^2)^{3/2}]}, \end{split}$$
(10)

$$\eta_l = 1 + \frac{l^2}{(e^2 Z_c Z_d / \hbar)^2 m \mathcal{A} / 2Q_c}.$$
 (11)

In the expression for b_f , $t = Q_c R/(e^2 Z_c Z_d)$. Here, the nucleon mass m = 931.5 MeV, $e^2 = 1.4398$ MeV fm, $\hbar = 197.329$ MeV fm, $a_0 = 1.5707288$, $a_1 = -0.2121144$, $a_2 = 0.074240$, and $a_3 = -0.018729$ [49]. The parameter *d* is *l*-dependent, where *l* is the orbital angular momentum carried by the emitted particles. In the calculations, *R* is approximated as $R = r_0(A_d^{1/3} + A_c^{1/3}) \approx 9.5$ fm, and *P* is taken as 10^{-3} [42].

We pointed out in previous studies that the accuracy of the Sahu formula was low because R and P are treated simply as constants [43, 44]. In a recent study of ours, Rand P were assumed as the charged radius and preformation probability, respectively. Moreover, an accurate charge radius formula on R and an analytic expression for the preformation probability on P were introduced for improving the accuracy of the Sahu formula [43, 44]. Based on these recent studies [43, 44], concerning cluster radioactivity, the accurate charge radius formula and analytic preformation probability for clusters inside the parent nuclei are also introduced.

For *P*, an analytic expression proposed by Blendowske and Walliser, i.e., $P = P_{\alpha}^{(A_c-1)/3}$ [50], is usually adopted. Considering the model dependence, the analytic expression of *P* is slightly modified as

$$\log_{10} P = \left(\frac{A_c - 1}{3}\right) \log_{10} P_{\alpha} + c',$$
 (12)

where P_{α} is the α -particle preformation factor inside the parent nucleus. The second term c' of Eq. (12) is a constant.

Concerning R, it is defined as

$$R = R_d + R_c, \tag{13}$$

where R_d and R_c are the root-mean-square charge radii of the daughter nucleus and the cluster, respectively. The form of R_d or R_c is [51]

$$R_{d(c)} = r_0 \left(1 - r_1 \frac{N_{d(c)} - Z_{d(c)}}{A_{d(c)}} + r_2 \frac{1}{A_{d(c)}} \right) A_{d(c)}^{1/3}, \quad (14)$$

where $N_{d(c)}$ is the neutron number of the daughter nucleus or the emitted cluster, and $r_0 = 1.2331$ fm, $r_1 = 0.1461$ and $r_2 = 2.3310$ [51].

In addition to Eq. (14), some other charged radius formulas were proposed [51-54]. To analyze the influence on the cluster radioactivity half-lives from a different radius formula, another charge radius formula that includes the Casten factor was also used in this study [51]:

$$R_{d(c)} = r_0 \left(1 - r_1 \frac{N_{d(c)} - Z_{d(c)}}{A_{d(c)}} + r_2 \frac{1}{A_{d(c)}} + r_3 \frac{C}{A_{d(c)}} \right) A_{d(c)}^{1/3},$$
(15)

where *C* is the Casten factor, whose form is $C = N_p N_n/(N_p+N_n)$. Here N_p and N_n represent the valence proton number and valence neutron number, respectively. The parameters are $r_0 = 1.2262$ fm, $r_1 = 0.1473$, $r_2 = 1.9876$, and $r_2 = 0.3993$. In this study, the ImSahu formula along with Eq. (14) (Eq. (15)) is named as ImSahuA (ImSahuB) relationship.

III. RESULTS AND DISCUSSION

First, the empirical preformation factors *P* of clusters in nuclei were obtained from Eqs. (1-14) or Eqs. (1-13, 15) by inputting the experimental Q_c and half-life values. The resulting *P* values are listed in columns 6 and 7 of Table 1, respectively. In Table 1, columns 1 and 2 contain the parent nuclei and the emitted clusters, respectively. The *l* value is shown in column 3, and its effect is taken into account in the calculations. Columns 4 and 5 represent the experimental values of Q_c and $\log_{10}T_{1/2}$, respectively. Note that the experimental values of Q_c are obtained from the following expression:

$$Q_c = M - (M_d + M_c),$$
 (16)

where M, M_d , and M_c represent the mass excesses of the parent nucleus, daughter nucleus, and emitted particle, respectively. The experimental nuclear mass excesses were taken from Ref. [55]. The experimental half-lives were taken from NUBASE2016 Table [56] and NNDC [57].

Note in Table 1 that the P values obtained from the ImSahuA relationship and those obtained from the ImSahuB relationship are different because of the differences in the input of the charge radius formulas. It indicates that the P values are dependent on the charge radius to a certain extent, which is consistent with the calculations performed by Qian *et al.* [58]. Furthermore, it is necessary to point out that the P values strongly depend on

Table 1. Preformation factors *P* of the cluster radioactivity obtained in the calculations of the present study and calculated cluster radioactivity half-lives within the Sahu, ImSahuA, and ImSahuB relationships. The *P* values and half-lives of α -decay are calculated by a method used in a recent study of ours on the Sahu formula [43, 44]. Q_c and $\log_{10} T_{1/2}$ are measured in MeV and second, respectively.

Darant nualai	Emitted alusters	1	$Q_c/{ m MeV}$	$\log_{10}T_{1/2}$ (s)	Р	Р	$\log_{10}T_{1/2}$ (s)	$\log_{10}T_{1/2}$ (s)	$\log_{10}T_{1/2}$ (s)
	Ellitted clusters	l	Expt.	Expt.	ImSahuA	ImSahuB	Sahu	ImSahuA	ImSahuB
						Even-even nuclei			
²¹² Po	⁴ He	0	8.950	-6.52	1.63×10^{-4}	3.43×10^{-4}	-6.25	-6.21	-6.23
²¹⁴ Po	⁴ He	0	7.833	-3.78	1.90×10^{-4}	4.15×10^{-4}	-3.38	-3.40	-3.41
²³⁸ Pu	⁴ He	0	5.590	9.59	6.36×10^{-5}	1.16×10^{-4}	10.14	9.49	9.41
²²² Ra	¹⁴ C	0	33.05	11.00	1.62×10^{-8}	5.70×10^{-8}	10.42	11.32	11.70
²²⁴ Ra	^{14}C	0	30.54	15.92	3.51×10^{-9}	1.32×10^{-8}	14.92	15.58	15.99
²²⁶ Ra	¹⁴ C	0	28.20	21.34	5.63×10^{-10}	2.23×10^{-9}	19.78	20.20	20.64
²²⁸ Th	²⁰ O	0	44.72	20.72	4.51×10^{-11}	7.38×10^{-11}	20.22	20.90	21.05
²³⁰ U	²² Ne	0	61.40	19.57	2.40×10^{-12}	2.52×10^{-12}	19.12	19.28	19.28
²³⁰ Th	²⁴ Ne	0	57.57	24.64	1.34×10^{-13}	6.76×10^{-13}	23.46	23.90	24.61
²³² U	²⁴ Ne	0	62.31	20.40	3.06×10^{-13}	1.44×10^{-12}	19.50	20.02	20.70
²³⁴ U	²⁴ Ne	0	58.84	25.92	1.82×10^{-14}	9.31×10^{-14}	24.28	24.31	25.03
²³⁴ U	²⁶ Ne	0	59.47	25.07	2.26×10^{-13}	4.37×10^{-13}	24.93	25.36	25.69
²³⁴ U	²⁸ Mg	0	74.11	25.74	7.66×10^{-16}	1.37×10^{-15}	24.22	24.36	24.70
²³⁶ U	²⁸ Mg	0	71.69	27.58	5.90×10^{-15}	7.47×10^{-15}	27.35	27.09	27.27
²³⁶ Pu	²⁸ Mg	0	79.67	21.67	2.25×10^{-15}	3.91×10^{-15}	20.46	20.76	21.08
²³⁸ Pu	²⁸ Mg	0	75.91	25.70	1.38×10^{-15}	2.48×10^{-15}	24.88	24.57	24.91
²³⁸ Pu	³² Si	0	91.19	25.28	2.49×10^{-16}	1.38×10^{-15}	25.13	25.02	25.92
²³⁶ U	³⁰ Mg	0	72.51	27.58	5.17×10^{-15}	5.11×10^{-15}	27.67	27.83	27.95
²³⁸ Pu	³⁰ Mg	0	77.00	25.67	6.80×10^{-16}	6.73 ×10 ⁻¹⁶	24.87	25.04	25.16
²⁴² Cm	³⁴ Si	0	96.51	23.15	4.04×10^{-16}	2.13×10^{-15}	23.69	23.90	24.81
						Odd-A nuclei			
²¹³ Po	⁴ He	0	8.540	-5.37	1.04×10^{-4}	2.21×10^{-4}	-5.27	-5.06	-5.14
²¹⁵ At	⁴ He	0	8.178	-4.00	7.59×10^{-5}	1.60×10^{-4}	-3.98	-3.82	-3.91
²²¹ Fr	^{14}C	3	31.32	14.52	8.93×10^{-10}	3.24×10^{-9}	12.70	14.46	14.53
²²¹ Ra	^{14}C	3	32.40	13.39	1.10×10^{-9}	3.95×10^{-9}	11.67	13.42	13.48
²²³ Ra	^{14}C	4	31.83	15.20	1.74×10^{-10}	6.35×10^{-10}	12.78	14.43	14.50
²²⁵ Ac	^{14}C	4	30.48	17.34	1.97×10^{-9}	6.92 ×10 ⁻⁹	16.23	17.62	17.68
²³¹ Pa	²³ F	1	51.84	26.02	5.72×10^{-15}	2.77×10^{-14}	22.96	24.99	25.11
²³¹ Pa	²⁴ Ne	1	60.42	23.38	6.12×10^{-15}	2.94×10^{-14}	20.77	22.84	22.96
²³³ U	²⁴ Ne	2	60.49	24.82	1.97×10^{-15}	9.96 ×10 ⁻¹⁵	21.98	23.79	23.91
²³⁵ U	²⁴ Ne	1	57.36	27.42	6.01×10^{-14}	3.19 ×10 ⁻¹³	26.51	27.88	28.03
²³³ U	²⁵ Ne	2	60.78	24.83	2.77×10^{-15}	7.60×10^{-15}	22.34	24.42	24.28
²³⁵ U	²⁵ Ne	3	57.76	27.42	7.58×10^{-14}	2.19×10^{-13}	26.82	28.45	28.33
²³⁵ U	²⁶ Ne	3	58 11	27.45	8.20×10^{-14}	1.61×10^{-13}	27.09	28.98	28.68

the theoretical models. Relevant studies suggested that the P value differences from different models amount to several orders of magnitude [14, 15, 58-61].

As can be observed from Eq. (12), $\log_{10}P$ will be lin-

ear with $(A_c-1)/3$ if $\log_{10} P_{\alpha}$ is assumed to be a constant. P_{α} may be the average preformation probability of α particle for different nuclei. In Fig. 1, we plot $-\log_{10} P$ versus $(A_c-1)/3$ for even-even (e-e) parent nuclei. According to Eq. (12), a best fitting line with $P_{\alpha} = 0.0624$, depicted in Fig. 1 (a), is obtained. For Fig. 1 (b), the obtained P_{α} value is 0.0552. The P_{α} values were determined in previous relevant studies [14, 15, 60, 61]. The P_{α} values within a generalized liquid drop model (GLDM) and a unified fission model (UFM) were 0.0290 [14] and 0.0338 [15], respectively. Following a systematic study on the correlation between the α -decay and cluster radioactivity, the resulting P_{α} value, reported by Poenaru *et al.*, was 0.0161 [60]. Bhattacharya and Gangopadhyay determined the P_{α} within the DDM3Y1 model combining the relativistic mean field model, whose value was 0.0193 [61]. Therefore, the obtained P_{α} values of our study are comparable to those of the other models.

Using the same method, our study can be extended to the case of odd-*A* parent nuclei. The empirical $-\log_{10}P$ values as functions of $(A_c-1)/3$ for the odd-*A* parent nuclei and the best fitting lines are shown in Fig. 2. The obtained P_{α} values by the ImSahuA and ImSahuB relationships are 0.0392 and 0.0414, respectively. The two values are close to the corresponding P_{α} values within the GLDM, i.e., 0.0214 [14], within the UFM, i.e., 0.0262 [15], and from Ref. [61], i.e., 0.0135.

Using Eqs. (1-14) and Eqs. (1-13, 15) by inputting the fitting P_{α} values, the cluster radioactivity half-lives for the nuclei in the trans-lead region were calculated. The calculated half-lives are listed in the last two columns of Table 1. For comparison with the values provided by the Sahu formula, the half-lives obtained from the Sahu formula are also given in column 8. Compared with the half-lives provided by the Sahu formula, note that the half-lives calculated from the ImSahuA and ImSahuB relationships are closer to the experimental ones. This indicates that the accuracy of the Sahu relationship is improved by using the accurate charge radius formulas and fitting expressions of the cluster preformation probability.

To analyze the global deviation between the experimental and calculated half-lives intuitively, the \log_{10} HF (\log_{10} HF = $\log_{10} \frac{T_{\text{Cal.}}}{T_{\text{Expt.}}} = \log_{10} T_{\text{cal.}} - \log_{10} T_{\text{Expt.}}$) values as a function of the neutron number *N* for 28 parent nuclei, 17 e-e nuclei, and 11 odd-*A* nuclei are plotted in Fig. 3. Generally, it is assumed that if the \log_{10} HF value is with-

Fig. 1. (color online) Negative of the logarithm of the preformation factor $(-\log_{10}P)$ for e-e parent nuclei as a function of $(A_c-1)/3$. The left and right panels refer to the cases of the ImSahuA and ImSahuB relationships, respectively.

Fig. 2. (color online) Same plots as in Fig. 1, but for the odd-A parent nuclei.

in a factor of 1.0, the calculated half-lives will be in agreement with the experimental data [62-64]. Note from Fig. 3 that the accuracies of the ImSahuA and ImSahuB relationships are improved evidently. To show the global deviation quantitatively, the average deviation $\bar{\delta}$ and standard deviation $\sqrt{\delta^2}$ were calculated. The $\bar{\delta}$ and $\sqrt{\delta^2}$ values for 28 (n = 28; n denotes the numbers of nuclei) heavy nuclei as well as e-e and odd-A subsets of the full data set using the three empirical formulas are listed in Table 2. Note from Table 2 that the $\overline{\delta}$ and $\sqrt{\delta^2}$ values of the total, e-e, and odd-A nuclei within the ImSahuA and ImSahuB formulas are much smaller than those within the Sahu formula. It suggests that the accuracies of the ImSahuA and ImSahuB formulas become higher, which is consistent with the conclusions from Fig. 3. Therefore, the reasonableness of Eq. (12) was tested by the high accuracies of the two new relationships and the calculated P_{α} values. In addition, by comparing the log₁₀HF distributions ($\overline{\delta}$ values or $\sqrt{\overline{\delta}^2}$ values) between the ImSahuA and the ImSahuB relationships in Fig. 3 (Table 2), it is

easy to conclude that the accuracy of the ImSahuB formula is higher than that of the ImSahuA formula given that Eq. (15) is more precise than Eq. (14). This indicates that an accurate charge radius formula is important for estimating the cluster decay half-lives.

For the cluster radioactivity of some heavy nuclei, only the lower limit of the half-lives were measured. Thus, the experimental cluster radioactivity half-lives with lower limit constituted the ground to test the Im-SahuA and ImSahuB relationships. The experimental half-lives and the calculated ones according to the Sahu, ImSahuA, and ImSahuB formulas are listed in Table 3 (columns 5-8) . In Table 3, the parent nuclei, emitted clusters, l values, and experimental Q_c values are shown on the first four columns. The experimental Q_c values and half-lives were taken from the same references as in Table 1. To analyze the agreement between the experimental half-lives and calculated ones clearly, the halflives within the Sahu, ImSahuA, and ImSahuB relationships, and the corresponding experimental half-lives with

Fig. 3. (color online) The log_{10} HF values as a function of N for (a) 28 parent nuclei, (b) e-e nuclei, and (c) odd-A nuclei.

Table 2. Values of $\bar{\delta}$ and $\sqrt{\bar{\delta}^2}$ between the experimental and calculated cluster radioactivity half-lives for 28 heavy nuclei as well as for e-e and odd-*A* subsets of the full data set using the Sahu, ImSahuA, and ImSahuB relationships.

Formulas		$\bar{\delta}$		$\sqrt{\overline{\delta^2}}$			
Formulas	Total $(n = 28)$	e-e (<i>n</i> = 17)	odd- $A (n = 11)$	Total (<i>n</i> = 28)	e-e (<i>n</i> = 17)	odd- $A(n = 11)$	
Sahu	1.048	0.726	1.543	1.351	0.870	1.863	
ImSahuA	0.592	0.594	0.589	0.729	0.728	0.733	
ImSahuB	0.536	0.534	0.539	0.650	0.649	0.652	

lower limit are shown in Fig. 4. Note from Fig. 4 that the half-lives of most parent nuclei are enhanced after the modification, except for the half-lives of the ²⁴Ne emission from ²³⁶U and the ²⁸Mg emission from ²³²U. Concerning the ²⁴Ne radioactivity of ²³⁶U, its half-life within the ImSahuA relationship decreases compared to the halflife within the Sahu relationship. However, the half-life within the ImSahuB relationship is lower than that within the Sahu one with respect to the ²⁸Mg radioactivity of ²³²U. Nevertheless, the calculated half-lives are larger than the corresponding experimental lower limit. In addition, note in Fig. 4 and Table 3 that for the decays of 232 Th \rightarrow^{208} Hg $+^{24}$ Ne, 233 U \rightarrow^{205} Hg $+^{28}$ Mg, and 235 U \rightarrow ²⁰⁷Hg+²⁸Mg, although the half-lives within the Sahu relationship are not in agreement with the experimental ones, the half-lives estimated by the ImSahuA and Im-SahuB relationships are larger than, or closer to, the lower limit of the experimental half-lives. Thus, according to the above analysis, it can be concluded that the experimental half-lives in Table 3 can be better reproduced by the ImSahuA and ImSahuB relationships. The validity of the two new relationships is then tested again. Regarding the accuracies of the ImSahuA and ImSahuB relationships, it is difficult to determine which one is higher according to the current experimental data.

Encouraged by the good agreement between the experimental half-lives and the calculations within the Im-SahuA and ImSahuB formulas, we attempted to predict the cluster radioactivity half-lives that have not been measured yet for the nuclei in the trans-lead region. A relevant prior study suggested that the l effect on the cluster decay half-life is very small because the centrifugal po-

tential is much smaller than that of the Coulomb potential [15]. To show the influence on the cluster emission half-life visibly, and taking the decays of ²²¹Fr \rightarrow ²⁰⁷Tl+¹⁴C and ²³³U \rightarrow ²⁰⁹Pb+²⁴Ne as examples, the logarithms of half-lives within the ImSahuA and ImSahuB relationships as functions of *l* are plotted in Fig. 5. Note from Fig. 5 that it is easy to conclude that the *l* effect is not so important for the cluster decay half-life. Thus, the *l* contribution was not taken into account in the subsequent predictions. From the ImSahuA and ImSahuB formulas, the predicted half-lives of ⁸Be, ^{12,14}C, ¹⁵N, ¹⁶⁻²⁰O, ²⁰⁻²⁶Ne, ²⁴⁻²⁸Mg and, ³⁰⁻³⁴Si radioactivity are shown in Table 4; these values are helpful for searching for new cluster emitters in future experiments.

Besides the cluster radioactivity of the trans-lead region, a new island of cluster emitters around the doubly magic nucleus ¹⁰⁰Sn was carefully analyzed in previous studies [65-79]. Concerning the cluster radioactivity in the trans-tin region, only the half-life of ¹²C emission from ¹¹⁴Ba was measured; its value was $\ge 10^3$ s at Dubna (Dubna94) [80] and $\ge 1.1 \times 10^3$ s (1.7×10⁴ s) at GSI (GSI95) [81, 82], respectively. However, the ¹²C decay of ¹¹⁴Ba was not observed in the subsequent experiment [83]. This suggests that the branching ratio for the ${}^{12}C$ decay is lower than the limit obtained in the GSI95 measurement. By consulting the NUBASE2016 table, the experimental lower limit of the half-life of the ¹²C emission from 114 Ba is >10^{4.13} s [56]. Thus, the half-life of the ¹²C radioactivity from ¹¹⁴Ba has not been accurately determined yet . Nevertheless, the experimental half-life with the lower limit of the ¹²C emission from ¹¹⁴Ba can be used to test various cluster decay models.

Table 3. Calculated cluster radioactivity half-lives within the Sahu, ImSahuA, and ImSahuB relationships, for those cases in which the experimental half-lives with lower limit were measured.

Darant nuclai	Emitted clusters	1	$Q_c/{ m MeV}$	$\log_{10}T_{1/2}$ (s)	$\log_{10}T_{1/2}$ (s)	$\log_{10}T_{1/2}$ (s)	$\log_{10}T_{1/2}$ (s)
i arent nuclei	Ellitted clusters	ı	Expt.	Expt.	Sahu	ImSahuA	ImSahuB
²²⁶ Th	¹⁴ C	0	30.67	>15.30	16.54	16.96	17.32
²²⁶ Th	¹⁸ O	0	45.73	>16.80	16.76	17.25	17.45
²³² Th	²⁴ Ne	0	54.50	>29.20	28.22	28.23	28.82
²³⁰ U	²⁴ Ne	0	61.55	>18.20	20.47	20.98	21.67
²³⁶ U	²⁴ Ne	0	55.95	>25.90	28.71	28.33	29.08
²³² Th	²⁶ Ne	0	55.97	>29.20	30.38	30.47	30.82
²³⁶ U	²⁶ Ne	0	56.75	>25.90	29.16	29.17	29.51
²³² U	²⁸ Mg	0	74.32	>22.26	23.92	24.19	23.09
²³³ U	²⁸ Mg	3	74.23	>27.59	24.14	26.15	24.36
²³⁵ U	²⁸ Mg	1	72.20	>28.10	26.68	28.34	27.92
²³⁷ Np	³⁰ Mg	2	74.82	>27.60	26.19	28.31	27.69
²⁴⁰ Pu	³⁴ Si	0	91.03	>25.52	26.51	26.61	27.55
²⁴¹ Am	³⁴ Si	3	93.93	>24.41	24.96	27.35	27.44

Table 4. Predicted cluster radioactivity half-lives within the ImSahuA and ImSahuB relationships. All the Q_c values were calculated from Eq. (16). In the calculations, the mass excesses were taken from Ref. [55]; "#" means that only the empirical mass excesses for the parent and/or daughter nuclei were reported in Ref. [55].

Parent nuclei	Emitted clusters	$Q_c/{\rm MeV}$	$\log_{10}T_{1/2}$ (s)	$\log_{10}T_{1/2}$ (s)	Parent nuclei	Emitted clusters	$Q_c/{ m MeV}$	$\log_{10}T_{1/2}$ (s)	$\log_{10}T_{1/2}$ (s)
		Expt.	ImSahuA	ImSahuB			Expt.	ImSahuA	ImSahuB
²¹³ At	⁸ Be	12.30	24.14	23.11	²²¹ Ac	¹⁶ O	43.08	18.92	17.91
²¹⁴ At	⁸ Be	13.93	17.54	16.70	²²² Ac	¹⁶ O	43.61	17.10	16.47
²¹⁵ At	⁸ Be	14.84	15.09	14.80	²²³ Ac	¹⁶ O	43.60	18.10	18.23
²¹⁶ At	⁸ Be	14.07	17.05	16.90	²²⁴ Ac	¹⁶ O	41.72	19.92	20.38
²¹⁷ At	⁸ Be	13.10	20.92	20.56	²²⁵ Ac	¹⁶ O	40.02	23.72	23.75
²¹⁴ Rn	⁸ Be	14.52	16.34	16.22	²²² Th	¹⁶ O	45.73	15.04	15.53
²¹⁵ Rn	⁸ Be	16.34	11.54	11.25	²²³ Th	¹⁶ O	46.57	14.91	15.01
²¹⁶ Rn	⁸ Be	17.06	9.25	9.13	²²⁴ Th	¹⁶ O	46.48	14.00	14.48
²¹⁷ Rn	⁸ Be	16.33	11.54	11.24	²²⁵ Th	¹⁶ O	44.66	17.44	17.56
²¹⁸ Rn	⁸ Be	15.00	14.78	14.66	²²⁶ Th	¹⁶ O	42.66	19.36	19.87
²¹⁵ Fr	⁸ Be	15.43	14.74	14.41	²²³ Pa	¹⁶ O	47.11	15.07	15.11
²¹⁶ Fr	⁸ Be	16.90	10.28	10.12	²²⁴ Pa	¹⁶ O	47.47	13.58	14.00
²¹⁷ Fr	⁸ Be	17.63	8.97	8.68	²²⁵ Pa	¹⁶ O	47.34	14.73	14.83
²¹⁸ Fr	⁸ Be	16.91	10.22	10.08	²²⁶ Pa	¹⁶ O	45.56	16.05	16.51
²¹⁹ Fr	⁸ Be	15.54	14.37	14.05	²²⁷ Pa	¹⁶ O	43.43	20.12	20.22
²¹⁷ Fr	¹² C	28.14	17.24	16.40	²²³ Ac	¹⁸ O	42.43	22.51	21.10
²¹⁸ Fr	¹² C	29.31	14.24	13.67	²²⁴ Ac	¹⁸ O	43.27	20.00	19.03
²¹⁹ Fr	¹² C	29.65	14.34	14.43	²²⁵ Ac	¹⁸ O	43.45	20.83	20.61
²²⁰ Fr	¹² C	28.23	16.24	16.57	²²⁶ Ac	¹⁸ O	41.84	22.25	22.40
²²¹ Fr	¹² C	26.92	19.65	19.67	²²⁷ Ac	¹⁸ O	40.28	26.07	25.74
²¹⁸ Ra	¹² C	30.44	13.02	13.39	²²⁴ Th	¹⁸ O	44.56	19.00	19.21
²¹⁹ Ra	¹² C	31.85	11.40	11.47	²²⁵ Th	¹⁸ O	45.54	18.68	18.46
²²⁰ Ra	¹² C	32.02	10.36	10.71	²²⁶ Th	¹⁸ O	45.73	17.25	17.45
²²¹ Ra	¹² C	30.58	13.45	13.54	²²⁷ Th	¹⁸ O	44.20	20.61	20.39
²²² Ra	¹² C	29.05	15.45	15.83	²²⁸ Th	¹⁸ O	42.28	22.48	22.70
²¹⁹ Ac	¹² C	31.62	12.50	12.53	²²⁵ Pa	¹⁸ O	45.18	20.15	19.87
²²⁰ Ac	¹² C	32.61	10.16	10.46	²²⁶ Pa	¹⁸ O	45.69	18.24	18.38
²²¹ Ac	¹² C	32.78	10.62	10.69	²²⁷ Pa	¹⁸ O	45.87	19.09	18.87
²²² Ac	¹² C	31.41	12.04	12.38	²²⁸ Pa	¹⁸ O	44.50	19.95	20.13
²²³ Ac	¹² C	29.69	15.79	15.86	²²⁹ Pa	¹⁸ O	42.54	24.19	23.94
²¹⁹ Fr	¹⁴ C	29.65	14.34	14.43	²²⁵ Ac	²⁰ O	41.66	26.28	24.70
²²⁰ Fr	¹⁴ C	28.23	16.24	16.57	²²⁶ Ac	²⁰ O	42.77	23.08	21.99
²²² Fr	¹⁴ C	25.63	21.80	22.05	²²⁷ Ac	²⁰ O	43.09	23.80	23.47
²²³ Fr	¹⁴ C	24.46	25.36	25.31	²²⁸ Ac	²⁰ O	41.85	24.59	24.68
²²⁰ Ra	¹⁴ C	32.02	10.36	10.71	²²⁹ Ac	²⁰ O	40.54	28.20	27.75
²²⁵ Ra	¹⁴ C	25.20	24.44	24.58	²²⁶ Th	²⁰ O	43.19	23.42	23.58
²²¹ Ac	¹⁴ C	32.78	10.62	10.69	²²⁷ Th	²⁰ O	44.46	22.61	22.28
²²² Ac	¹⁴ C	31.41	12.04	12.38	²²⁸ Th	²⁰ O	44.72	20.89	21.05
²²³ Ac	¹⁴ C	29.69	15.79	15.86	²²⁹ Th	²⁰ O	43.40	24.25	23.93

Continued on next page

							Table 4	- continued from	m previous page
Damant and ala:	Emitted clusters	$Q_c/{\rm MeV}$	$\log_{10}T_{1/2}$ (s)	$\frac{\log_{10}T_{1/2} \text{ (s)}}{\text{ImSahuB}}$	Parant nuclai	Ensitted abortons	$Q_c/{ m MeV}$	$\log_{10}T_{1/2}$ (s)	$\log_{10}T_{1/2}$ (s)
Parent nuclei		Expt.	ImSahuA		Parent nuclei	Ellinued clusters	Expt.	ImSahuA	ImSahuB
²²⁴ Ac	¹⁴ C	28.35	17.60	17.95	²³⁰ Th	²⁰ O	41.79	25.71	25.87
²²⁰ Ra	¹⁵ N	33.99	21.28	20.66	²²⁷ Pa	²⁰ O	43.09	25.88	25.49
²²¹ Ra	¹⁵ N	35.12	20.12	19.15	²²⁸ Pa	²⁰ O	44.00	23.06	23.15
²²² Ra	¹⁵ N	35.25	18.91	19.38	²²⁹ Pa	²⁰ O	44.36	23.72	23.40
²²³ Ra	¹⁵ N	33.88	22.35	22.42	²³⁰ Pa	²⁰ O	43.17	24.38	24.51
²²⁴ Ra	¹⁵ N	32.37	24.40	24.78	²³¹ Pa	²⁰ O	41.49	28.60	28.24
²²¹ Ac	¹⁵ N	38.21	15.89	15.99	²²⁵ Pa	²⁰ Ne	55.20	25.44	23.80
²²² Ac	¹⁵ N	38.97	13.77	14.21	²²⁶ Pa	²⁰ Ne	55.33	23.96	22.79
²²³ Ac	¹⁵ N	39.47	13.96	14.04	²²⁷ Pa	²⁰ Ne	54.91	25.79	25.49
²²⁴ Ac	¹⁵ N	37.75	15.59	16.04	²²⁸ Pa	²⁰ Ne	52.72	27.70	27.81
²²⁵ Ac	¹⁵ N	36.26	18.94	19.05	²²⁹ Pa	²⁰ Ne	50.58	32.34	31.90
²²² Th	¹⁵ N	37.16	17.47	17.88	²²⁶ U	²⁰ Ne	58.16	21.29	21.45
²²³ Th	¹⁵ N	38.15	16.78	16.82	²²⁷ U	²⁰ Ne	58.54	22.05	21.74
²²⁴ Th	¹⁵ N	38.15	15.82	16.27	²²⁸ U	²⁰ Ne	58.01	21.41	21.58
²²⁵ Th	¹⁵ N	37.00	18.59	18.68	²²⁹ U	²⁰ Ne	55.87	25.51	25.20
²²⁶ Th	¹⁵ N	34.96	21.23	21.68	²³⁰ U	²⁰ Ne	53.39	27.79	27.98
²²⁷ Np	²⁰ Ne	59.66	21.70	21.31	²³¹ Np	²⁶ Mg	75.66	23.88	22.58
²²⁸ Np	²⁰ Ne	59.51	20.57	20.67	²³² Np [#]	²⁶ Mg	75.83	21.99	21.32
²²⁹ Np	²⁰ Ne	59.08	22.35	22.04	²³³ Np	²⁶ Mg	75.20	24.31	24.44
²³⁰ Np	²⁰ Ne	57.07	23.65	23.79	²³⁴ Np	²⁶ Mg	72.92	25.11	25.82
²³¹ Np	²⁰ Ne	54.53	28.50	28.15	²³⁵ Np	²⁶ Mg	70.90	29.14	29.15
²²⁷ Pa	²² Ne	58.68	23.07	21.22	²³² Pu	²⁶ Mg	78.36	20.51	21.26
²²⁸ Pa	²² Ne	59.20	20.96	19.65	²³³ Pu	²⁶ Mg	78.72	21.82	21.92
²²⁹ Pa	²² Ne	58.96	22.65	22.12	²³⁴ Pu	²⁶ Mg	78.31	20.50	21.25
²³⁰ Pa	²² Ne	56.95	23.83	23.76	²³⁵ Pu	²⁶ Mg	76.01	24.50	24.64
²³¹ Pa	²² Ne	55.09	27.82	27.15	²³⁶ Pu	²⁶ Mg	73.84	25.16	25.96
²²⁸ U	²² Ne	61.03	19.77	19.77	²³³ Am [#]	²⁶ Mg	79.53	22.08	22.11
²²⁹ U	²² Ne	61.69	20.38	19.85	²³⁴ Am [#]	²⁶ Mg	79.55	20.35	21.02
²³¹ U	²² Ne	59.45	23.04	22.50	²³⁵ Am	²⁶ Mg	79.10	22.44	22.56
²³² U	²² Ne	57.36	24.32	24.32	²³⁶ Am [#]	²⁶ Mg	77.05	22.81	23.54
²²⁹ Np	²² Ne	61.86	21.19	20.58	²³⁷ Am [#]	²⁶ Mg	74.64	27.08	27.18
²³⁰ Np	²² Ne	62.13	19.43	19.36	²³³ Np	²⁸ Mg	76.79	24.48	22.69
²³¹ Np	²² Ne	61.91	21.047	20.54	²³⁴ Np	²⁸ Mg	77.23	22.17	21.07
²³² Np [#]	²² Ne	60.18	21.73	21.69	²³⁵ Np	²⁸ Mg	77.10	24.09	23.74
²³³ Np	²² Ne	57.83	26.18	25.59	²³⁶ Np	²⁸ Mg	75.15	24.31	24.52
²²⁹ Pa	²⁴ Ne	59.67	23.83	22.59	²³⁷ Nn	²⁸ Mg	73.54	27.92	27.42
²³⁰ Pa	²⁴ Ne	60.38	21.36	20.70	²³⁴ Pu	²⁸ Mg	79.15	21.32	21.65
²³² Pa	²⁴ Ne	58.65	23.51	24.15	²³⁵ Pu	²⁸ Mg	79.65	22.62	22.26
²³³ Pa	²⁴ Ne	57.09	27.16	27.15	²³⁷ Pu	²⁸ Mg	77.73	24.49	24.14
²³¹ U	²⁴ Ne	62.21	21.71	21.81	²³⁵ Am	²⁸ Mg	79.70	23.65	23.21
²³¹ Np	²⁴ Ne	61.63	23.45	23.49	²³⁶ Am [#]	²⁸ Mg	79.93	21.57	21.82

Continued on next page

	11					Table 4 – continued from previous page				
Parent nuclei	Emitted clusters	Q _c (MeV) Expt.	$\frac{\log_{10}T_{1/2} \text{ (s)}}{\text{ImSahuA}}$	$log_{10}T_{1/2} (s)$ ImSahuB	Parent nuclei	Emitted clusters	Q _c /MeV Expt.	$\frac{\log_{10}T_{1/2} \text{ (s)}}{\text{ImSahuA}}$	$\frac{\log_{10}T_{1/2} \text{ (s)}}{\text{ImSahuB}}$	
²³² Np [#]	²⁴ Ne	62.18	21.20	21.82	²³⁷ Am [#]	²⁸ Mg	79.85	23.44	23.08	
²³³ Np	²⁴ Ne	62.16	22.74	22.86	²³⁸ Am	²⁸ Mg	78.23	23.23	23.52	
²³⁴ Np	²⁴ Ne	60.70	22.98	23.65	²³⁹ Am	²⁸ Mg	76.27	27.12	26.72	
²³⁵ Np	²⁴ Ne	58.85	26.93	27.02	²³⁵ Am	³⁰ Si	92.88	25.15	23.75	
²³¹ Pa	²⁶ Ne	56.76	29.78	28.03	²³⁶ Am [#]	³⁰ Si	92.73	23.30	22.63	
²³² Pa	²⁶ Ne	57.72	26.69	25.58	²³⁷ Am [#]	³⁰ Si	92.04	25.85	25.97	
²³³ Pa	²⁶ Ne	58.04	27.88	27.58	²³⁸ Am	³⁰ Si	89.60	26.17	26.97	
²³⁴ Pa	²⁶ Ne	56.61	28.23	28.49	²³⁹ Am	³⁰ Si	87.47	30.26	30.25	
²³⁵ Pa	²⁶ Ne	55.45	31.62	31.18	²³⁶ Cm	³⁰ Si	96.07	21.52	22.35	
²³² U	²⁶ Ne	57.91	27.58	27.92	²³⁷ Cm	³⁰ Si	96.13	23.39	23.48	
²³³ U	²⁶ Ne	58.89	27.86	27.56	²³⁸ Cm	³⁰ Si	95.63	21.83	22.67	
²³⁴ U	²⁶ Ne	59.41	25.44	25.77	²³⁹ Cm	³⁰ Si	93.19	25.89	26.02	
²³⁵ U	²⁶ Ne	58.05	28.98	28.68	²⁴⁰ Cm	³⁰ Si	90.89	26.08	26.97	
²³⁶ U	²⁶ Ne	56.69	29.25	29.59	²³⁷ Bk [#]	³⁰ Si	97.68	23.20	23.21	
²³³ Np	²⁶ Ne	57.52	30.99	30.62	²³⁸ Bk [#]	³⁰ Si	97.52	21.35	22.09	
²³⁴ Np	²⁶ Ne	58.34	28.08	28.34	²³⁹ Bk [#]	³⁰ Si	96.94	23.75	23.85	
²³⁵ Np	²⁶ Ne	58.82	29.05	28.76	²⁴⁰ Bk [#]	³⁰ Si	94.89	23.54	24.35	
²³⁶ Np	²⁶ Ne	57.69	28.97	29.27	²⁴¹ Bk [#]	³⁰ Si	92.32	27.82	27.91	
²³⁷ Np	²⁶ Ne	56.25	32.80	32.46	²³⁷ Am [#]	³² Si	94.47	25.34	23.92	
²²⁹ Np	²⁴ Mg	71.53	26.49	24.38	²³⁸ Am	³² Si	94.75	22.97	22.33	
²³⁰ Np	²⁴ Mg	71.42	25.04	23.50	²³⁹ Am	³² Si	94.50	25.24	25.33	
²³¹ Np	²⁴ Mg	70.59	27.53	26.87	²⁴⁰ Am	³² Si	92.34	25.08	25.89	
²³² Np [#]	²⁴ Mg	68.04	29.11	28.95	²⁴¹ Am	³² Si	90.66	28.74	28.70	
²³³ Np	²⁴ Mg	65.53	34.01	33.18	²³⁸ Cm	³² Si	97.31	21.91	22.77	
²³⁰ Pu	²⁴ Mg	74.65	22.58	22.51	²³⁸ Cm	³² Si	97.68	23.67	23.73	
²³¹ Pu	²⁴ Mg	74.69	24.06	23.40	²³⁹ Cm	³² Si	97.55	21.65	22.51	
²³² Pu	²⁴ Mg	74.05	23.18	23.10	²⁴⁰ Cm	³² Si	95.39	25.54	25.63	
²³³ Pu	²⁴ Mg	71.60	27.47	26.81	²⁴¹ Cm	³² Si	93.61	25.02	25.92	
²³⁴ Pu	²⁴ Mg	69.01	29.06	28.98	²⁴² Bk [#]	³² Si	98.38	24.18	24.17	
²³¹ Am [#]	²⁴ Mg	76.40	23.36	22.63	²⁴⁰ Bk [#]	³² Si	98.61	21.87	22.65	
²³² Am [#]	²⁴ Mg	76.14	22.05	21.90	²⁴¹ Bk [#]	³² Si	98.37	24.13	24.20	
²³³ Am [#]	²⁴ Mg	75.46	24.29	23.64	²⁴² Bk [#]	³² Si	96.60	23.50	24.34	
²³⁴ Am [#]	²⁴ Mg	73.19	25.22	25.10	²⁴³ Bk	³² Si	94.63	27.32	27.38	
²³⁵ Am	²⁴ Mg	70.42	30.04	29.32	²³⁹ Am	³⁴ Si	93.17	28.06	26.58	
²⁴⁰ Am	³⁴ Si	93.72	25.29	24.66	²⁴⁴ Cm	³⁴ Si	93.14	26.91	27.86	
²⁴¹ Am	³⁴ Si	93.93	27.29	27.38	²⁴¹ Bk [#]	³⁴ Si	96.04	27.73	27.73	
²⁴² Am	³⁴ Si	92.18	26.67	27.53	²⁴² Bk [#]	³⁴ Si	96.56	25.01	25.85	
²⁴³ Am	³⁴ Si	90.78	30.23	30.18	²⁴³ Bk	³⁴ Si	96.91	26.89	26.98	
²⁴⁰ Cm	³⁴ Si	95.47	24.89	25.81	²⁴⁴ Bk	³⁴ Si	95.46	25.94	26.83	
²⁴¹ Cm	³⁴ Si	96.11	26.51	26.58	²⁴⁵ Bk	³⁴ Si	93.63	29.85	29.91	
²⁴³ Cm	³⁴ Si	94.75	27.66	27.75						

Fig. 4. (color online) Comparison between the cluster radioactivity half-lives within the Sahu, ImSahuA, and ImSahuB relationships and the corresponding experimental lower limit.

Fig. 5. (color online) Logarithms of the half-lives for 221 Fr $\rightarrow {}^{207}$ Tl ${}^{+14}$ C, and 233 U $\rightarrow {}^{209}$ Pb ${}^{+24}$ Ne versus *l* within the ImSahuA and ImSahuB relationships.

Then, we extended our method to study the ¹²C radioactivity of ¹¹⁴Ba. The calculated decimal logarithm halflives within the Sahu, ImSahuA, and ImSahuB formulas are 3.994 s, 9.079 s, and 9.355 s, respectively. A comparison between the calculated half-lives and the experimental lower limit of the half-life allows us to conclude that the experimental half-life of the ¹²C radioactivity of ¹¹⁴Ba can be better reproduced within the ImSahuA and ImSahuB formulas. Therefore, we have enough confidence to predict the half-lives of the cluster radioactivity for the nuclei in the trans-tin region. Recently, the cluster radioactivity half-lives of the neutron-deficient nuclei in

the trans-tin region were investigated through the effective liquid drop model, the GLDM, and several sets of analytic formulas [84]. It was found that α -like cluster radioactivity, such as in ⁸Be, ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, and ²⁸Si emissions, decaying to the $N_d = 50$ daughter nuclei, was the most probable. Thus, the half-lives of these most probable cluster radioactivity were predicted by the Im-SahuA and ImSahuB formulas, which are listed in Table 5. In Table 5, the Q_c values are still calculated from Eq. (16). Regarding the unknown nuclear masses, their values were calculated from the empirical masses of the NU-BASE2016 table [56] or the WS4 mass table [85] be-

Table 5. Emission half-lives of ⁸Be, ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, and ²⁸Si in the decay processes where the involved daughter nuclei are those with N_d around 50 within the ImSahuA and ImSahuB formulas are shown in columns 4 and 5; "#" and "*" denote the Q_c values calculated from the empirical mass excesses of the NUBASE2016 table [55] and the theoretical ones from the WS4 mass model [85], respectively.

Darent nuclei	Emitted clusters	0 (11-11)	$\log_{10}T_{1/2}$ (s)	$\log_{10}T_{1/2}$ (s)
	Ellitted clusters	Q_c (MeV)	ImSahuA	ImSahuB
¹⁰⁸ Xe*	⁸ Be	10.40	6.06	5.92
¹⁰⁹ Cs*	⁸ Be	10.00	8.69	8.37
¹¹⁰ Ba*	⁸ Be	10.18	8.46	8.32
¹¹⁰ Xe	¹² C	15.72	15.14	15.44
¹¹¹ Cs [#]	¹² C	18.56	9.81	9.81
¹¹² Ba*	¹² C	21.73	3.89	4.13
¹¹³ La*	¹² C	21.57	5.76	5.74
¹¹⁴ Ce*	¹² C	22.26	4.69	4.95
¹¹⁴ Ba	¹⁶ O	26.47	12.77	13.17
¹¹⁵ La*	¹⁶ O	29.80	9.35	9.35
¹¹⁶ Ce*	¹⁶ O	33.22	4.66	5.00
$^{117} Pr^{*}$	¹⁶ O	33.05	6.82	6.80
¹¹⁸ Nd*	¹⁶ O	33.25	6.50	6.86
¹¹⁸ Ce*	²⁰ Ne	35.03	16.30	16.42
¹¹⁹ Pr*	²⁰ Ne	37.52	15.10	14.74
¹²⁰ Nd*	²⁰ Ne	40.68	10.78	10.89
¹²¹ Pm*	²⁰ Ne	40.53	13.42	13.05
¹²² Sm*	²⁰ Ne	41.32	12.28	12.40
¹²² Nd*	²⁴ Mg	46.65	15.66	15.59
¹²³ Pm*	²⁴ Mg	49.75	14.84	14.20
¹²⁴ Sm*	²⁴ Mg	53.86	10.20	10.14
¹²⁵ Eu*	²⁴ Mg	53.98	12.80	12.15
¹²⁶ Gd*	²⁴ Mg	54.90	11.50	11.44
¹²⁶ Sm*	²⁸ Si	60.09	14.10	14.76
¹²⁷ Eu*	²⁸ Si	63.53	14.03	13.98
¹²⁸ Gd*	²⁸ Si	67.99	10.00	10.61
¹²⁹ Tb*	²⁸ Si	68.63	12.20	12.13

cause relevant studies showed that the WS4 mass model can predict the experimental nuclear masses and decay energies accurately [85-88]. We hope these predicted half-lives will be useful for identifying new cluster emissions of the trans-tin region in future measurements.

IV. CONCLUSIONS

In this study, the Sahu relationship was improved by introducing two accurate root-mean-square charge radius formulas and an analytic expression of the cluster preformation probability. The improved Sahu relationships with the two charge radius formulas are called ImSahuA relationship and ImSahuB relationship, respectively. Within the Sahu, ImSahuA, and ImSahuB relationships, the cluster radioactivity half-lives of the trans-lead nuclei and the half-life of the ¹²C radioactivity of ¹¹⁴Ba were calculated. The results allow us to draw the following conclusions:

(i) The experimental half-lives of the trans-lead nuclei and the experimental half-life lower limit of the ¹²C decay from ¹¹⁴Ba within the ImSahuA and ImSahuB relationships are reproduced better than those within the Sahu relationship;

(ii) According to the linear correlation between the cluster preformation probability and the mass number of

the emitted cluster, the calculated P_{α} value is close to those given by other models;

(iii) The high accuracy of the ImSahuA and ImSahuB relationships and the calculated P_{α} values demonstrate the validity of the analytic expression for the cluster preformation probability;

(iv) The accuracy of the ImSahuB formula is higher than that of the ImSahuA formula given that the charge radius formula with the Casten factor is more accurate. This indicates that an accurate charge radius formula is important for calculating the half-life of the cluster radio-

References

- A. Sandulescu, D. N. Poenaru, and W. Greiner, Sov. J. Part. Nucl. 11, 528 (1980)
- [2] H. J. Rose and G. A. Jones, Nature (London) 307, 245 (1984)
- [3] S. W. Barwick, P. B. Price, and J. D. Stevenson, Phys. Rev. C 31, 1984 (1985)
- [4] R. Bonetti and A. Guglielmetti, Rom. Rep. Phys. 59, 301 (2007)
- [5] R. Bonetti, C. Carbonini, A. Guglielmetti *et al.*, Nucl. Phys. A 686, 64 (2001)
- [6] P. B. Price, Annu. Rev. Nucl. Part. Sci. 39, 19 (1989)
- [7] A. Guglielmetti, D. Faccio, R. Bonetti *et al.*, J. Phys.: Con. Ser. **111**, 012050 (2008)
- [8] A. Zdeb, M. Warda, and K. Pomorski, Phys. Rev. C 87, 024308 (2013)
- [9] A. Soylu and S. Evlice, Nucl. Phys. A 936, 59 (2015)
- [10] O. A. P. Tavares and E. L. Medeiros, Phys. Scr. 86, 015201 (2012)
- [11] A. Adel and T. Alharbi, Nucl. Phys. A 958, 187 (2017)
- [12] T. T. Ibrahim, S. M. Perez, S. M. Wyngaardt *et al.*, Phys. Rev. C 85, 044313 (2012)
- [13] Sham K. Arun, Raj K. Gupta, BirBikram Singh *et al.*, Phys. Rev. C 79, 064616 (2009)
- [14] H. F. Zhang, J. M. Dong, G. Royer *et al.*, Phys. Rev. C 80, 037307 (2009)
- [15] J. M. Dong, H. F. Zhang, J. Q. Li et al., Eur. Phys. J. A 41, 197 (2009)
- [16] S. N. Kuklin, G. G. Adamian, and N. V. Antonenko, Phys. Rev. C 71, 014301 (2005)
- [17] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. Lett. 107, 062503 (2011)
- [18] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. C 85, 034615 (2012)
- [19] D. N. Poenaru, H. Stöcker, and R. A. Gherghescu, Eur. Phys. J. A 54, 14 (2018)
- [20] D. N. Poenaru and W. Greiner, Handbook of Nuclear Properties (Clarendon Press, Oxford, 1996); D. N. Poenaru, Nuclear Decay Models (Institute of Physics Publishing, Bristol, 1996)
- [21] M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011)
- [22] K. P. Santhosh and B. Priyanka, Eur. Phys. J. A 49, 66 (2013)
- [23] S. B. Duarte, O. A. P. Tavares, F. Guzmán *et al.*, At. Data Nucl. Data Tables 80, 235 (2002)

activity.

Finally, the cluster radioactivity half-lives of the trans-lead and trans-tin nuclei that are not experimentally available were predicted by the ImSahuA and ImSahuB formulas. This might be helpful for searching for new cluster emitters in the two regions in future experiments.

ACKNOWLEDGMENTS

We thank Professors Shangui Zhou, Ning Wang, and Fengshou Zhang for helpful discussions.

- [24] M. Goncalves and S. B. Duarte, Phys. Rev. C 48, 2409 (1993)
- [25] X. J. Bao, H. F. Zhang, B. S. Hu et al., J. Phys. G: Nucl. Part. Phys. 39, 095103 (2012)
- [26] G. Royer and R. Moustabchir, Nucl. Phys. A 683, 182 (2001)
- [27] A. Bhagwat and Y. K. Gambhir, Phys. Rev. C 71, 017301 (2005)
- [28] A. Bhagwat and R. J. Liotta, Phys. Rev. C 92, 044312 (2015)
- [29] E. J. du Toit, S. M. Wyngaardt, and S. M. Perez, J. Phys. G: Nucl. Part. Phys. 42, 015103 (2015)
- [30] F. R. Xu and J. C. Pei, Phys. Lett. B 642, 322 (2006)
- [31] D. S. Delion, Phys. Rev. C 80, 024310 (2009)
- [32] N. S. Rajeswari, C. Nivetha, and M. Balasubramaniam, Eur. Phys. J. A 54, 156 (2018)
- [33] C. Qi, F. R. Xu, R. J. Liotta et al., Phys. Rev. Lett. 103, 072501 (2009)
- [34] C. Qi, F. R. Xu, R. J. Liotta et al., Phys. Rev. C 80, 044326 (2009)
- [35] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. C 83, 014601 (2011)
- [36] M. Horoi, J. Phys. G: Nucl. Part. Phys. 30, 945 (2004)
- [37] O. A. P. Tavares and E. L. Medeiros, Eur. Phys. J. A 49, 6 (2013)
- [38] M. Balasubramaniam, S. Kumarasamy, N. Arunachalam et al., Phys. Rev. C 70, 017301 (2004)
- [39] D. D. Ni, Z. Z. Ren, T. K. Dong et al., Phys. Rev. C 78, 044310 (2008)
- [40] Zhongzhou Ren, Chang Xu, and Zaijun Wang, Phys. Rev. C 70, 034304 (2004)
- [41] Y. L. Zhang and Y. Z. Wang, Phys. Rev. C 97, 014318 (2018)
- [42] B. Sahu, R. Paira, and B. Rath, Nucl. Phys. A 908, 40 (2013)
- [43] S. Zhang, Y. L. Zhang, J. P. Cui et al., Phys. Rev. C 95, 014311 (2017)
- [44] Y. Xiao, S. Zhang, J. Cui et al., Indian J. Phys. 94, 527 (2020)
- [45] B. Sahu, Phys. Rev. C 78, 044608 (2008)
- [46] B. Sahu, Phys. Rev. C 84, 037607 (2011)
- [47] B. Sahu, Phys. Rev. C 85, 057601 (2012)
- [48] B. Sahu and S. Bhoi, Phys. Rev. C 93, 044301 (2016)
- [49] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, Dover, New York, 1965
- [50] R. Blendowske and H. Walliser, Phys. Rev. C 61, 1930 (1988)

- [51] Z. Sheng, G. Fan, and J. Qian, Acta Phys. Sin. 64, 112101 (2015)
- [52] N. Wang and T. Li, Phys. Rev. C 88, 011301(R) (2013)
- [53] G. Royer and R. Rousseau, Eur. Phys. J. A 42, 541 (2009)
- [54] J. Piekarewicz, M. Centelles, X. Roca-Maza *et al.*, Eur. Phys. J. A 46, 379 (2010)
- [55] M. Wang, G. Audi, F. G. Kondev et al., Chin. Phys. C 41, 030003 (2017)
- [56] G. Audi, F. G. Kondev, M. Wang et al., Chin. Phys. C 41, 030001 (2017)
- [57] NuDat2.6, http://www.nndc.bnl.gov
- [58] Y. B. Qian, Z. Z. Ren, and D. D. Ni, Phys. Rev. C 94, 024315 (2016)
- [59] Y. B. Qian and Z. Z. Ren, Sci. China-Phys. Mech. Astron. 56, 1520 (2013)
- [60] D. N. Poenaru, Y. Nagame, R. A. Gherghescu *et al.*, Phys. Rev. C 65, 054308 (2002)
- [61] Madhubrata Bhattacharya and G. Gangopadhyay, Phys. Rev. C 77, 027603 (2008)
- [62] Y. Z. Wang, Q. F. Gu, J. M. Dong *et al.*, Int. J. Mod. Phys. E 20, 127 (2011)
- [63] Y. Z. Wang, Z. Y. Li, G. L. Yu *et al.*, J. Phys. G: Nucl. Part. Phys. 41, 055102 (2014)
- [64] J. P. Cui, Y. L. Zhang, S. Zhang *et al.*, Int. J. Mod. Phys. E 25, 1650056 (2016)
- [65] Satish Kumar and Raj K. Gupta, Phys. Rev. C 49, 1922 (1994)
- [66] G. Shanmugam, G. M. Carmel Vigila Bai, and B. Kamalaharan, Phys. Rev. C 51, 2616 (1995)
- [67] Satish Kumar, Dharam Bir, and Raj K. Gupta, Phys. Rev. C 51, 1762 (1995)
- [68] D. N. Poenaru, W. Greiner, and R. Gherghescu, Phys. Rev. C 47, 2030 (1993)
- [69] D. N. Poenaru, W. Greiner, and E. Hourani, Phys. Rev. C 51, 594 (1995)
- [70] D. N. Poenaru, W. Greiner, and E. Hourany, J. Phys. G:

Nucl. Part. Phys. 22, 621 (1996)

- [71] O. RodrÍguez, F. Guzmán, S. B. Duarte *et al.*, Phys. Rev. C 59, 253 (1999)
- [72] I. Silisteanu, W. Scheid, and A. Sandulescu, Nucl. Phys. A 679, 317 (2001)
- [73] Z. Q. Sheng, D. D. Ni, and Z. Z. Ren, J. Phys. G: Nucl. Part. Phys. 38, 055103 (2011)
- [74] Y. B. Qian and Z. Z. Ren, J. Phys. G: Nucl. Part. Phys. 39, 015103 (2012)
- [75] Gudveen Sawhney, Kanishka Sharma, Manoj K. Sharma et al., EPJ Web of Conferences 117, 04013 (2016)
- [76] K. P. Santhosh, P. V. Subha, and B. Priyanka, Pramana –J. Phys. 86, 819 (2016)
- [77] A. Bhagwat and R. J. Liotta, Phys. Rev. C 96, 031302R (2017)
- [78] K. Manimaran and M. Balasubramaniam, Int. J. Mod. Phys. E 18, 1509 (2009)
- [79] G. Shiva Kumara Swamy and T. K. Umesh, Int. J. Mod. Phys. E 20, 2167 (2011)
- [80] Yu. Ts. Oganessian, Yu. A. Lazarev, V. A. Mikheev et al., Z. Phys. A 349, 341 (1994)
- [81] A. Guglielmetti, R. Bonetti, G. Poli *et al.*, Phys. Rev. C 52, 740 (1995)
- [82] A. Guglielmetti, B. Blank, R. Bonetti *et al.*, Nucl. Phys. A 583, 867c (1995)
- [83] A. Guglielmetti, R. Bonetti, G. Poli *et al.*, Phys. Rev. C 56, R2912 (1997)
- [84] Y. Gao, J. Cui, Y. Wang et al., Sci. Rep. 10, 9119 (2020)
- [85] N. Wang, M. Liu, X. Z. Wu *et al.*, Phys. Lett. B **734**, 215 (2014); http://www.imqmd.com/mass/
- [86] Y. Z. Wang, S. J. Wang, Z. Y. Hou *et al.*, Phys. Rev. C 92, 064301 (2015)
- [87] Y. Z. Wang, Y. H. Gao, J. P. Cui *et al.*, Commun. Theor. Phys. 72, 025303 (2020)
- [88] A. Sobiczewski and Yu. A. Litvinov, Phys. Rev. C 89, 024311 (2014); 90, 017302 (2014)