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Abstract: We  thoroughly  investigate  both  transverse  momentum  and  threshold  resummation  effects  on  scalar-
pseudoscalar  pair  production  via  quark-antiquark  annihilation  at  the  Large  Hadron  Collider  at  QCD
NLO+NLL accuracy. A factorization method is introduced to properly supplement the soft-gluon (threshold) resum-
mation contribution from parton distribution functions to the resummed results obtained by the Collins-Soper-Ster-
man resummation approach. We find that the impact of the threshold-resummation improved PDFs is comparable to
the  resummation  effect  of  the  partonic  matrix  element  and  can  even  predominate  in  high  invariant  mass  regions.
Moreover, the loop-induced gluon-gluon fusion channel in the type-I two-Higgs-doublet model is considered in our
calculations. The numerical results show that the electroweak production via quark-antiquark annihilation dominates
over the gluon-initiated QCD production by  orders of magnitude.
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I.  INTRODUCTION

125 GeV

Primary tasks at the Large Hadron Collider (LHC) in-
clude  the  precision  test  of  the  standard  model  (SM)  and
the search for new physics beyond the SM (BSM). Since
the  discovery  of  the  Higgs boson  by  both  AT-
LAS and CMS collaborations at the LHC in 2012 [1, 2],
the SM has become the most successful theory in describ-
ing  the  interactions  of  fundamental  particles.  However,
the discovery of this SM-like Higgs boson is merely one
step toward fully investigating the electroweak symmetry
breaking (EWSB). As is well known, the theoretical pre-
dictions of the SM are not always compatible with experi-
mental observations,  such  as  the  dark  matter  in  the  uni-
verse,  the  oscillation  of  neutrinos,  the  huge  hierarchy
between electroweak and Planck scales, and the fine-tun-
ing problem of  Higgs  mass.  These  conceptional  and  ex-
perimental  difficulties  encountered  by  the  SM imply  the
existence of new physics beyond the SM.

We may extend the  SM by enlarging its  gauge sym-
metry and/or introducing much more gauge multiplets to
construct a new physics model. Among all the BSM the-
ories, the two-Higgs-doublet model (2HDM) [3] is one of

G± G0

W± Z0

W± Z0

CP
h0 H0 CP A0

H±

the simplest  extensions  of  the  SM.  The  Higgs  sector  re-
sponsible  for  the  EWSB  consists  of  two  complex  scalar
isospin doublets, and the minimal supersymmetric stand-
ard model is  a particular realization of the 2HDM. After
EWSB,  the  three  Goldstone  modes  and  in  the
Higgs  sector  of  the  2HDM  are  absorbed  by  the  weak
gauge bosons  and , respectively, providing the lon-
gitudinal polarizations of  and . The remaining five
mass eigenstates of the Higgs sector are the so-called -
even Higgs bosons  and , -odd Higgs boson ,
and charged Higgs bosons .

pp→ qq̄→ Z∗→ H0A0/h0A0

Clearly, any discovery of a BSM Higgs boson will be
an  evidence  for  the  existence  of  a  new Higgs  sector.  At
the LHC, the neutral  Higgs bosons of the 2HDM can be
produced both singly and in identical or mixed pairs. The
dominant  mechanism  for  single  production  of  neutral
Higgs  bosons  is  gluon-gluon  fusion.  Concerning  scalar-
pseudoscalar pairs, the electroweak production via quark-
antiquark  annihilation, ,  can
dominate over  the  QCD  production  via  gluon-gluon  fu-
sion [4, 5], even by orders of magnitude. Considerable ef-
forts have been devoted to search for BSM neutral Higgs
bosons.  Particularly,  the  exotic  decays  of  heavy  scalar
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gH0A0Z0/gh0A0Z0

h0A0

(pseudoscalar), such as  ( ), have at-
tracted  attention  at  the  LHC  in  recent  years  [6, 7].  The
scalar-pseudoscalar  pair  production  is  dominated  by  the
Drell-Yan channel; it is an ideal process to investigate the
Higgs  gauge  coupling  and  should  thus  be
thoroughly  invegtigated.  The  next-to-leading  order
(NLO) QCD corrections to neutral Higgs-boson pair pro-
duction at hadron colliders were calculated in Refs. [4, 8],
which showed that the QCD corrections can enhance the
cross section of  production by approximately 30%.

αn
s(M2/p2

T ) lnm(M2/p2
T ) pT

αn
s(1− z)−1 lnm(1− z) z = M2/ŝ→ 1

pT

Fixed-order perturbative predictions would be unreli-
able  when  the  exponential  enhancement  from soft  gluon
dominates at the edge of the phase space. The large logar-
ithms,  such  as  at  small  and

 when , should  be  re-
summed in precision calculations. We extract such logar-
ithms  in  the  partonic  matrix  element  by  adopting  the
Collins-Soper-Sterman  resummation  technique  [9-17]
and analyze  the  threshold  resummation  effect  from  par-
ton distribution  functions  (PDFs)  by  using  the  factoriza-
tion method proposed in Ref. [18]. Generally, the resum-
mation corrections are only considered for fixing the un-
natural behaviours in the small-  and threshold regions,
while the fixed-order predictions are suitable for describ-
ing  the  kinematics  far  away  from  the  edge  of  the  final-
state  phase  space.  Thus,  the  resummation  results  should
be  matched  with  the  fixed-order  predictions  to  obtain  a
reliable description in all kinematical regions.

13 TeV

ϕ0A0

ϕ0A0

In  this  study,  we  thoroughly  analyze  scalar-pseudo-
scalar pair production at the  LHC within the type-
I  2HDM  at  the  NLO  and  next-to-leading  logarithmic
(NLL) accuracy in QCD. The rest of this paper is organ-
ized as follows. In Sec. II, we briefly review the 2HDM.
In Sec. III, we present the calculation strategies for 
associated production  at  QCD  NLO+NLL  accuracy,  in-
cluding the  Collins-Soper-Sterman  resummation  tech-
nique and the  factorization method for  assessing the  im-
pact  of  the  threshold-resummation  improved  PDFs.  The
numerical  results  and  discussion  for  both  the  integrated
cross section  and  the  differential  distributions  with  re-
spect  to the transverse momentum and invariant  mass of
the  final-state  system are  provided  in  Sec.  IV.  Fi-
nally, a short summary is given in Sec. V.
 

II.  BRIEF REVIEW OF 2HDM

S U(2)L Φ1,2

Y = +1
S U(2)L⊗U(1)Y

Z2

Φi→ (−1)i+1Φi (i = 1,2)

In contrast to the SM, the Higgs sector of the 2HDM
consists of two complex scalar  doublets  with
hypercharge .  The  most  general  scalar  potential,
which is invariant under the  electroweak
gauge  symmetry  and  a  discrete  symmetry

, is given by
 

V(Φ1,Φ2) =m2
11Φ

†
1Φ1+m2

22Φ
†
2Φ2− (m2

12Φ
†
1Φ2+h.c.)

+
1
2
λ1(Φ†1Φ1)2+

1
2
λ2(Φ†2Φ2)2

+λ3(Φ†1Φ1)(Φ†2Φ2)+λ4(Φ†1Φ2)(Φ†2Φ1)

+
1
2

[
λ5(Φ†1Φ2)2+h.c.

]
, (1)

m2
12

Z2 m2
11,22 λ1,2,3,4

where the dimension-two term  is tolerated because it
only breaks the  symmetry softly, and ,  are
forced to be real owing to the hermiticity of the scalar po-
tential.  The two Higgs  doublets  can  be  parameterized as
[3] 

Φi =

(
ϕ+i

(vi+ρi+ iηi)/
√

2

)
(i = 1,2), (2)

v1 v2
Φ1 Φ2

CP m2
12 λ5

v1 v2

where  and  are  the  vacuum  expectation  values
(VEVs) of the neutral components of  and , respect-
ively.  In  a -conserving  2HDM,  both  and  are
real,  and so are  and .  The eight mass eigenstates of
the Higgs sector are given by (

H0

h0

)
=

(
cosα sinα
−sinα cosα

)(
ρ1
ρ2

)
, (3)

 (
G0

A0

)
=

(
cosβ sinβ
−sinβ cosβ

)(
η1
η2

)
, (4)

 (
G±

H±

)
=

(
cosβ sinβ
−sinβ cosβ

)(
ϕ±1
ϕ±2

)
, (5)

CP
β = arctan

v2

v1
CP

Φ1,2
G± G0

W± Z0

W± Z0

CP h0 H0 CP
A0

H±

CP

where α is the mixing angle in the -even Higgs sector
and  describes the mixing in the -odd and
charged Higgs  sectors.  After  the  spontaneous  elec-
troweak symmetry breaking, three out of eight degrees of
freedom from  that  correspond  to  Nambu-Goldstone
bosons and  are  respectively  absorbed  by  weak
gauge bosons  and , providing the longitudinal po-
larizations of  and .  The remaining five degrees of
freedom become the aforementioned five physical Higgs
bosons: two -even Higgs bosons  and , one -
odd Higgs boson , and a pair of charged Higgs bosons

.  In  this  study,  the  seven  input  parameters  for  the
Higgs sector of a -conserving 2HDM are chosen as {

mh0 , mH0 , mA0 , mH± , m2
12, sin(β−α), tanβ

}
, (6)

v ≡
√

v2
1+ v2

2 = (
√

2GF)−1/2 ≈ 246 GeV

which are  implemented as  the  “physical  basis”  in 2HD-
MC [19].  Then,  the  Higgs  potential  in  Eq.  (1)  can  be
completely determined by the seven Higgs parameters in

Eq. (6) and v, where 
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has been classified as an electroweak input parameter.

Z2

Φ1,2 Z2

Z2
S U(2)L

To  guarantee  the  absence  of  Higgs-mediated  flavor
changing  neutral  currents  at  the  tree  level,  the  sym-
metry  should  be  extended  to  the  Yukawa  sector.  Given
that  the  two  Higgs  doublets  have  opposite 
charges,  each  flavor  of  quark/lepton  can  only  couple  to
one  of  the  two  Higgs  doublets.  There  are  four  allowed
types of Yukawa interaction corresponding to the four in-
dependent  charge assignments on the quark and lepton

 multiplets (Table 1). The Yukawa Lagrangian of
the 2HDM can  be  expressed  in  terms  of  Higgs  mass  ei-
genstates as 

L2HDM
Yukawa = −

∑
f=u,d,ℓ

m f

v

(
ξ

f
h f̄ f h0+ ξ

f
H f̄ f H0− iξ f

A f̄γ5 f A0
)

−
[ √

2Vud

v
ū
(
muξ

u
APL+mdξ

d
APR

)
dH+

+

√
2mℓ
v
ξℓAν̄PRℓH++h.c.

]
, (7)

ξ
f
h,H,A ( f = u,d, ℓ)where  are  the Higgs Yukawa couplings

normalized to the SM vertices, and the corresponding val-
ues  in  the  type-I,  type-II,  lepton-specific,  and  flipped
2HDMs are listed in Table 2.

h0 H0

sin(β−α)
cos(β−α)

CP
125 GeV

CP

v⃗ ≡ (v1,v2)

125 GeV

The  Higgs  gauge  interaction  is  independent  of  the
types of the 2HDM. The couplings of  and  to weak
gauge  boson  pair  are  proportional  to  and

,  respectively.  The  2HDM  parameter  space  is
stringently constrained by the requirement that one out of
the two neutral -even Higgs bosons has physical prop-
erties  consistent  with  the  scalar  discovered  at
the  CERN LHC.  It  is  well  known that  if  one  of  the  two
neutral -even Higgs  mass  eigenstates  is  approxim-
ately  aligned  in  the  two-dimensional  Higgs  field  space
with  the  direction  of  the  Higgs  VEV  vector 
(the  so-called  alignment  limit),  the  couplings  of  this
Higgs boson are SM-like. The two alignment limits of the
2HDM  are  listed  in Table  3.  Given  that  the  SM-like
Higgs  boson  with  mass  around  seems  to  be
favored  by  LHC  data,  we  will  investigate  the  scalar-
pseudoscalar  pair  production  at  the  LHC  only  at  the
alignment limit. 

III.  CALCULATION STRATEGY

We  adopt  the  't  Hooft-Feynman  gauge  and  take  the
five-flavor scheme in our calculations. Apart from the top
quark, all other light quarks, including the bottom quark,
are treated  as  massless  particles.  The  UV  and  IR  diver-
gences in the QCD loop and real jet emission corrections
are regularized  by  adopting  the  dimensional  regulariza-
tion  scheme  [20].  We  employ  both  the  Catani-Seymour
dipole  subtraction  method  [21, 22]  and  the  two  cutoff
phase  space  slicing method [23]  to  separate  the  soft  and
collinear  IR singularities  of  the  real  emission correction,
and then cross check their correctness. 

A.    Electroweak production via quark-antiquark
annihilation

qq̄→ H0(h0)A0

qg→ H0(h0)A0+q

The  scalar-pseudoscalar  pair  can  be  produced  at  the
LHC via Drell-Yan production mechanism. Some repres-
entative  LO  and  QCD  NLO  Feynman  diagrams  for

 are shown in Fig. 1 . In this study, we cat-
egorize  as the  real  light-quark  emis-
sion correction to the quark-antiquark-initiated Drell-Yan
channel.

h0A0Z0 H0A0Z0The  and  gauge  interactions  in  the
2HDM are given by 

gh0A0Z0 =
ecos(β−α)

sin2θW
(ph0 − pA0 )µ ,

gH0A0Z0 =− esin(β−α)
sin2θW

(pH0 − pA0 )µ , (8)

Z2

S U(2)L

Table  1.    Four  types  of  2HDMs  and  the  corresponding 
charge assignments on Higgs, quark, and lepton  mul-
tiplets.

2HDM Φ1 Φ2 QL LL uR dR ℓR

Type I + − + + − − −

Type II + − + + − + +

Lepton-specific + − + + − − +

Flipped + − + + − + −

ξ
f
h,H,A ( f =

u,d, ℓ)

(α̃, β̃) = (α,β)+
π

2

Table  2.    Normalized  Higgs  Yukawa  couplings  
 in  the  type-I,  type-II,  lepton-specific,  and  flipped

2HDMs. .

2HDM Type I Type II Lepton-specific Flipped

ξuh cosα/sinβ
√

√

√
ξuH sinα/sinβ

ξuA cotβ

ξdh cosα/sinβ

(α,β)→ (α̃, β̃)

(α,β)→ (α̃, β̃)ξdH sinα/sinβ

ξdA −cotβ

ξℓh cosα/sinβ

(α,β)→ (α̃, β̃)
√

ξℓH sinα/sinβ

ξℓA −cotβ

Table 3.    Two alignment limits of the 2HDM.

Alignment limit β−α h0 H0

I π/2 SM-like

II 0 SM-like
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θW ph0,H0,A0

Z0 CP

h0
SM CP

ϕ0

where  is  the  Weinberg  weak  mixing  angle, 
are  the  incoming  momenta  of  the  corresponding
(pseudo)scalars, and µ is the Lorentz index of the vector
boson . At the alignment limit, one of the two -even
mass eigenstates can be regarded as the SM Higgs boson

, while the other is a BSM -even Higgs boson de-
noted by . We can see from Table 3 that 

(h0
SM,ϕ

0)=

 (h0,H0), (alignment limit I : sin(β−α) = 1),

(H0,h0), (alignment limit II : cos(β−α) = 1).
(9)

h0A0Z0 H0A0Z0

cos(β−α) sin(β−α)
h0
SMA0 O(α2αs)

ϕ0A0

Given that the  and  coupling strengths are
proportional to  and , respectively, the

 associated  production  is  forbidden  up  to 
at the alignment limit. Thus, we only focus on the Drell-
Yan production of  in the following.

pp→
ϕ0A0+X

The  doubly-differential  cross  section  for 
 can be perturbatively calculated by means of the

QCD factorization theorem: 

M2 d2σ

dM2dp2
T

(τ) =
∑
a,b

∫ 1

0
dxadxbdz

[
xa fa/P(xa,µ

2
F)

]
×

[
xb fb/P(xb,µ

2
F)

]
×

[
zσ̂ab(z,M2, p2

T ,µ
2
F ,µ

2
R)

]
×δ(τ− xaxbz

)
, (10)

pT

ϕ0A0

z

where M and  are  the  invariant  mass  and  transverse
momentum  of  the  final-state  system,  respectively.
The threshold variables τ and  in Eq. (10) are defined by 

τ =
(
M/
√

s
)2, z =

(
M/
√

ŝ
)2, (11)

√
s

√
ŝ

fa/P(x,µ2
F)

µF

where  and  denote the hadronic and partonic cen-
ter-of-mass  energies,  respectively.  The  universal  PDF

 gives the probability to find parton a in proton
P at  factorization  scale  as  a  function  of  fraction x of
the proton's  longitudinal  momentum  carried  by  the  par-
ton. After preforming a Mellin transformation, 

F(N) =
∫ 1

0
dyyN−1F(y), (12)

on Eq. (10), the hadronic cross section can be written as a
simple product  of  the  PDFs  and  the  partonic  cross  sec-
tion in the conjugate Mellin N-space as 

M2 d2σ

dM2dp2
T

(N −1) =
∑
a,b

fa/P(N,µ2
F) fb/P(N,µ2

F)

× σ̂ab(N,M2, p2
T ,µ

2
F ,µ

2
R). (13)

fa/P(x,µ2
F) x1/2

To  be  consistent  with  the  CT  collaboration  [24],  we
refit  the  PDF, ,  as  a  polynomial  of  with
eight coefficients, 

fa/P(x,µ2
F) =A0xA1 (1− x)A2

(
1+A3x1/2+A4x

+A5x3/2+A6x2+A7x5/2
)
. (14)

Thus, the Mellin moment of the PDF has the form 

fa/P(N,µF) =A0
[
B(A1+N,A2+1)+A3B(A1+N+1/2,A2+1)

+A4B(A1+N+1,A2+1)+A5B(A1+N+3/2,A2+1)

+A6B(A1+N+2,A2+1)+A7B(A1+N +5/2,A2+1)
]
,

(15)

qq̄→ H0(h0)A0Fig. 1.    Representative LO and QCD NLO Feynman diagrams for .
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B(x,y) ≡ Γ(x)Γ(y)/Γ(x+ y)where  is the Beta function.

αn
s(M2/p2

T ) lnm(M2/p2
T )

pT

pT

αs

pT

According  to  the  factorization  scheme  presented  in
Ref. [25], the partonic cross section can be expressed as a
product of  a  process-dependent  hard function and a  pro-
cess-independent  Sudakov  exponential  term [13, 14, 26-
29].  The higher-order  QCD contributions to  the partonic
cross  section  contain  logarithmic  terms  of  type

, which become large in the small-
 region.  These  logarithmically-enhanced contributions

arising at small  spoil the convergence of the fixed-or-
der perturbative  expansion  and  must  therefore  be  re-
summed to all orders in . We adopt the b-space resum-
mation approach, which was fully formulated by Collins,
Soper,  and  Sterman  [9-12],  to  systematically  resum  the
large  logarithmic  terms  at  small .  In  this  approach,  a
Bessel transform is applied to the partonic cross section, 

σ̂ab(N,M2, p2
T ,µ

2
F ,µ

2
R) =

∫ ∞

0
db

b
2

J0(bpT )

× σ̂ab(N,M2,b2,µ2
F ,µ

2
R), (16)

J0(x)

pT M/pT → 0
Mb→∞ M/pT

pT

where  is  the  zeroth-order  Bessel  function.  Given
that impact parameter b is the variable conjugate to trans-
verse momentum , the limit  corresponds to

. Therefore, the large logarithms of  arising
at small  turn into large logarithms of Mb, [

(M2/p2
T ) lnm(M2/p2

T )
]
+
−→ lnm+1(M2b2)+ · · · (17)

After performing the  resummation procedure,  the  re-
summed partonic cross section in the conjugate b-space at
the NLL accuracy can be expressed as [9-12] 

σ̂
(res.)
ab (N,M2,b2,µ2

F ,µ
2
R) =

∑
a′,a′′,b′,b′′

E(1)
a′a(N,1/b̄2,µ2

F)

×E(1)
b′b(N,1/b̄2,µ2

F)Ca′′a′ (N,1/b̄2)

×Cb′′b′ (N,1/b̄2)Ha′′b′′ (M2,µ2
R)

× exp
[
Ga′′b′′ (M2b̄2,M2,µ2

R)
]
,
(18)

b̄
b̄ = b/b0 b0 = 2e−γE

E(1)
ab

Cab Gab

Hab

where  is  the  normalized  impact  parameter  defined  by
 with  [17],  and  the  one-loop  QCD

evolution  operator  is  derived  from the  collinear-im-
proved  procedure  as  recommended  in  Refs.  [30-34].  In
the physical  resummation  scheme,  the  coefficient  func-
tion  and  the  Sudakov form factor  are  free  from
any  hard  contributions,  and  the  hard  function , de-
termined  by  the  finite  part  of  the  renormalized  virtual
contribution,  is  free  from  any  logarithmic  contributions
[16].  To  transform  the  resummed  partonic  cross  section

σ̂
(res.)
ab (N,M2,b2,µ2

F ,µ
2
R) pT back to the physical -space, we

rewrite Eq. (16) as [35]
 

σ̂
(res.)
ab (N,M2, p2

T ,µ
2
F ,µ

2
R) =

∑
k=1,2

∫
Ck

db
b
4

hk(bpT ,v)

× σ̂(res.)ab (N,M2,b2,µ2
F ,µ

2
R), (19)

where
 

hk(x,v) =
(−1)k

π

∫ (−1)kπ+ivπ

−ivπ
dθe−ixsinθ, (k = 1,2), (20)

h1(x,v)+h2(x,v) = 2J0(x)
Ck (k = 1,2)

are  two  auxiliary  Hankel-like  functions  satisfying
,  and  the  integration  contours

 in the complex b-plane are defined by
 

Ck : b= b(t)≡ te(−1)kiφ, t ∈ [0,+∞) with φ ∈ (0,π/2).
(21)

It is well known that such contours avoid the Landau pole
by a deformation into either the upper or lower half com-
plex b-plane.

ϕ0A0

pT

αn
s(1− z)−1 lnm(1− z)

The invariant mass distribution of the final-state 
system in the Mellin N-space can be obtained by integrat-
ing  Eq.  (13)  over  the  transverse  momentum .  In  the
threshold regime, the large logarithmic terms of the type

 also spoil the convergence of the per-
turbative series. These singular terms turn into large log-
arithms of the Mellin variable, N:
 

[
(1− z)−1 lnm(1− z)

]
+
−→ lnm+1 N + · · · . (22)

The  corresponding  resummed  partonic  cross  section  for
invariant  mass  distribution  at  the  NLL  accuracy  can  be
expressed as [36, 37]
 

σ̂
(res.)
ab (N,M2,µ2

F ,µ
2
R) =

∑
a′,b′

E(1)
a′a(N,M2/N̄2,µ2

F)

×E(1)
b′b(N,M2/N̄2,µ2

F)H̃a′b′ (M2,µ2
R)

× exp
[
G̃a′b′ (N̄,M2,µ2

R)
]
,

(23)
N̄

N̄ = NeγE
where  is  the  reduced  Mellin  variable  defined  by

.
Hab H̃abThe hard functions,  and , do not contain any

large  logarithms.  They  can  be  perturbatively  calculated
and read at the NLO accuracy:
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Hab(M2,µ2
R) = σ̂(0)

ab (M2) (1+asA0) ,

H̃ab(M2,µ2
R) =Hab(M2,µ2

R)+as
π2

6

[
A(1)

a +A(1)
b

]
σ̂(0)

ab (M2),
(24)

as = αs/(2π) A(1)
a = 2Ca σ̂(0)

ab
A0

where , 1),  is  the  lowest-order
partonic  cross  section,  and  represents  the  IR-finite
part of  the  renormalized  virtual  correction  in  the  dimen-
sional regularization scheme, i.e., 

σ̂
(vir.)
ab (M2,µ2

R) =as

4πµ2
R

M2

ϵ Γ(1− ϵ)
Γ(1−2ϵ)

(
A−2

ϵ2

+
A−1

ϵ
+A0

)
σ̂(0)

ab (M2)+O(ϵ). (25)

Gab G̃abThe Sudakov form factors  and  collect all the log-
arithmically-enhanced contributions and take the form 

Gab(ω,M2,µ2
R) = LG(1)

ab (λ)+
+∞∑
n=0

an
sG

(n+2)
ab (λ,M2/µ2

R),

(G = G or G̃), (26)

λ = asβ0L L = lnω ω = M2b̄2 N̄ G = G
G̃ G(n+1)

ab (n = 0,1,2, ...)
NnLL

LG(1)
ab G(2)

ab
ϕ0A0

G(1)
ab G(2)

ab
Cab

with , ,  and  and  for 
and , respectively. The function  on
the  right  side  of  Eq.  (26)  resums all  the  contribu-
tions.  In  this  study,  we  only  consider  the  LL  and  NLL
terms,  i.e.,  and , because  the  electroweak  pro-
duction  of  is  studied  at  the  NLO+NLL  accuracy.
The analytic expressions for  and  can be found in
Ref. [38]. Finally, the  function in Eq. (18) at the NLL
accuracy can be expressed as 

Cab(N,µ2
R) = δab+as

[
π2

6
Caδab−P′ab(N)

]
, (27)

P′ab(N) O(ϵ)where  is the  part of the unregulated Altarelli-
Parisi splitting function in the Mellin N-space, i.e., 

Pab(z, ϵ) = Pab(z)+ ϵP′ab(z),

P′ab(N) =
∫ 1

0
dzzN−1P′ab(z). (28)

σ̂
(res.)
ab

pT

σ̂
(f.o.)
ab

pT M/
√

ŝ

The resummed partonic cross section  gives the
dominant  contribution  in  the  small-  and threshold  re-
gions,  while  the  fixed-order  partonic  cross  section 
dominates at large  and small . To obtain a reli-
able  theoretical  prediction  with  uniform  accuracy  in  all
kinematical regions,  the  resummed  and  fixed-order  res-

ults should be combined consistently by subtracting their
overlap, 

σ̂ab = σ̂
(res.)
ab + σ̂

(f.o.)
ab − σ̂

(o.l.)
ab . (29)

σ̂ab

σ̂
(o.l.)
ab

σ̂
(res.)
ab

O(αs)

This  matching  procedure  guarantees  that  the  combined
result  contains both the perturbative contributions up
to  the  specific  fixed  order  and  the  logarithmically-en-
hanced  contributions  from  higher  orders.  At  the
NLO+NLL  accuracy,  in  Eq.  (29)  can  be  obtained
by expanding the resummed partonic cross section 
to , i.e., 

σ̂
(o.l.)
ab = σ̂

(res.)
ab (αs = 0)+αs

dσ̂(res.)ab

dαs
(αs = 0). (30)

σ̂ab

After multiplying the Mellin moments of the PDFs to the
NLO+NLL  matched  partonic  cross  section , we  ob-
tain  the  hadronic  differential  cross  section  in  the  Mellin
N-space.  To  get  back  to  the  physical  space,  an  inverse
Mellin transform, 

F(τ) =
1

2πi

∫
CN

dNτ−N F(N), (31)

CN

CN

should be applied to the right side of Eq. (13). To achieve
this,  we  must  comprehensively  estimate  the  singularities
in the Mellin N-space and choose an appropriate integra-
tion contour .  There are two types of singularities for
the  hadronic  differential  cross  section  in  the  Mellin N-
space:  (1)  the  poles  in  the  Mellin  moments  of  the  PDFs
(Regge poles), and (2) the Landau pole related to the run-
ning of the strong coupling constant. The integration con-
tour  in the complex N-plane is chosen as [15] 

CN : N = N(y) ≡C+ ye±iϕ, y ∈ [0,+∞) (32)

ϕ ∈ [π/2,π)

CN

where  and the constant C is chosen such that
the  Regge  and  Landau  poles  lie  to  the  left  and  right  of

, respectively.
In  principle,  for  NLO+NLL  calculations,  we  should

employ resummation-improved PDFs for initial-state par-
ton  convolution.  The  threshold-resummation  improved
PDFs are  now  available  with  the  NNPDF3.0  set.  Com-
pared  to  the  NNPDF3.0  global  fit,  the  threshold-resum-
mation improved PDF fit  has to be performed with a re-
duced  data  set  involving  deep-inelastic  scattering,  Drell-
Yan, and top-pair production data,  because the threshold
resummation calculations are not readily available for all
the processes  employed  in  the  global  analysis.  The  re-
duced  data  set  used  in  the  fit  of  the  threshold-resumma-
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tion  improved  PDF  set  would  induce  a  relatively  larger
PDF error compared to the global PDF set. In this study,
we adopt  the factorization method proposed in Ref.  [18]
to  combine  the  smaller  PDF error  of  the  global  PDF set
with the resummation effect from the threshold-resumma-
tion  improved  PDF  set.  In  the  factorization  method,  the
NLO+NLL QCD corrected  cross  section  can  be  approx-
imately calculated by 

σNLO+NLL = K ×σNLO
∣∣∣
(NLO global) , (33)

where 

K = KPDF×KPME , (34)
 

KPDF =
σNLO+NLL

∣∣∣
(NLO+NLL reduced)

σNLO+NLL
∣∣∣
(NLO reduced)

,

KPME =
σNLO+NLL

∣∣∣
(NLO global)

σNLO
∣∣∣
(NLO global)

(35)

KPDF

KPME

KPME

which  describe  the  impact  of  the  threshold-resummation
improved  PDFs  and  the  NLL  resummation  effect  from
the  partonic  matrix  element,  respectively.  Subscripts
“NLO+NLL reduced ” and “NLO reduced ” appearing in
the definition of  denote the threshold-resummation
improved PDF set NNPDF30_nll_disdytop and its fixed-
order version NNPDF30_nlo_disdytop [39], respectively.
It  is  well  known  that  the  NNPDF  cannot  be  properly
transformed to the Mellin space; the refit  of the NNPDF
replicas in  the Mellin  space would lead to  some conver-
gence  issues  [40].  Fortunately,  however,  is expec-
ted to be largely independent of the PDF choice because
the PDF sets used in  are estimated at the same per-
turbative  order  [40].  This  feature  has  been  verified  with
the  CT18NLO  and  MSTW2008nlo68cl  PDFs,  and  thus
we  choose  CT18NLO  as  the  “NLO  global ”  PDF  set  in
our calculations. 

B.    QCD production via gluon-gluon fusion
Compared  to  the  electroweak  production  via  quark-

antiquark annihilation,  the  gluon-initiated  QCD  produc-
tion of the scalar-pseudoscalar pair is a loop-induced pro-

gg→ ϕ0A0

Z2

duction  channel.  This  production  mechanism  should  be
taken into  consideration  at  the  LHC  due  to  the  high  lu-
minosity  of  gluon  in  proton.  In Fig.  2 we  depict  some
representative  Feynman  diagrams  for  at  the
lowest order. Note that the production rate relies not only
on  the  heavy-quark  Yukawa  couplings,  but  also  on  the
triple  Higgs  self-couplings.  Unlike  the  quark-antiquark
annihilation channel,  the  loop-induced  gluon-gluon  fu-
sion channel is extremely sensitive to the Yukwawa inter-
action  of  the  2HDM.  Due  to  the  introduction  of  a  soft
breaking  symmetry  to  avoid  tree-level  FCNCs,  each
fermion  type  is  only  able  to  couple  to  one  of  the  two
Higgs doublets. There are four allowed types of 2HDMs,
type-I, type-II, lepton-specific, and flipped, which corres-
pond to the four different types of Yukawa interaction. In
this  study,  we  mainly  focused  on  the  type-I  2HDM  and
calculated  the  gluon-gluon  fusion  channel  by  using  the
modified FeynArts-3.9, FormCalc-7.3,  and LoopTools-
2.8 packages [41-43]. 

IV.  NUMERICAL RESULTS AND DISCUSSION

pp→ ϕ0A0+X 13 TeV
In this section, we provide some numerical results for

 at  the  LHC  in  the  type-I  2HDM.
The SM input parameters used in this study are set as [44] 

mW = 80.379 GeV, mZ = 91.1876 GeV, mt = 172.76 GeV,
GF = 1.1663787×10−5 GeV−2, αs(mZ) = 0.118.

(36)

Z0→ H0A0/h0A0

The input  parameters  for  the  Higgs  sector  of  the  2HDM
should satisfy  the  theoretical  constraints  from  perturbat-
ive unitarity [45], stability of vacuum [46], and tree-level
unitarity  [47],  which  can  be  checked  by  2HDMC  [19].
Moreover,  the  high-energy  experiments  can  also  give
stringent constraints on the 2HDM input parameters. One
of  the  experimental  limits  is  that  the  partial  width  of

 cannot  exceed  2σ uncertainty  of  the Z-
width  measurement  [44], and  others  come  from  the  re-
striction of  the  physical  observables  of B meson decays,
the measurement of the SM-like Higgs property, and the
direct  search  of  Higgs  state  at  the  LEP,  Tevatron,  and
LHC,  which  are  integrated  in  the SuperIso [48],
HiggsSignals [49],  and Higgsbounds [50] packages,  re-
spectively.

gg→ ϕ0A0Fig. 2.    Representative Feynman diagrams for  at the lowest order.
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2×29

We use the CT14lo PDF set [24] to perform LO cal-
culation,  and  employ  the  CT18NLO  PDF  [51]  to  obtain
NLO  and  NLO+NLL  QCD  corrected  cross  sections.
CT18NLO  PDF  contains  1  central  PDF  set  and 
Hessian replicas.  The  PDF  uncertainties  of  a  cross  sec-
tion σ calculated  with  the  CT18NLO  PDF  are  given  by
[52] 

δ+PDF =
1
σ0

√√√ 29∑
i=1

[
max

{
σi+−σ0, σi−−σ0, 0

}]2
,

δ−PDF =
1
σ0

√√√ 29∑
i=1

[
max

{
σ0−σi+, σ0−σi−, 0

}]2
, (37)

σ0

σi± (i = 1, ...,29)
µF

µR µF = µR = µ

where  is  the  central  value  calculated  with  central  set
and  are the cross sections evaluated with
replicas.  The factorization scale  and the renormaliza-
tion scale  are set to be equal, i.e., , for sim-
plicity. The scale uncertainties of an integrated cross sec-
tion σ are defined by 

δ+µ =
max

{
σ(µ)

∣∣∣µ0/2 ⩽ µ ⩽ 2µ0
}−σ(µ0)

σ(µ0)
,

δ−µ =
min

{
σ(µ)

∣∣∣µ0/2 ⩽ µ ⩽ 2µ0
}−σ(µ0)

σ(µ0)
, (38)

µ0

pp→ qq̄→ ϕ0A0

where  is the central scale. The total theoretical error is
defined as the sum in quadrature of the PDF and scale un-
certainties.  For  the  quark-initiated  Drell-Yan  production
channel, , the production rate will be cal-
culated at the NLO+NLL accuracy in QCD, and the NLO
and  NLO+NLL  relative  corrections  are  respectively
defined as 

δNLO =
σNLO−σLO
σLO

, δNLO+NLL =
σNLO+NLL−σLO

σLO
. (39)

pp→ gg→
ϕ0A0
Regarding  the  gluon-gluon  fusion  channel, 

,  we  only  consider  the  lowest-order  contribution
since it is a loop-induced channel. 

A.    Integrated cross section

ϕ0A0 √
s = 13 TeV

ϕ0

A0

In this subsection, we present the integrated cross sec-
tions for  associated production at  LHC
at  the  alignment  limit  in  the  2HDM.  The  masses  of 
and  can  be  alternatively  described  by  the  following
three parameters, 

m =min
(
mϕ0 , mA0

)
, ∆m =

∣∣∣mϕ0 −mA0

∣∣∣ ,
ϵ = sign

(
mϕ0 −mA0

)
, (40)

ϕ0 A0

ϵ = +1 mϕ0 > mA0 ϵ = −1
mϕ0 < mA0

i.e.,  the minimal mass and mass hierarchy of  and .
The two scenarios in which  ( ) and 
( ) may  be  referred  to  as  the  normal  mass  hier-
archy and inverted mass hierarchy, respectively.

ϕ0 A0

ϵ

0 100 GeV ∆m
ϕ0

A0

The  Drell-Yan  production  channel  depends  only  on
the  masses  of  and 1).  Furthermore,  its  integrated
cross section is independent of . In our calculations, we
set , 50, and  as three benchmark values of ,
which correspond, respectively, to the following three -

 mass splitting scenarios:
 

∆m = 0● degenerate scenario: 
 

0 < ∆m < mZ

●  hierarchical  scenario  with  small  mass  splitting:

 

∆m > mZ

●  hierarchical  scenario  with  large  mass  splitting:

 

pp→ qq̄→ ϕ0A0

∆m = 0 100 GeV
µ0 = mϕ0 +mA0

KPDF
δNLO+NLL

KPME
δNLO KPDF

The LO, NLO, NLO+NLL QCD corrected integrated
cross  sections  and  the  corresponding  theoretical  relative
errors  induced  by  the  factorization/renormalization  scale
and  PDFs  for  as  functions  of m for

, 50 and  are given in Tables 4, 5, and 6,
respectively.  The  central  scale  is  set  as .
There  is  no  PDF-induced  theoretical  error  for  the  LO
cross  section  because  the  CT14lo  PDF  used  in  the  LO
calculation contains only one central set but no PDF rep-
licas.  To study the  full  NLL resummation effect  and the
impact  of  the  threshold-resummation  improved  PDFs  in
our  calculations,  we  also  provide  the  factorization K-
factors K and  in these tables. The NLO+NLL QCD
relative  correction  and  the  matrix-element-in-
duced  factorization K-factor  can be  straightfor-
wardly calculated by using , K, and , 

δNLO+NLL = (K −1)+KδNLO, KPME =
K

KPDF
. (41)

m = 50 GeV
∆m = 0 100 GeV

800 GeV
K −1

As shown in Tables  4, 5,  and 6,  the QCD correction
can significantly  enhance  the  LO  production  cross  sec-
tion,  especially  for  light  scalar-pseudoscalar  pair.  The
NLO  QCD  relative  correction  exceeds  30%  at

,  and  decreases  gradually  to  approximately
5.9%, 5.3%, and 4.8% for ,  50,  and , re-
spectively,  as m increases  to . The full  NLL re-
summation correction (quantitatively described by )
slightly  enhances  the  NLO QCD corrected  cross  section
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sin(β−α)1)  has been fixed at the alignment limit.

123102-8



KPDF pp→ qq̄→ ϕ0A0 √
s = 13 TeV

ϕ0 A0

∆m = 0

Table 4.    LO, NLO, NLO+NLL QCD corrected integrated cross sections, NLO QCD relative corrections, and factorization K-factors
(K and ) for  at  LHC within the 2HDM. The cross section central values are folded with the theoretic-
al relative errors estimated from scale variation (first quote) and PDFs (second quote). The mass splitting between  and  is fixed to
zero ( ).

m [GeV] σLO[fb] σNLO[fb] σNLO+NLL[fb] δNLO [%] K KPDF

50 4923.7+8.5%
−9.4% 6717.8+0.7%+2.8%

−0.4%−3.7% 6731.0+0.0%+2.8%
−0.6%−3.7% 36.4 1.002 1.013

100 218.7+2.5%
−3.2% 290.2+0.9%+2.9%

−0.4%−3.8% 290.8+0.0%+2.9%
−0.4%−3.8% 32.7 1.002 1.011

150 49.41+0.1%
−0.5% 63.75+1.4%+3.3%

−0.9%−4.3% 63.94+0.0%+3.3%
−0.4%−4.3% 29.0 1.003 1.009

200 16.98+1.2%
−1.4% 21.40+1.6%+3.6%

−1.3%−4.7% 21.49+0.1%+3.6%
−0.6%−4.7% 26.0 1.004 1.006

300 3.504+3.4%
−3.3% 4.249+1.9%+4.3%

−1.8%−5.7% 4.267+0.8%+4.3%
−1.2%−5.7% 21.3 1.004 1.001

400 1.051+4.9%
−4.5% 1.233+2.2%+5.0%

−2.2%−6.3% 1.237+1.5%+5.0%
−1.7%−6.3% 17.3 1.003 0.994

500 0.3848+6.0%
−5.4% 0.4387+2.4%+5.8%

−2.5%−7.1% 0.4392+2.1%+5.8%
−2.2%−7.1% 14.0 1.001 0.985

600 0.1597+6.9%
−6.2% 0.1773+2.6%+6.6%

−2.8%−7.9% 0.1771+2.6%+6.6%
−2.9%−7.9% 11.0 0.999 0.977

700 0.07213+7.8%
−6.9% 0.07818+2.8%+7.5%

−3.1%−8.8% 0.07770+3.2%+7.5%
−3.5%−8.8% 8.39 0.994 0.966

800 0.03465+8.5%
−7.4% 0.03670+3.0%+8.4%

−3.3%−9.7% 0.03618+3.7%+8.4%
−4.4%−9.7% 5.92 0.986 0.952

∆m = 50 GeVTable 5.    Same as Table IV but for .

m [GeV] σLO [fb] σNLO [fb] σNLO+NLL [fb] δNLO  [%] K KPDF

50 611.1+4.5%
−5.3% 824.5+0.5%+2.8%

−0.0%−3.7% 825.8+0.0%+2.8%
−0.4%−3.7% 34.9 1.002 1.012

100 93.88+1.1%
−1.6% 122.7+1.2%+3.1%

−0.7%−4.0% 123.0+0.0%+3.1%
−0.3%−4.0% 30.7 1.002 1.010

150 27.61+0.4%
−0.7% 35.19+1.5%+3.5%

−1.1%−4.5% 35.31+0.0%+3.5%
−0.5%−4.5% 27.5 1.003 1.007

200 10.77+1.9%
−2.0% 13.43+1.7%+3.8%

−1.4%−4.9% 13.48+0.3%+3.8%
−0.8%−4.9% 24.7 1.004 1.005

300 2.517+3.8%
−3.6% 3.026+2.0%+4.5%

−1.9%−5.8% 3.038+1.0%+4.5%
−1.3%−5.8% 20.2 1.004 0.999

400 0.8032+5.2%
−4.8% 0.9353+2.2%+5.2%

−2.3%−6.5% 0.9388+1.6%+5.2%
−1.9%−6.5% 16.4 1.004 0.992

500 0.3053+6.2%
−5.6% 0.3457+2.4%+6.0%

−2.6%−7.3% 0.3458+2.2%+6.0%
−2.5%−7.3% 13.2 1.000 0.983

600 0.1299+7.2%
−6.4% 0.1433+2.7%+6.8%

−2.8%−8.1% 0.1430+2.8%+6.8%
−3.1%−8.1% 10.3 0.998 0.974

700 0.05969+7.9%
−7.0% 0.06432+2.9%+7.7%

−3.1%−9.0% 0.06361+3.7%+7.7%
−3.3%−9.0% 7.76 0.989 0.960

800 0.02904+8.6%
−7.6% 0.03059+3.1%+8.7%

−3.4%−9.9% 0.03008+3.9%+8.7%
−4.4%−9.9% 5.34 0.983 0.949

∆m = 100 GeVTable 6.    Same as Table IV but for .

m[GeV] σLO[fb] σNLO[fb] σNLO+NLL[fb] δNLO [%] K KPDF

50 185.0+2.4%
−3.0% 245.3+1.0%+2.9%

−0.4%−3.9% 245.7+0.0%+2.9%
−0.4%−3.9% 32.6 1.002 1.011

100 45.97+0.1%
−0.4% 59.26+1.4%+3.3%

−1.0%−4.3% 59.43+0.0%+3.3%
−0.4%−4.3% 28.9 1.003 1.009

150 16.30+1.2%
−1.4% 20.53+1.5%+3.6%

−1.4%−4.8% 20.60+0.1%+3.6%
−0.7%−4.8% 26.0 1.003 1.006

200 7.033+2.4%
−2.5% 8.683+1.8%+4.0%

−1.6%−5.2% 8.717+0.5%+4.0%
−0.9%−5.2% 23.5 1.004 1.004

300 1.832+4.2%
−3.9% 2.183+2.1%+4.7%

−2.0%−5.9% 2.192+1.1%+4.7%
−1.5%−5.9% 19.2 1.004 0.998

400 0.6183+5.5%
−5.0% 0.7146+2.3%+5.4%

−2.3%−6.7% 0.7168+1.8%+5.4%
−2.1%−6.7% 15.6 1.003 0.990

500 0.2433+6.5%
−5.8% 0.2736+2.5%+6.2%

−2.6%−7.5% 0.2738+2.3%+6.2%
−2.7%−7.5% 12.5 1.001 0.982

600 0.1059+7.4%
−6.5% 0.1161+2.7%+7.1%

−2.9%−8.4% 0.1157+2.9%+7.1%
−3.2%−8.4% 9.63 0.997 0.972

700 0.04949+8.1%
−7.2% 0.05301+2.9%+7.9%

−3.2%−9.2% 0.05250+3.4%+7.9%
−3.8%−9.2% 7.11 0.990 0.959

800 0.02438+8.8%
−7.7% 0.02554+3.1%+9.0%

−3.4%−10.1% 0.02505+3.9%+9.0%
−4.4%−10.1% 4.76 0.981 0.945
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m < 500 GeV

KPDF−1

m = 800 GeV

KPME−1

ϕ0 A0

800 GeV

as ,  but  suppresses  it  by  approximately  2%
in the  high  mass  region.  Compared  to  the  full  NLL  re-
summation  correction,  the  contribution  from  the
threshold-resummation improved PDFs is more sensitive
to m. The corresponding relative correction, i.e., ,
decreases monotonically as the increase of m, and reaches
approximately  –5%  when .  Moreover,  we
can find that the impact of the threshold-resummation im-
proved PDFs becomes increasingly important with the in-
crement  of m for  heavy scalar-pseudoscalar  pair.  On the
contrary, the NLL QCD relative correction from the par-
tonic  matrix  element, ,  increases  monotonically
with  the  increment  of m.  It  is  almost  independent  of  the
mass splitting between  and , varying from approx-
imately –1% to 4% as m increases from 50 to .

ϕ0A0

mϕ0 mA0 m2
12

tanβ

H0

CP H0 = ϕ0

sin(β−α) = 1
mh0 mH±

pp→ gg→ ϕ0A0 √
s = 13 TeV

0.06 fb
σgg/σ

NLO+NLL

The QCD production of  via gluon-gluon fusion
depends  not  only  on  and ,  but  also  on  and

,  since  the  Yukawa  couplings  and  triple  Higgs  self-
couplings  are  involved  in  this  production  channel.  We
calculate  the  lowest-order  production  cross  section  for
this  loop-induced  channel  at  the  two  benchmark  points
listed  in Table  7,  which  can  satisfy  both  theoretical  and
experimental  constraints.  At  both  benchmark  points, 
is  the  BSM -even  Higgs  boson,  i.e., ,  and

 at the alignment limit. The other two Higgs
parameters of 2HDM,  and , are not given in Ta-
ble  7,  because the scalar-pseudoscalar  pair  production at
QCD  NLO+NLL  accuracy  is  completely  independent
from the  SM-like  and  charged  Higgs  bosons.  The  integ-
rated  cross  sections  for  at 
LHC in the type-I  2HDM at  BP1 and BP2,  listed in Ta-
ble  8,  are  approximately  1  and ,  respectively.  We
can see that , i.e., the ratio of the contribu-
tion  from  gluon-gluon  fusion  channel  to  the  NLO+NLL
QCD corrected cross section of quark-antiquark annihila-
tion channel, is approximately 2.9% at BP1 and can reach
8.0% at BP2. It can be concluded that the scalar-pseudo-
scalar pair production at the LHC in the type-I 2HDM is
predominated by  the  quark-initiated  Drell-Yan  produc-
tion  channel,  and  the  gluon-gluon  fusion  contribution  is
non-negligible  and should  be  taken into  consideration in

precision predictions. 

B.    Transverse momentum distribution

pT

ϕ0A0

pT

ϕ0A0
√

s = 13 TeV

µ0 = mϕ0 +mA0

pT pT

pT pT → 0

pT

pT

Next, we  address  the  transverse  momentum distribu-
tion of the scalar-pseudoscalar pair produced at the LHC.
Since  the  one-loop-induced  gluon-gluon  fusion  channel
does not contribute to the  distribution due to the mo-
mentum  conservation,  we  consider  only  the  quark-initi-
ated  Drell-Yan  production  channel.  The  NLO,
NLO+NLL QCD corrected  transverse  momentum distri-
butions of  as well as the overlap between the NLO
QCD  corrected  and  NLL  QCD  resummed  distribu-
tions  (labeled  by  “NLO ”,  “NLO+NLL ”,  and  “ OVER-
LAP ”)  for  the  Drell-Yan  production  of  at

 LHC in the 2HDM at the benchmark points
BP1  and  BP2  are  shown in Figs.  3(a)  and 4(a), respect-
ively. The central scale is . As expected, the
NLO QCD corrected  distribution and the overlap 
distribution are in good agreement with each other in the
small-  region  [16]  and  become  divergent  as ,
but  the  discrepancy  between  them  becomes  increasingly
evident  with  the  increment  of . The  relative  discrep-
ancy  between  the  NLO  QCD  corrected  and  the  overlap

 distributions, defined as 

η =

(
dσNLO

dpT
− dσOVERLAP

dpT

)/
dσNLO

dpT
, (42)

pT = 150
300 GeV

pT
pT

pT
1.9 fb/GeV pT ∼ 5.5 GeV

pT
pT

pT ∼ 7.5 GeV
0.027 fb/GeV

can  reach  about  18.2%  and  42.6%  when  and
 at BP1 and BP2, respectively. Compared to the

NLO  QCD  corrected  distribution,  the  NLO+NLL
QCD corrected  distribution is finite and more reliable
in  the  whole  final-state  phase  space.  It  increases  sharply
in  the  small-  region,  reaches  its  maximum  of  around

 in  the  vicinity  of , and  then  de-
creases approximately  logarithmically  with  the  incre-
ment of  at the benchmark point BP1. Concerning the
benchmark point BP2, the NLO+NLL QCD corrected 
distribution  peaks  at  and  its  maximum  is
approximately .

The  scale  uncertainty  of  a  differential  distribution
with  respect  to  some  kinematic  variable x can be  estim-
ated by 

δµ(x) =max
{

dσ
dx

(µ1)− dσ
dx

(µ2)
}/

dσ
dx

(µ0) ,

µ1, µ2 ∈
[
µ0/2, 2µ0

]
. (43)

pT

δNLOµ δNLO+NLLµ

pT

In Figs.  3(b)  and 4(b),  we plot  the  scale  uncertainties  of
the  NLO  and  NLO+NLL  QCD  corrected  distribu-
tions, denoted by  and , at BP1 and BP2, re-
spectively.  As  shown  in  the  lower  panels  of Figs.  3(b)
and 4(b), the scale uncertainty of  the NLO QCD correc-
ted  distribution  increases  gradually,  while  the  scale

Table 7.    Benchmark points BP1 and BP2.

Benchmark point mH0 /GeV mA0 /GeV m2
12 tanβ

BP1 150 200 2000 10

BP2 400 500 50000 2

pp→
gg→ ϕ0A0 √

s = 13 TeV
Table  8.    Lowest-order  integrated  cross  sections  for 

 at  LHC in type-I 2HDM at the bench-
mark points BP1 and BP2.

Benchmark point BP1 BP2

σgg/fb 1.020+26.4%+3.7%
−19.8%−3.4% 0.05742+31.8%+8.0%

−22.7%−6.4%
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pT

pT δNLOµ
δNLO+NLLµ

δNLO+NLLµ

δNLOµ pT

pT
pT

pT
pT

uncertainty of the NLO+NLL QCD corrected  distribu-
tion first  decreases  consistently  before  reaching  its  min-
imum and  then  increases  monotonically,  with  the  incre-
ment  of .  Some  representative  values  of  and

 are given in Table 9. This table, as well as Figs.
3(b)  and 4(b),  clearly  shows  that  is  much  less
than , especially in the intermediate-  region. Thus,
we  conclude  that  the  resummation  of  higher-order  large
logarithmic  contributions  can  significantly  improve  the
fixed-order  prediction  for  the  distribution;  the
NLO+NLL QCD corrected  distribution is much more
reliable  in  the  whole  region  compared  to  the  NLO
QCD corrected  distribution. 

C.    Invariant mass distribution

13 TeV

µ0 = M
ϕ0A0

In this subsection, we discuss the threshold resumma-
tion effect on the invariant mass distribution of the scalar-
pseudoscalar  pair  produced  at  the  LHC  in  the
type-I  2HDM.  The  central  scale  is  set  to  the  invariant
mass  of  the  final-state  scalar-pseudoscalar  pair,  i.e.,

. In the upper panels of Figs. 5(a) and 6(a), we de-
pict  the  invariant  mass  distributions  of  the  system

ϕ0A0

ϕ0A0

M ∼ 450 GeV
M ∼ 1150 GeV

for both  quark-initiated  electroweak  Drell-Yan  produc-
tion and gluon-initiated QCD production of  at BP1
and  BP2,  respectively.  The  corresponding  NLO  and
NLO+NLL  QCD  relative  corrections  to  the  Drell-Yan
production channel are provided in the lower panels. The

 invariant mass  distribution  of  the  Drell-Yan  chan-
nel  increases  rapidly  near  the  production  threshold,  and
then  decreases  consistently  after  reaching  its  maximum,
with  the  increment  of M.  It  peaks  at  for
BP1 and  for BP2, respectively, at both LO

pT pp→ qq̄→ ϕ0A0 √
s = 13 TeV

pT

Table 9.    Scale  uncertainties  of  NLO and NLO+NLL QCD
corrected  distributions  for  at 
LHC within the 2HDM at BP1 and BP2 for some typical val-
ues of .

Benchmark
point

BP1 BP2

pT = 1 GeV pT = 150 GeV pT = 2 GeV pT = 300 GeV

δNLOµ 20.9% 27.2% 28.7% 34.0%

δNLO+NLLµ

17.2% 16.3% 16.9% 15.7%

min. ≃ 1.6% (@ pT ∼45GeV) min. ≃ 2.0% (@ pT ∼80GeV)

ϕ0A0 pp→ qq̄→ ϕ0A0

√
s = 13 TeV

Fig.  3.    (color  online)  (a)  Transverse momentum distribution of  final-state  and (b)  its  scale  uncertainty for  at
 LHC within the 2HDM at the benchmark point BP1.

 

Fig. 4.    (color online) Same as Fig. 3 but at BP2.
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ϕ0A0

dσgg/dσNLO+NLL M = 400 GeV
M = 1000 GeV

δNLO

δNLO+NLL

400 GeV 3 TeV
∼ ∼

M ∈ [1, 4] TeV

and  NLO+NLL  accuracies.  Compared  to  the  Drell-Yan
channel,  the  invariant  mass  distribution  of  the
gluon-gluon fusion  channel  is  much  smaller,  and  de-
creases more quickly with the increment of M.  The ratio
of  the  differential  cross  sections  of  the  two  channels,

,  is approximately 8.1% at 
for  BP1  and  24.9%  at  for BP2,  respect-
ively, and approaches zero rapidly as the increase of M. It
implies that the contribution from the gluon-gluon fusion
channel  is  indispensable  near  the  production  threshold,
but  negligible  in  the  high  invariant  mass  region.  The
NLO  and  NLO+NLL  QCD  relative  corrections  ( 
and ) to  the  Drell-Yan  channel  decrease  gradu-
ally with the increment of M. They decrease from 29.8%
to 1.4% and from 31.0% to −1.3%, respectively, as M in-
creases from  to  at BP1, and vary corres-
pondingly in the range of −7.3%  22.4% and −23.9% 
25.9% as  at BP2.

ϕ0A0

KPDF

To further demonstrate the full NLL resummation ef-
fect and  the  impact  of  the  threshold-resummation  im-
proved  PDFs  on  the  invariant  mass  distribution  of
the Drell-Yan channel, we plot the factorization K-factors
K and  as  functions of M in Figs.  5(b)  and 6(b)  for

δµ δPDF δtot

400 GeV
1.7 TeV

3 TeV

ϕ0A0 M < 2.7 TeV

KPDF

400 GeV 3 TeV KPME

K/KPDF
KPDF

1.00 1.08

1 TeV < M < 2 TeV
1.04 M ∼ 1.8 TeV 0.83

4 TeV

BP1  and  BP2,  respectively.  The  theoretical  errors  from
scale  variation  and  PDFs  as  well  as  their  combination,
i.e., , , and , are also displayed in these two fig-
ures.  At  the  benchmark  point  BP1, K increases  slowly
from 1.01 to 1.04 as the increment of M from  to

,  and  then  gradually  decreases  to  0.97  as M in-
creases  to .  The  full  NLL  resummation  correction
enhances the  NLO QCD corrected  invariant  mass  distri-
bution of  in the region of , but it would
reduce the invariant mass distribution at sufficiently high
invariant  mass.  However, , which  quantitatively  re-
flects the impact of the threshold-resummation improved
PDFs, decreases consistently from 1.01 to 0.90 as M var-
ies  from  to . ,  which  describes  the
NLL resummation  effect  from  the  partonic  matrix  ele-
ment  and  is  calculated  by ,  shows  the  opposite
tendency  compared  to :  it  increases  monotonically
from  to  with the increment of M. At the bench-
mark  point  BP2, K is  fairly  stable  in  the  range  of

;  it  reaches  its  maximum  of  around
 at  and  subsequently  decreases  to 

as M increases  to . Simultaneously,  a  global  sup-
pression induced  by  the  threshold-resummation  im-

ϕ0A0 KPDF

δµ δPDF δtot ϕ0A0 √
s = 13 TeV

Fig. 5.    (color online) (a) Invariant mass distribution of final-state  and (b) factorization K-factors (K and ) as well as theoret-
ical relative errors ( , , and ) for  associated production at  LHC in type-I 2HDM at the benchmark point BP1.

 

Fig. 6.    (color online) Same as Fig. 5 but at BP2.
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M = 4 TeV KPDF = 0.73

KPME
4 TeV

M = 4 TeV KPDF−1 = −27 δNLO =
−7.3 KPME−1 = 13

proved  PDFs  can  be  clearly  observed  in  the  invariant
mass  distribution.  Such  suppression  effect  is  very  small
and  could  be  neglected  at  relatively  low  invariant  mass,
but becomes more and more apparent as the increasing of
M.  At , ;  the contribution from the
threshold-resummation improved PDFs is more notable at
high invariant  mass  compared  to  the  NLO QCD correc-
tion.  On  the  contrary,  increases  from 1.02  to  1.13
as M increases  from  1  to .  In  the  high  invariant
mass  region,  the  contribution  from  the  threshold-resum-
mation improved  PDFs  is  the  dominant  correction  com-
pared to  the  NLO  QCD  correction  and  the  NLL  resum-
mation  correction  from the  partonic  matrix  element.  For
example,  at , %, 

% and %, respectively. 

V.  SUMMARY

13 TeV

Searching for BSM Higgs bosons is an important task
at the LHC and future high-energy colliders. In this study,
we comprehensively analyze the scalar-pseudoscalar pair
production  at  the  LHC  at  the  alignment  limit  in
the type-I  2HDM. The Collins-Soper-Sterman resumma-
tion approach and the factorization method are employed
to resum  the  NLL  contributions  and  to  evaluate  the  im-
pact of  the  threshold-resummation  improved  PDFs,  re-
spectively, when addressing the quark-initiated Drell-Yan

mϕ0 mA0

KPDF−1 KPME−1
ϕ0 A0

ϕ0A0

pT

pT

production channel. Both the integrated cross section and
the differential  distributions  with  respect  to  the  trans-
verse  momentum  and  invariant  mass  of  the  produced
scalar-pseudoscalar  pair  are  provided.  For  quark-anti-
quark annihilation  channel,  the  NLO  QCD  relative  cor-
rection can exceed 30% in the low Higgs mass region, but
decreases  rapidly  as  the  increment  of  and .  The
relative correction induced by the threshold-resummation
improved  PDFs  and  the  NLL  resummation  correction
from the partonic matrix element,  and ,
are  insensitive  to  the  mass  splitting  between  and ,
and decreases  and  increases  respectively  with  the  incre-
ment  of  Higgs mass.  They could be neglected compared
to the NLO QCD correction in the low invariant mass re-
gion, but  become  increasingly  important  with  the  incre-
ment  of  the  invariant  mass  of , and  can  even  pre-
dominate  in  the  high  invariant  mass  region.  Moreover,
the  anomalous  behavior  of  the  NLO  QCD  corrected
transverse momentum distribution in the small-  region
can be resolved, and the scale uncertainty can be heavily
reduced,  especially  in  the intermediate-  region, by in-
cluding  the  NLL  resummation  correction.  Compared  to
the  quark-initiated  Drell-Yan  channel,  the  contribution
from the  gluon-gluon  fusion  channel  is  negligible  in  the
high  invariant  mass  region,  but  indispensable  and  even
comparable to the NLO QCD correction near the produc-
tion threshold.
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