
 

Chiral crossover characterized by Mott transition at finite temperature*
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Abstract: We discuss the proper definition for the chiral crossover at finite temperature, based on Goldstone's the-
orem. Different from the commonly used maximum change in chiral condensate, we propose defining the crossover
temperature using the Mott transition of pseudo-Goldstone bosons, which, by definition, guarantees Goldstone's the-
orem. We analytically and numerically demonstrate this property in the frame of a Pauli-Villars regularized NJL model.
In an external magnetic field, we find that the Mott transition temperature shows an inverse magnetic catalysis effect.
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The change in chiral symmetry is one of the most im-
portant properties of quantum chromodynamics (QCD) in
a hot  and  dense  medium,  which  is  essential  for  under-
standing the light hadrons at finite temperature and dens-
ity  [1-4].  In  the  chiral  limit,  the  phase  transition  from
chiral symmetry breaking in vacuum and at low temperat-
ure to its restoration at high temperature occurs at a critic-
al temperature , which has been reported in a recent lat-
tice  QCD  simulation  to  be  MeV  [5].  In  a  real
case  with  non-vanishing  current  quark  mass,  the  chiral
symmetry restoration is no longer a genuine phase trans-
ition but rather a smooth crossover. Because the crossov-
er occurs  in  a  region  and  not  at  a  point,  the  way  to  de-
scribe it with a fixed temperature is not unique. Consider-
ing the maximum fluctuations around a continuous phase
transition in the chiral limit, the pseudo-critical temperat-
ure  to  characterize  the  chiral  crossover  in  the  real
case is  normally defined by the maximum change in  the
chiral condensate, . From the lattice QCD
simulation [6], this value is approximately  MeV.

Tpc

The  mechanism  for  a  continuous  phase  transition  is
spontaneous  symmetry  breaking.  It  is  possible  to  define
an order parameter that changes from a nonzero value to
zero or vice versa when the phase transition occurs. Con-
versely,  spontaneous  breaking  of  a  global  symmetry
manifests itself in Goldstone's theorem [7, 8]: whenever a
global  symmetry  is  spontaneously  broken,  massless
fields, known as Goldstone bosons, emerge. Correspond-
ing to the spontaneous chiral symmetry breaking, the or-
der parameter is the chiral condensate, and the Goldstone
modes  are  pions.  If  we  take  defined  above  as  the
characteristic  temperature  of  the  chiral  crossover,  the

Tpc
Tpc

Tm
π→ qq̄ Tpc = Tm

T < Tpc
T > Tpc

Tm mπ(T )
mq(T )

problem is whether the chiral condensate at  is already
small enough and the pseudo-Goldstone modes at  are
already  heavy  enough  to  guarantee  that  the  system is  in
chiral restoration phase.  According to  Goldstone's  theor-
em, in  the  chiral  breaking  phase  at  low  temperature,  pi-
ons  as  pseudo-Goldstone  modes  should  be  in  bound
states, and in the chiral restoration phase at high temper-
ature,  pions  should  be  in  resonant  states  with  nonzero
width. The connection between the two states is the Mott
transition at temperature  [9-11], where the decay pro-
cess  begins. It  is clear that  in the chiral
limit.  In  the  real  case,  however,  there  is  no guarantee  of
the  coincidence  of  the  two  temperatures.  In  this  case,
Goldstone's  theorem  breaks  down  because  pions  may
already be in resonant states with large mass at  or
still be in bound states with small mass at . To re-
main consistent with Goldstone's theorem, we propose to
pin down the chiral crossover using the Mott transition of
the pseudo-Goldstone boson. Taking into account energy
conservation  for  the  decay  process,  the  Mott  transition
temperature  is  defined  through  the  pion  mass 
and quark mass ,

mπ(Tm) = 2mq(Tm). (1)

Because  of  the  non-perturbative  difficulty  in  QCD,
we calculate the Mott transition temperature in an effect-
ive chiral model. One of the models that enables us to see
directly how  the  dynamical  mechanism  of  chiral  sym-
metry  breaking  and  restoration  operates  is  the  Nambu-
Jona-Lasinio  (NJL)  model  applied  to  quarks  [12-16].
Within  this  model,  the  hadronic  mass  spectrum  and  the
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static  properties  of  mesons  can  be  obtained  remarkably
well.  In  this  paper,  we  calculate  in  the  model  the  chiral
condensate  in  mean  field  approximation  and  the  meson
mass beyond  mean  field  through  random  phase  approx-
imation  (RPA),  which  has  been  proven  to  guarantee
Goldstone's theorem in the chiral breaking phase.

Tpc

In  recent  years,  the  investigation  of  chiral  symmetry
has  been  extended  to  include  external  electromagnetic
fields.  Considering  the  dimension  reduction  of  fermions
in  external  magnetic  fields,  chiral  symmetry  breaking  in
vacuum  is  enhanced  by  the  background  magnetic  field,
from both the lattice QCD simulation [17-23] and effect-
ive models [24-28]. The surprise is in the behavior of the
chiral  crossover  temperature . With  increasing  mag-
netic  field,  it  decreases,  from  lattice  QCD  simulations
[17-23],  which  is  called  the  inverse  magnetic  catalysis,
but increases from effective models in mean field approx-
imation  [24-28].  Many  scenarios  have  been  proposed  to
understand  this  qualitative  difference  between  lattice
QCD  and  effective  models  [29-42]. Note  that,  in  previ-
ous  works,  the  chiral  crossover  temperature  is  usually
defined by the  variation of  the  chiral  condensate.  In  this
work, we point out that, when defining the crossover tem-
perature by  the  Mott  transition  of  pseudo-Goldstone  bo-
sons,  an  inverse  magnetic  catalysis  effect  appears  with
decreasing  Mott  temperature  in  magnetic  fields.
Throughout this paper, the increase (decrease) in charac-
teristic temperature with magnetic fields is called the (in-
verse) magnetic catalysis effect.

The  magnetized  two-flavor  NJL  model  is  defined
through the Lagrangian density [12-16]

L = ψ̄
(
iγµDµ−m0

)
ψ+

G
2

[(
ψ̄ψ
)2
+
(
ψ̄iγ5τψ

)2]
, (2)

Dµ = ∂µ+ iQAµ

Q = diag(Qu,Qd) = diag(2e/3,
−e/3) B = Bez

Aµ = (0,0,Bx,0)
m0

where  the  covariant  derivative  couples
quarks  with  electric  charge 

 to the external  magnetic field  through the
potential , G is  the  coupling  constant  in
scalar  and  pseudo-scalar  channels,  and  is  the  current
quark  mass  characterizing  the  explicit  chiral  symmetry
breaking.

⟨ψ̄ψ⟩
mq = m0−G⟨ψ̄ψ⟩

Using  the  Leung-Ritus-Wang  method  [43-48],  the
chiral  condensate  or  the  dynamical  quark  mass

 at  mean  field  level  is  controlled  by  the
gap equation

mq (1−GJ1) = m0 (3)

with

J1 = Nc

∑
f ,n

αn
|Q f B|

2π

∫
dpz

2π

tanh
E f

2T
E f

, (4)

Nc = 3
αn = 2−δn0

E f =

√
p2

z +2n|Q f B|+m2
q

f = u,d pz

where  is  the number of  colors,  which is  trivial  in
the  NJL  model;  is  the  spin  degeneracy; T is
the  temperature  of  the  quark  system;  and

 is  the  quark  energy  with  flavor
,  longitudinal  momentum ,  and  Landau  energy

level n.

m0 = 0
π0 π± σ

π0

Mesons in  the  model  are  treated  as  quantum  fluctu-
ations above the mean field and constructed through RPA
[12-16]. In the chiral limit with , the isospin triplet

 and  and  isospin  singlet  are  respectively  the
Goldstone  modes  and  Higgs  mode,  corresponding  to
spontaneous  chiral  symmetry  breaking  with  a  vanishing
magnetic  field.  Turning  on  the  external  magnetic  field,
only the neutral pion  remains as the Goldstone mode.

Dm

Πm

With the RPA method, the meson propagator  can
be expressed in terms of the meson polarization function
or quark bubble ,

Dm(q) =
G

1−GΠm(q)
. (5)

mm
q = 0

The meson mass  is defined as the pole of the propag-
ator at zero momentum ,

1−GΠm(mm,0) = 0 (6)

with

Πm(q0,0) =J1− (q2
0− ϵ2

m)J2(q0),

J2(q0) =−Nc

∑
f ,n

αn
|Q f B|

2π

∫
dpz

2π

tanh
E f

2T
E f (4E2

f −q2
0)
, (7)

ϵπ0
= 0 ϵσ = 2mq for  the  Goldstone  mode,  and  for  the

Higgs  mode.  In  a  nonzero  magnetic  field,  the  three-di-
mensional quark momentum integration in the gap equa-
tion (3) and pole equation (6) becomes a one-dimension-
al momentum integration plus a summation over the dis-
crete Landau levels.

In the chiral limit with vanishing current quark mass,
by  comparing  the  gap  equation  (3)  for  quark  mass  with
the pole equation (6) for meson mass, we have the analyt-
ic solutions

mπ0
= 0, mσ = 2mq (8)

mq , 0in the chiral breaking phase with  and

mπ0
= mσ , 0 (9)

mq = 0in the chiral restoration phase with . A direct con-
sequence  of  these  solutions  is  that  the  Mott  transition
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Tm mπ0
(Tm) = 2mq(Tm)

Tc mq(Tc) = 0
temperature  defined  by  coincides
with  the  critical  temperature  defined  by .
The phase transition from chiral symmetry breaking to its
restoration is a second order phase transition.

m0

mq = mcl
q +δq

mπ0
= mcl

π0
+δπ0

mcl
q mcl

π0
= 0

δq
δπ0

In the physical case with nonzero current quark mass,
the chiral restoration becomes a smooth crossover. At low
temperature, spontaneous chiral symmetry breaking dom-
inates  the  system.  Considering  the  fact  that  the  explicit
chiral symmetry breaking is slight, we can use  expan-
sion  to  solve  the  gap  equation  for  quark  mass  and  pole
equation for meson mass. With the notations 
and ,  where  and  are  the  quark
and  neutral  pion  masses  in  the  chiral  limit,  respectively,
and keeping only the linear term in  and quadratic term
in  in the gap and pole equations, we have

δq =−
m0

mcl
q

1

G
∂J1

∂mq

∣∣∣
cl

,

δ2
π0
=− m0

mcl
q +δq

1
GJ2
∣∣∣
cl

. (10)

m0 = 0
δq = 0 δπ0

= 0
m0 , 0

It is obvious that, in the chiral limit with , we have
 and . The explicit chiral symmetry breaking

with  modifies the dynamical quark mass,  and the
Goldstone  mode  in  the  chiral  limit  becomes  a  pseudo-
Goldstone mode with nonzero mass.

pz→ 0 Πm(mm,0)
π0

Ππ0
(mπ0

,0)
Tm mπ0

mπ0
< 2mq mπ0

> 2mq

At  high  temperature,  the  quark  dimension  reduction
under  an  external  magnetic  field  causes  an  infrared
( )  singularity  of  the  quark  bubble  [49-
51]. For the pseudo-Goldstone mode , the infrared sin-
gularity  of  occurs at  the  Mott  transition  tem-
perature ,  where  the  mass  jumps  up  from

 to . This  indicates  a  sudden  trans-
ition from a bound state to a resonant state [49, 51].

m0
Λ

⟨ψ̄ψ⟩
mπ fπ

T = B = 0 m0 = 0
6.4

We next  perform numerical  calculations  on the  Mott
transition  temperature  in  both  the  chiral  limit  and  real
case.  Because  of  the  four-fermion  interaction,  the  NJL
model is  not  a  renormalizable  theory  and  requires  regu-
larization.  To guarantee the law of causality in magnetic
fields,  we  apply  the  Pauli-Villars  regularization  scheme,
as  explained in  detail  in  Ref.  [42].  The  three  parameters
in  the  NJL  model,  namely  the  current  quark  mass ,
coupling constant G, and Pauli-Villars mass parameter ,
are listed in Table 1 by fitting the chiral condensate ,
pion mass , and pion decay constant  in a vacuum at

. We take the current quark mass to be  in
the chiral limit and  MeV in the real world.

B = 0
We first discuss the temperature behavior of the phase

structure  for  chiral  symmetry  at . Fig.  1 shows  the
quark mass and pion mass as functions of temperature in
the chiral limit and the real world. For a vanishing mag-
netic  field,  the  three  pions  are  all  Goldstone  or  pseudo-
Goldstone modes. To clearly see the Mott transition tem-

Tm
Tpc 2mq mq

⟨ψ̄ψ⟩
Tc = 163

π

Tc

Tm = Tc = 163
20−30

Tpc

∂2mq/∂T 2
pc = 0

Tpc = 162
156

mπ(Tm) = 2mq(Tm)

Tm = 174 > Tpc = 162

perature  and  its  difference  from  the  pseudo-critical
temperature ,  we plot  instead of  itself.  In the
chiral limit,  the quark mass, which is proportional to the
order parameter , continuously decreases at low tem-
perature, reaches zero at the critical temperature 
MeV, and  remains  zero  at  higher  temperature.  This  de-
notes a second order chiral phase transition. Correspond-
ingly,  the  Goldstone  modes  remain  massless  in  the
chiral breaking phase and begin to have mass at . It is
clear  that  the  Mott  transition  temperature  defined  by  the
threshold condition (1) is exactly the critical temperature

 MeV. Note that the critical temperature ob-
tained  here  in  the  NJL  model  is  higher  by  MeV
than the results of recent lattice QCD [5] and other effect-
ive  models  [52, 53].  In  the  real  world,  the  quark  mass
continuously  decreases,  and  the  pion  mass  continuously
increases throughout the entire temperature region. In this
case, the  chiral  phase  transition  becomes a  smooth  cros-
sover,  and  there  is  no  strict  definition  for  the  crossover
temperature. Generalizing  the  idea  of  maximum  fluctu-
ations  around  the  second  order  phase  transition  in  the
chiral limit,  the  maximum change in  the  chiral  condens-
ate or dynamical quark mass is commonly used to identi-
fy the crossover, referring to the corresponding temperat-
ure  as  the  pseudo-critical  temperature  of  the  chiral
crossover. From the definition , we numer-
ically  have  MeV,  which  is  close  to  the  lattice
QCD  result  of  MeV  [6].  From  the  definition

,  denoted  by  the  crossing  point  of  the
two dashed lines  in Fig.  1, the  Mott  transition  temperat-
ure  is  different  from  the  pseudo-critical  temperature:

 MeV  MeV.  Therefore,  pions  as

Table 1.    NJL parameters in Pauli-Villars regularization.

m0 /MeV −2G/GeV Λ/MeV ⟨ψ̄ψ⟩/MeV3 mπ /MeV fπ /MeV

0 5.03 977.3 −2303
0 93

6.4 4.9 977.3 −2303
134 93

 

mq

mπ

m0 = 0
m0 = 6.4

Fig.  1.    (color  online)  Dynamical  quark  mass  and  pion
mass  as functions of temperature in the chiral limit (solid
lines)  with current  quark mass  and real  world (dashed
lines) with  MeV.
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Tpc

pseudo-Goldstone modes can still survive as bound states
after  the  chiral  crossover.  This  means  that  the  definition
of  explicitly violates Goldstone's theorem.

Tc = Tm

Tpc
Tm

Tpc , Tm

Tm

In  the  chiral  limit,  chiral  restoration  is  a  genuine
phase  transition,  and  the  phase  transition  temperature  is
unique  from  either  the  order  parameter  or  Goldstone's
theorem,  with .  In  the  physical  world,  which  is
the focus of this paper, chiral restoration is a smooth cros-
sover.  The  characteristic  temperature  from the  max-
imum  change  in  order  parameter  and  from  the  Mott
transition  of  pseudo-Goldstone  bosons  will  not  coincide
with each other: . To guarantee Goldstone's the-
orem, we propose to define the crossover temperature as

.

Tpc
Tm

Tpc

Tm

Tpc
Tm

Ω = Ωm f +ΩM

Tpc

Because  charged  pions  interact  with  the  magnetic
field,  they  are  no  longer  pseudo-Goldstone  modes,  and
only the neutral pion is the pseudo-Goldstone boson cor-
responding  to  spontaneous  chiral  symmetry  breaking.
Fig.  2 shows  the  pseudo-critical  temperature  and
Mott transition temperature  for the pseudo-Goldstone
mode  as  functions  of  the  magnetic  field.  While  is
controlled by the magnetic catalysis, i.e., it increases with
increasing magnetic  field,  the  Mott  transition  temperat-
ure  clearly shows  the  inverse  magnetic  catalysis  ef-
fect, decreasing  throughout  the  entire  magnetic  field  re-
gion. The physics to explain this difference is as follows:

 is controlled by quarks, which are calculated at mean
field  level,  but  is  governed  by  mesons,  which  are
treated  as  quantum  fluctuations  beyond  mean  field.  It  is
the quantum  fluctuation  that  changes  the  magnetic  cata-
lysis to inverse magnetic catalysis. This is consistent with
the scenario of fluctuation induced inverse magnetic cata-
lysis  discussed  in  Refs.  [30, 40-42].  When  we  consider
the  feedback  effect  from mesons  to  quarks  by  including
the meson contribution to the thermodynamics of the sys-
tem, ,  the  suppressed  chiral  condensate  at
high temperature  and  decreasing  pseudo-critical  temper-
ature  have been observed.

Tpc , Tm

eB/m2
π < 7 mπ

T = B = 0 Tm > Tpc

eB/m2
π > 7 Tm < Tpc

Again, the result of  violates Goldstone's the-
orem  in  any  magnetic  field.  In  a  weak  magnetic  field,
with ,  where  is  the pion mass in a vacuum
at , , which leads to the survival of the
neutral  pion  as  a  bound  state  in  the  chiral  restoration
phase.  Conversely,  in  a  strong  magnetic  field  with

, ,  which  results  in  the  disappearance
of the neutral pion in the chiral breaking phase. In either
case, Goldstone's theorem is significantly broken.

We investigate in this paper the chiral crossover at fi-
nite  temperature  and  in  external  magnetic  fields.  In  the
physical  world,  chiral  restoration  is  a  smooth  crossover
because of the explicit chiral symmetry breaking. Differ-
ent  from the commonly used maximum change in  chiral
condensate, we propose defining the crossover temperat-
ure  by  the  Mott  transition  of  pseudo-Goldstone  bosons.
This,  by  definition,  guarantees  Goldstone's  theorem  for
chiral  symmetry.  As an analytical  example,  we calculate
the order parameter (dynamical quark mass) in mean field
and  Goldstone  mode  (pion  mass)  beyond  mean  field  in
the frame of a Pauli-Villars regularized NJL model. If we
take the  maximum  change  in  chiral  condensate  to  de-
scribe  the  chiral  crossover,  the  pseudo-Goldstone  mode
will  survive  in  the  chiral  restoration  phase  with  weak
magnetic fields and disappear in the chiral breaking phase
with strong magnetic fields.

Tm

Tm,Tpc

Tc

While  we  believe  that  the  idea  of  choosing  the  Mott
transition temperature  to characterize the chiral  cros-
sover  is  correct,  the  values  of  the  temperatures ,
and  we obtained  here  are  model  dependent.  To  pre-
cisely fix the Mott transition temperature, we need to use
the direct result from lattice QCD simulations.
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