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Abstract: We present a dispersive representation of the  partial-wave amplitude based on unitarity and
analyticity. In this representation, the right-hand-cut contribution responsible for  final-state-interaction effects is
taken into account via an Omnés formalism with elastic  phase shifts as inputs, while the left-hand-cut contribu-
tion is estimated by invoking chiral perturbation theory. Numerical fits are performed to pin down the involved sub-
traction constants. Good fit quality can be achieved with only one free parameter, and the experimental data regard-
ing the multipole amplitude  in the energy region below the  are well described. Furthermore, we extend
the  partial-wave  amplitude  to  the  second  Riemann  sheet  to  extract  the  couplings  of  the .  The
modulus  of  the  residue  of  the  multipole  amplitude  (S )  is ,  and  the  partial  width  of

 at  the pole  is  approximately ,  which is  almost  the same as  that  of  the  reson-
ance, indicating that  strongly couples to the  system.
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I.  INTRODUCTION

Single pion photoproduction off the nucleon has been
extensively studied because  of  its  importance  in  determ-
ining the  spectrum  and  properties  of  the  nucleon  reson-
ances [1-4]. There have been many measurements of this
process,  accumulating  a  wealth  of  experimental  data  on,
e.g., cross  section,  photon  asymmetry,  and  target  asym-
metry; see, e.g., Refs. [5-9]. Based on this dataset, partial
wave analyses were performed to anatomize the underly-
ing structure of the reaction amplitude and justify the ex-
istence  of  the  nucleon  resonances  theoretically.  At  low
energies, this has been successful for exploring the photo-
production processes in chiral perturbation theory (ChPT)
[10-17].  In  combination  with  unitarization  approaches
[18], the valid region of the chiral amplitudes is extended,
and the physical states behave as pole singularities of the
unitarized amplitudes. Nevertheless, most of the unitariz-
ation  methods  only  take  the  unitary  cut  into  account,
while  the  remaining  left-hand  cuts  (l.h.c.s)  are  left  out,
leading  to  the  fact  that  the  proper  analytic  and  crossing
properties of the amplitude are not faithfully guaranteed.

In consequence, spurious poles arise to mimic the contri-
bution of the l.h.c.s,  or even worse, prevent us from dis-
covering certain truly existent poles, e.g., virtual poles, or
subthreshold resonances.
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In  Refs.  [19-21],  a  novel  subthreshold  resonance
named  was  found  in  the S  wave  through  a
prudent  analysis  of  the covariant  chiral  amplitude of 
scattering [22-25] by applying the method of Peking Uni-
versity  (PKU)  representation  [26-31]. The  PKU  repres-
entation  respects  causality  and  has  previously  been  used
to establish the existences of the  and  states [26, 28].
The discovery of the  resonance is nothing but an
improved  implement  of  analyticity  compared  with  other
unitarization  methods.  For  instance,  it  is  pointed  out  in
Ref.  [32] that  the  resonance exists  even in a -
matrix parametrization if a better treatment of analyticity
is  executed.  However,  it  should  be  emphasized  that,  in
the  traditional  matrix method,  without  any  improve-
ment of analyticity, even if a pole emerges from the back-
ground polynomial,  it  is not legitimate to discuss wheth-
er  it  is  physical  or  not;  it  only means that  the  non-back-
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ground part of the  matrix parametrization provides in-
complete  characterization  of  the  whole  physics.  In  PKU
representation, the existence of  actually only de-
pends  on  our  understanding  or  knowledge  of  the  l.h.c
contribution at the qualitative level – that is, its contribu-
tion to  the  phase  shift  is  negative.  In  this  paper,  we  in-
tend to explore the  resonance in  scat-
tering to gain more information on its properties.
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Our  amplitudes are obtained through a dis-
persive  representation,  which  is  set  up  with  the  help  of
unitarity  and  analyticity  [33-36]. The  inputs  of  the  dis-
persive  representation  are  the  final-state-interaction
amplitude  and  the  chiral  tree-level  amplitude
estimating the  left  hand  singularities  of  pion  photopro-
duction.  In  a  single  channel  approximation,  the  former
can be achieved by an Omnès solution with the  scat-
tering phase as input. The l.h.c.s are calculated based on a
chiral Lagrangian with pion and nucleon fields truncated
at  order .  We  review  the  analytic  structures  of  pion
photoproduction amplitudes in Ref.  [37] and analyze the
relevant singularities that arise in our calculation. In addi-
tion, we  find  that  the  kinematic  singularities  in  this  in-
elastic process are rather complicated. Cuts coming from
the kinematic structure depend on the organization of the
analytic functions in the amplitudes. These cuts could be
in  the  complex  plane  and  may  affect  the  residues  of

. To avoid such complexity, we deform these cuts
in a particular way to ensure that they lie on the real axis,
below the pseudo threshold of  scattering.
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We  fit  the  multipole  amplitudes  (S  and
S ) from Ref. [38] below the  peak to determ-
ine the subtraction polynomial in the dispersive represent-
ation. The residue couplings of  can be computed
by  analytic  continuation  of  the  amplitude  to  a  second
sheet, in which the PKU representation of the   mat-
rix is employed. We compare the residues of  ex-
tracted from multipole amplitudes with those of 
obtained  in  Ref.  [39]  to  determine  the  properties  of

 and  obtain  structural  information  by  analogy
with the analysis of .

γN→ πN
This paper is organized as follows. In Sect. II, we set

up  the  dispersive  formalism  for  the  process.
Then, the  l.h.c.s  are  estimated  based  on  chiral  perturba-
tion theory in  Sect.  III,  and we also  perform an analysis
of the singularities that will appear in this pion photopro-
duction process. In the final two sections, numerical res-
ults and a summary are presented, respectively.

γN→ πNII.  DISPERSIVE FORMALISM FOR 

A.    Dispersive representation
γN→ πN′The  unitarity  relation  for  the  partial  wave

amplitude is

M(s+ iϵ)−M(s− iϵ)
2i

=ImM(s+ iϵ)

=T ∗(s+ iϵ)ρ(s+ iϵ)M(s+ iϵ) , (1)

T
S 11 ρ(s)
where  is  the  pion-nucleon  scattering  amplitude  in  the

 wave. The function  is defined as

ρ(s) =
√

(s− sL)(s− sR)
s

, (2)

sR ≡ (mN +mπ)2 sL ≡ (mN −mπ)2where  and . Equivalently,
Eq. (1) can be recast as

M(s+ iϵ) = S(s+ iϵ)M(s− iϵ) , (3)

S(s) = 1+2iρ(s)T (s) πN S

M
M =MR+ML MR

sR
ML
M =MR+ML

where , which is the  scattering 
matrix in  the  single  channel  case.  The  scattering  amp-
litude  can  be  separated  into  two  parts,  i.e.,

.  The  former  part, ,  only  contains  the
right hand cut (RHC) starting at , while the latter part,

,  is  free  of  the  RHC  singularity.  Substituting
 into Eq. (3), one obtains

M+R = SM−R+ (S−1)ML . (4)

M±(s) = lim
ϵ→0
M(s± iϵ)

D(s) s
M(s)

M(s)

For convenience,  the abbreviations 
have been used. To proceed, we introduce a helper func-
tion ,  which  is  analytic  throughout  the  complex 
plane but encodes the same unitarity singularity as .
In  particular,  it  satisfies  the  same  unitarity  condition  as

 along the unitary cut:

D+
D− =

M+
M− = S . (5)

S D(s)By expressing the  matrix in Eq. (4) using , the fol-
lowing relation of spectral functions can be obtained:

Im
(D−1MR

)
= −(ImD−1)ML . (6)

MR

It is  then  straightforward  to  provide  a  dispersive  repres-
entation for  as

MR(s) =D
(
− sn

π

∫ ∞

sR

(
ImD−1)ML

s′n(s′− s)
ds′+P

)
, (7)

n P(s)where  is the number of subtractions, and  is a sub-
traction polynomial. Eventually,

M(s) =ML+D
(
− sn

π

∫ ∞

sR

(
ImD−1)ML

s′n(s′− s)
ds′+P

)
. (8)
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M(s)
D(s) ML(s)

Thus, the pion photoproduction amplitude  is de-
termined  up  to  a  polynomial  once  and  are
known.

D(s)

Based  on  the  unitarity  condition  in  Eq.  (5),  one  can
denote a spectral representation for the auxiliary function

 as follows:

D(s) =
1
π

∫ ∞

sR

T ∗(s)ρ(s′)D(s′)
s′− s

ds′ . (9)

D(s)
The  above  representation  yields  an  integral  equation

for , which has the so-called Omnés solution [40]

D(s) = P̃(s)exp
[ s
π

∫ ∞

sR

δ(s′)
s′(s′− s)

ds′
]
, (10)

P̃
δ(s) πN
where  stands for zero points in the complex plane, and

 is the elastic  phase shift,  in accordance with the
Watson final state interaction (FSI) theorem [41].

III.  ESTIMATE OF THE LEFT-HAND-CUT
CONTRIBUTION IN CHPT

A.    Basics of single one-pion photoproduction
off the nucleon

γN 1π
Single  one-pion  photoproduction  off  the  nucleon

( - ) is the process described by

γ(q)+N(p)→ πa(q′)+N′(p′) , (11)

awhere  is the isospin index of the pion, and the momenta
of  the  particles  are  indicated  in  parentheses.  The isospin
structure of the scattering amplitude can be written as

M(γ+N→ πa+N′) =χ′N
{
δa3M+

+
1
2

[τa, τ3]M−+τ3M0
}
χN , (12)

τa a = 1,2,3
I = 1

2 ,
3
2

M± M0

where  ( )  are Pauli  matrices in isospin space.
Amplitudes with definite isospin  can be obtained
from  and  via1) 2)

MI= 3
2 =

√
2
3
(M+−M−) , (13)

MI= 1
2 = − 1

√
3

(
M++2M−+3M0

)
, (p target) (14)

MI= 1
2 =

1
√

3

(
M++2M−−3M0

)
, (n target) . (15)

MI I = 1
2 ,

3
2

I = ±,0
The  isospin  amplitudes  with  either  or

 can be further decomposed in terms of four inde-
pendent Lorentz operators as follows,

MI(s, t) ≡ū(p′)T Iu(p)

=ū(p′)
[ 4∑

i=1

AI
i (s, t) Li

µϵ
µ
]
u(p) , (16)

where
L1
µ =iγ5γµγ ·q ,

L2
µ =2iγ5

(
Pµq ·q′−q′µP ·q

)
,

L2
µ =γ5

(
γµq′ ·q−q′µγ ·q

)
,

L4
µ =2γ5

(
γµP ·q−Pµγ ·q

)
. (17)

Li
µ

ϵµ u(p)
ū(p′)

Note that the operators  obey the Ward identity [1].
Here,  is the polarization vector of the photon, and 
and  are the spinors of the nucleons.

B.    Calculation of chiral amplitudes at tree level

O(p2)
The  effective  Lagrangian  for  our  calculation  of  the

chiral amplitude up to  reads

Leff =L(1)
πN +L

(2)
πN +L

(2)
ππ , (18)

with the superscripts referring to chiral orders. The terms
in the above equation are given by [42]

L(1)
πN = Ψ̄

(
i̸D−m+

g
2
γµγ5uµ

)
Ψ , (19)

L(2)
πN =Ψ̄σ

µν
[c6

2
f +µν+

c7

2
vs,µν

]
Ψ ,

L(2)
ππ =

F2

4
Tr

[
DµU

(
DµU

)†]
+

F2

4
Tr

(
χU†+Uχ†

)
, (20)

m g F

mN gA Fπ

m = mN
g = gA F = Fπ c6 c7 O(p2)

where , ,  and  are  the  nucleon  mass,  nucleon  axial
coupling, and pion decay constant  in the chiral  limit,  re-
spectively.  Given  our  working  accuracy,  they  are  set
equal to their physical counterparts, , , and , i.e.,
the physical nucleon mass, physical axial charge, and pi-
on  decay  constant,  respectively.  Specifically, ,

,  and .  Here,  and  are  low en-
ergy constants (LECs), which are known parameters to be
determined by experimental data; see Ref. [42] for defini-
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π+ = − 1√
2

(π1 − iπ2) π− = 1√
2

(π1 + iπ2)1) For the physical pion states we use  and .

M P I = 1
22)  and  are actually vectors with two components in isospin space of  channel due to target asymmetry caused by electromagnetic interaction.
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tions of the chiral blocks.
The relevant pieces extracted from the expanded form

of the Lagrangians in Eq. (19) are

L(1)
πN ⊃ +

gA

2Fπ
∂µϕΨ̄γ5γ

µΨ− e
2

AµΨ̄
[
γµ (τ3+1)

]
Ψ

−i
egA

4Fπ
AµΨ̄

(
γ5γ

µ [ϕ,τ3])Ψ , (21)

L(2)
πN ⊃ −eΨ̄σµν

[c6

2

(
∂µAν−∂νAµ

)
τ3+

c7

4

(
∂µAν−∂νAµ

)]
Ψ ,

(22)

L(2)
ππ ⊃ −

ie
8

AµTr
({
∂µϕ,

[
ϕ,τ3

]})
. (23)

O(q2)Tree-level  Feynman  diagrams  up  to  are dis-
played in Figs. 1 and 2.

The full amplitude is

iM(1) =
egA

4Fπ
χ†f [τa, τ3]χiūs′ (p′)γ5γ

µus(p)ϵλ,µ(q)

+
iegA

4Fπ
χ†f τa (τ3+1)χiūs′ (p′)γ5γ

ν i
̸p+ ̸q−mN + iϵ

γµus(p)q′νϵλ,µ(q)

+
iegA

4Fπ
χ†f (τ3+1)τaχiūs′ (p′)γµ

i
̸p′− ̸q−mN + iϵ

γ5γ
νus(p)q′νϵλ,µ(q)

− iegA

4Fπ
χ†f [τa, τ3]χiϵ

ν
λ(q)q′νūs′ (p′)γ5γ

µus(p)
i
(
p′µ− pµ

)
(p′− p)2−m2

π+ iϵ

+
iegA

4Fπ
χ†f [τa, τ3]χiϵ

ν
λ(q)ūs′ (p′)γ5γ

µus(p)
i
(
p′ν− pν

) (
p′µ− pµ

)
(p′− p)2−m2

π+ iϵ
, (24)

iM(2) =
−egA

2Fπ
χ†f τa

[c6

2

(
qνϵµ,λ(q)−qµϵν,λ(q)

)
τ3

+
c7

4

(
qνϵµ,λ(q)−qµϵν,λ(q)

) ]
χiq′

ρūs′ (p′)γ5γρ
i

(̸q+ ̸p)−mN + iϵ
σµνus(p)

+
−egA

2Fπ
χ†f

[c6

2

(
qνϵµ,λ(q)−qµϵν,λ(q)

)
τ3

+
c7

4

(
qνϵµ,λ(q)−qµϵν,λ(q)

) ]
τaχiq′

ρūs′ (p′)σµν
i(̸

p− ̸q′)−mN + iϵ
γ5γρus(p) , (25)

where the superscript stands for chiral order. Now, the in-
variant  scalar  functions  can  be  extracted  from the  above
amplitudes:

A+1 =−
iegAmN

2Fπ

 1
u−m2

N

+
1

s−m2
N


− iegAc6

F

 2m2
N

u−m2
N

+
2m2

N

s−m2
N

+1
 ,

A0
1 =−

iegAmN

2Fπ

 1
u−m2

N

+
1

s−m2
N


− iegAc7

2F

 2m2
N

u−m2
N

+
2m2

N

s−m2
N

+1
 ,

A−1 =−
iegAmN

2Fπ

− 1
u−m2

N

+
1

s−m2
N


− iegAc6

F

− 2m2
N

u−m2
N

+
2m2

N

s−m2
N

 ,
A+2 =

iegAmN

4FπP ·q

 1
u−m2

N

− 1
s−m2

N

 , (26)

A0
2 =

iegAmN

4FπP ·q

 1
u−m2

N

− 1
s−m2

N

 ,
A−2 =−

iegAmN

4FπP ·q

 1
u−m2

N

+
1

s−m2
N

+
4

t−m2
π

 ,
A+3 =

egAc6mN

Fπ

 1
u−m2

N

− 1
s−m2

N

 ,
A0

3 =
egAc7mN

2Fπ

 1
u−m2

N

− 1
s−m2

N

 ,
A−3 =

egAc6mN

Fπ

− 1
u−m2

N

− 1
s−m2

N

 ,
A+4 =−

egAc6mN

Fπ

 1
u−m2

N

+
1

s−m2
N

 ,
A0

4 =−
egAc7mN

2Fπ

 1
u−m2

N

+
1

s−m2
N

 ,
A−4 =−

egAc6mN

Fπ

− 1
u−m2

N

+
1

s−m2
N

 .
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C.    Partial wave projection

ϵµ(q)
u(p) ū(p′)

ϵµ(q,λ2) u(p,λ1) ū(p′,λ3)
λi i = 1,2,3

Hs ≡ {λ1λ2λ3}
MI

Hs

It is convenient to perform partial wave projection us-
ing the helicity formalism proposed in Ref. [43]. To that
end, the photon polarization vector  and the nucleon
spinors  and  in  Eq.  (16)  can  be  substituted  by
their helicity eigenstates , , and  in
the center of mass frame1), where ( ) values are
the  helicity  quantum  numbers  of  the  initial  nucleon,
photon,  and  final  nucleon,  respectively.  For  each  set  of
helicity  quantum  numbers,  denoted  as ,
there  is  a  helicity  amplitude , which  can  be  expan-
ded as2)

MI
Hs

(s, t) = 16π
∞∑

J=M

(2J+1)MIJ
Hs

(s)dJ
λλ′ (θ) , (27)

M = λ λ ≡ λ1−λ2 λ′ ≡ λ3 dJ(θ)
d

dJ

MIJ
Hs

(s)

where , ,  and .  is the stand-
ard  Wigner -function.  By  imposing  the  orthonormal
properties  of  the  functions,  the  partial  wave  helicity
amplitudes  in the  above  equation  can  be  projec-
ted, i.e.,

MIJ
Hs

(s) =
1

32π

∫ 1

−1
dcosθMI

Hs
(s, t)dJ

λ,λ′ (θ) . (28)

I = 1
2 J = 1

2
L = 0 11 L2I2J

The  partial  wave  amplitude  with , ,  and
 (denoted  by S  in  the  convention) is  ob-

tained via

M(S 11) =
(
MI= 1

2
J= 1

2
+++ +MI= 1

2
J= 1

2
++−

)
, (29)

λi = ± 1
2 ±1 ±

which  carries  certain  parity3),  and  the  helicity  indices
 or  are abbreviated as .

D.    Singularities of partial wave amplitudes

1.    Analytic structure of partial wave amplitudes
To illustrate the analytic structure of the partial wave

amplitudes, we  rewrite  the  partial  wave  projection  for-
mula in Eq. (28) in the following form,

MIJ
Hs

(s) =
1

32π

∫ tmax

tmin

4∑
i=1

[
(GJ

Hs
)
i
AI

i (s, t)
]
dt , (30)

MI
Hs

tmin, tmax cosθ = ±1
(GJ

Hs
)
i

i = 1, · · ·4

where the invariant amplitude  has been replaced by
its Lorentz-decomposed expression given in Eq. (16), and

 correspond to  through Eq. (32).  Fur-
thermore,  the  scalar  functions  ( )  are
defined by

(GJ
Hs

)
i
≡ ūLi

µuϵ
µ

dJ
λ1λ′

(s, t)

sρπNργN
, (31)

Li
µ

t
θ

where  can be found in Eq.  (17).  In what  follows,  we
proceed to discuss the analytic structure with the help of
Eq. (30). Note here that the Mandelstam variable  is re-
lated to the cosine of the scattering angle  via

t = 2m2
N −

(
s+m2

N

) (
s+m2

N −m2
π

)
2s

+ sρπNργN
cosθ

2
. (32)

(GJ
Hs

)
i=...ts,4

On  the  one  hand,  it  should  be  emphasized  that  the
functions  rely merely on the kinematic struc-

O(p)Fig. 1.    (color online)  diagram.
 

 

O(p2)Fig. 2.    (color online)  diagram.

Dispersive analysis of low energy γN→πN process and studies on the N*(890) resonance Chin. Phys. C 45, 014104 (2021)

Σ⃗ · p⃗
|p⃗| u±(p) = ±u±(p) ϵ±(q) =

1
√

2
(ϵ1(q)± iϵ2(q))1) The spinor satisfies , and polarization vector satisfies .

2) It is worth stressing that there are in total 8 helicity amplitudes, nevertheless, only 4 of them are independent thanks to symmetries under parity and time reversion
transformation.

|−pz,λ⟩ = e−iπJz e−iπJy |pz,λ⟩3) The positive direction particle is the direction of nucleon and the negative direction state is defined through .
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J
J = 1/2 Hs

(GJ
Hs

)
i

(GJ= 1
2

Hs
)
i 11

t

tures of  the  scattering  amplitudes,  regardless  of  the  dy-
namics of the system under consideration. Therefore, they
are model-independent and can be calculated straightfor-
wardly for any partial wave quantum number of . In Ap-
pendix A, for  and  = {++–,+++}, all the expli-
cit  expressions  of  are  listed  for  the  sake  of  easy
reference. It can be observed that  in the S  chan-
nel are simply polynomials of .

AI
i (s, t)

t s
u

s
t t u

1/(t− c) c
s

On the other hand, information about the dynamics is
completely  encoded  in  the  scalar  amplitudes .  In
our  tree-level  ChPT  calculation,  they  are  represented  by
the results  shown  in  subsection  III.B,  which  are  com-
posed  of  contact  terms,  the -channel  pion-pole,  and -
and -channel nucleon-exchange contributions. The con-
tact term and -channel nucleon exchange term are poly-
nomials of , while the - and -channel pole terms1) can
be unified to a single type, , with  a function of

.
Restricted  to  our  tree-level  calculation  and  with  the

above discussions, one can conclude that there exists only
one master integral:

∫ tmax

tmin

t
t− c

dt = tmax− tmin+ c [ln (tmax− c)− ln (tmin− c)] .

(33)

t

tn

t− c
= tn−1+

ctn−1

t− c
n

c
c ∈ {m2

π, s−m2
N −m2

π,2s−2m2
N −m2

π}
Di(s)

Di(s) D3(s)

1/(t− c)

All other integrals are either trivial in the sense that they
are integrations over polynomials of , able to be reduced
to  the  above  integral  by  making  use  of  the  identity

,  where  is  a  positive  integer.  In  our
current  case,  the  constant  has  three  options,  i.e.,

,  which  result  in  three
typical logarithms  after applying Eq. (33); we refer
the  readers  to  Appendix  6  for  their  explicit  expressions.
For , except , which comes from kinematic de-
composition, it  should  be  mentioned  that  these  logar-
ithms stem from the dynamics  term ,  while  their
composite arguments could be square root  functions ori-
ginating from the kinematic limits of the integrations. The
logarithms and square root functions give rise to the par-
tial-wave singularities discussed in the following subsec-
tions.

2.    Dynamic singularities
The generic dynamic singularities of the partial-wave

photoproduction amplitude have been discussed in detail
in  Ref.  [37].  All  possible  singularities  are  displayed  in
Fig. 3 and are briefly illustrated as follows:

s ∈ [sR,∞) s● unitarity  cut:  on  account  of  the -chan-
nel continuous spectrum.

u s ∈ (−∞, s1]

s1 =
mN

mπ+mN

(
m2

N −mNmπ−m2
π

)
u

u ≥ (mN +mπ)2

● -channel  crossed  cut:  with
 due to the -channel con-

tinuous spectrum for .
t

s±2 = m2
N −

3
2 m2
π± i

2 mπ
√

44
5 m2

N −9m2
π

t 4m2
π ⩽ t ⩽ 4m2

N
t 4m2

N
s ∈ (−∞,0]

● -channel crossed cut: I. The arc, with branch points
located at ,  stems from
the -channel  continuous  spectrum  for . 2)

II. The -channel continuous spectrum above  yields
the cut .

s ∈ (−∞,0]● Trivial cut:  generated by the logarithms.
s = m2

N ≡ sN

t u
●  Discrete  term:  located  at  and  induced

by  the -channel  single  pion  exchange  as  well  as  the -
channel single nucleon exchange3).

Let us return to our special case under consideration.
Because the continuous spectra are absent for a tree-level
calculation,  we meet only with the dynamic singularities
of the trivial cut and the discrete term.

3.    Kinematic singularities
Aside from the above-mentioned dynamic singularit-

ies,  there  exist  additional  kinematic  singularities  for  an
inelastic  scattering  process  with  spinors.  The  kinematic
singularities are  caused  by  the  square-root  and/or  logar-
ithmic functions  appearing  in  the  partial  wave  amp-
litudes. Kinematic  cuts  are  introduced  when  the  argu-
ments  of  those  two  kinds  of  functions  are  negative.  All
the involved  arguments,  together  with  their  correspond-
ing negative domains, are listed in Table 1.

It should  be  pointed  out  that  these  functions  are  or-
ganized  in  a  way  that  does  not  affect  the  value  in  the
physical region, but may affect the values in the complex
plane. Here, we give an example to illustrate this point:

 

sN = m2
N

s1 =
mN

mπ +mN

(
m2

N −mNmπ −m2
π

)
.

Fig.  3.    (color  online)  Dynamic  singularities. ,

Yao Ma, Wen-Qi Niu, De-Liang Yao et al. Chin. Phys. C 45, 014104 (2021)

1
P ·q1)  due to kinematical decomposition can be transformed into this kind of form.

2) This arc is not a circle arc.

m2
N

3) Actually, this isolated branch point singularity disappears after appropriately arranging the logarithms in the partial wave amplitudes. However, a singularity at
 will still be there due to kinematical properties, which will be discussed in the next subsection.
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√
(s− sR) (s− sL)
sL sR

sL sR

 Case:  There are two cuts. One goes
from  to ,  and  the  other  is  an  infinitely-long  line,
which  is  perpendicular  to  the  real  axis  and  passes  the
midpoint of  and .√

s− sR
√

s− sL

sL sR sL

 Case: There  is  just  one  cut,  stretch-
ing from  to , with the cuts below  cancelling each
other out.

ln
a
b

lna− lnb

Meanwhile,  the  values  in  the  physical  region  in  the
above two cases  are  the  same.  In  practice,  we choose  to
expand  the  root  functions  in  terms  of  power  series  and
then continue them to the full complex plane. In this way,
all  the  kinematic  singularities  represent  themselves  as
cuts lying on the real axis, and the logarithm functions in
the form of , whose arguments contain root functions,
are recast  to  to avoid a circular cut  in the com-
plex plane.

11 sL sR

MI= 1
2
J= 1

2
+++ MI= 1

2
J= 1

2
++−

(GJ
Hs

)
i

m2
N

lims→m2
N

Di

ργ−N

1
ρ

lims→sR

Di

ργ−N

m2
N S

S γπ =
√
ργNρπNT S γπ

S

S 11

For the S  channel, the cut between  and  disap-
pears because  and  are conjugated with
each  other  in  this  interval;  this  is  easy  to  understand  in
light of the explicit form of  given in Appendix A.
In addition, there is a pole-like singularity at  coming

from  the  fact  that ,  where  the  source  of 
can be seen in Eq. (30), diverges; meanwhile, the limit of

 is  finite.  However,  the  apperance  of  this
pole-like  singularity  in  the  amplitude  can  be  viewed  as
the  branch  point  of  the  l.h.c  starting  from  in  the 
matrix  because ,  where  is  the  pion
photoproduction  matrix,  or  the  branch  point  of  the
electromagnetic  unitarity  cut  of  amplitudes.  The  results
for  an  additional  singularity  in  the  channel are  dis-
played in Fig. 4.

s t
u

ML

As a  result  of  kinematic  singularities,  we  should  in-
clude -channel  and  contact  diagrams  in  addition  to -
and -channel  resonance  exchanges  in  the  estimation  of

 at tree level.

IV.  NUMERICAL RESULTS AND DISCUSSIONS

S 11
N∗(890) γN πN

We are now in the position to compare the dispersive
representation of the photoproduction amplitude given in
Eq. (8) with experimental multipole amplitude data from
Ref. [38] in the  channel. Based on our fitting results,
the couplings of  to  and  can be extracted.

A.    Fitting procedure

ML(s)
D(s)

P(s)

ML(s) mN = 938.3 MeV mπ =
139.6 MeV e = 0.303 gA = 1.267 Fπ = 92.4 MeV c6 =

3.706/(4mN) c7 = −0.12/(2mN)
P̃(s) = 1 D(s) S 11

πN S
πN S

sc = −1 GeV2 sc =

−9 GeV2 sc

2.095 GeV2

P
P(s) = a

P(s) = a+b s

There  are  three  different  kinds  of  parameters  in  Eq.
(8):  the  LECs  involved  in  determination  of ,  the
subtraction  constants  in  the  auxiliary  function ,  and
the parameters in the overall subtraction polynomial .
First,  the  parameters  in  the  Lagrangian  appearing  in

 are  chosen  to  be  , 
, , , , 

, and  [44]1). Second, we set
 and  compute  using  the -wave  phase

shift  extracted from the   matrix given in Ref.  [19].
Two solutions of the   matrix are adopted: one cor-
responding  to ,  and  the  other  to 

, with  being a cut off parameter therein. Note
that it should be a good approximation for a single-chan-
nel case that the integrations in Eqs. (10) and (8) are per-
formed up to , rather than to infinity. Finally,
the  constants  in  are  left  as  fitting  parameters.2) Here,
we only consider two fit cases: Fit I with  and Fit
II  with ,  while the subtraction points are set
to zero.

11

E M πN
1.440 GeV2 ∆(1232)

O(q2)

We perform a  fit  to  the  data  points  on  the  multipole
amplitudes3),  which are traditionally denoted by S  with
suffixes of target type (n or p) and electromagnetic trans-
ition ( : electric, : magnetic), from the  threshold to

, which is just below the peak of . The
fit  results  for  both proton (p)  and neutron (n)  targets  are
displayed in Figs. 5 and 6, respectively. For comparison,
in Fig. 5 and Fig. 6, we also show the  chiral results

Table 1.    Arguments causing singularities.

arguments negative domain

s− sR (−∞, sR)

s− sL (−∞, sL)

s (−∞,0)

s+m2
N −m2

π −
√

s− sR
√

s− sL -

s+m2
N −m2

π +
√

s− sR
√

s− sL (−∞,0)

3s+m2
N −m2

π −
√

s− sR
√

s− sL
(
−∞, 1

2

(
m2
π −2m2

N

))
3s+m2

N −m2
π +
√

s− sR
√

s− sL (−∞,0)

s−m2
N +m2

π −
√

s− sR
√

s− sL (0, sL)

s−m2
N +m2

π +
√

s− sR
√

s− sL (−∞, sL)

 

Fig. 4.    (color online) Kinematic singularities.

Dispersive analysis of low energy γN→πN process and studies on the N*(890) resonance Chin. Phys. C 45, 014104 (2021)

c6 c7

c6 =
kp + kn

2mN
, c7 =

kp − kn

4mN
, kp kn kp kn

c6 c7

1) Neglecting  ChPT  correction  beyond  tree  level,  the  two  LECs  and  can  be  related  to  the  anomalous  magnetic  moments  of  the  nucleon  via

 with  and  being anomalous magnetic moments of proton and neutron, respectively. Since  and  are precisely determined by ex-
periments, one can infer the uncertainties of  and  must be negligible and shall hardly change our results.

P̃ 12)  can always be chosen to be  in Eq. (6).
3) The relation between multipole amplitudes and our amplitudes can be established through traditional CGLN convention, which can be found in Appendix B.
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of the real parts of the multipole amplitudes. As expected,
the chiral  results  only describe the data very well  at  low
energies close to threshold. The values of the fit paramet-
ers are presented in Table 2.

χ2

χ2/d.o. f = 1.58 p
χ2/d.o. f = 1.22 n

For  Fit  I,  our  results  are  in  good agreement  with  the
experimental  data  in  the  sense  that  the  averaged  val-
ues are close to one:  for the  target, and

 for  the  target.  As  can  be  seen  from

a
1.43

a

Table 2, the modulus of the central value of  is close to
zero in the proton target case, while it is  in the neut-
ron target case. This result is due to the fact that the elec-
tric multipoles calculated from BChPT in the proton case
can  describe  the  experimental  data  well,  enforcing  a
nearly-zero contribution from the subtraction polynomial
in the fitting procedure and further resulting in a nearly-
zero  value  of . However,  in  the  neutron  case,  the  dis-

p 11 11Fig. 5.    (color online)  Target. (upper panel) Real part of the S  electric multipole and (lower panel) imaginary part of the S  elec-
tric multipole. The solid orange and dashed blue lines represent our dispersive descriptions based on Fit I and Fit II, respectively. The
yellow solid line and green dashed line represent the error bands of Fit I and Fit II, respectively. For comparison, the chiral result of the
real part of the multipole is also shown, corresponding to the black long dashed line.

 

nFig. 6.    (color online)  Target. Same definitions as in Fig. 5.
 

Yao Ma, Wen-Qi Niu, De-Liang Yao et al. Chin. Phys. C 45, 014104 (2021)
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a

crepancy  between  BChPT  results  and  experimental  data
is larger compared with the proton case, which leads to a
larger central value (modulus) of .

a b

a b

−1

Fit II is performed using a rank-2 subtraction polyno-
mial with two parameters,  and . Compared with Fit I,
the qualities of Fit II are improved, which is as expected
because  one  more  free  parameter  is  involved  in  the  fit
procedure. However, the fitting parameters  and  of Fit
II are highly correlated, with a correlation coefficient that
is nearly . Thus, Fit I is more advisable.

N∗(890)

B.    Analytic continuation and extraction

of the  couplings

S
M(s) N∗(890)

γN πN

In the  previous  subsection,  all  the  parameters  in-
volved  in  the  dispersive -wave photoproduction  amp-
litude  were determined. Because , as a sub-
threshold  resonance,  is  located  on  the  second  Riemann
sheet (RS), analytic continuation is required to extract its
couplings to the  and  systems.

The amplitude on the second RS can be deduced via

MII(s) =
M(s)
S(s)

, (34)

M(s)
S(s) S

πN
M(s) zR

S

where  is the  partial-wave  photoproduction  amp-
litude  given  in  Eq.  (8),  and  corresponds  to  the 
matrix of  scattering, with the same quantum numbers
as .  If  there  exists  a  second  RS  pole  located  at ,
the  matrix can be approximated by

S(s) ≈ S′(zR) (s− zR) (35)

zIIin the vicinity of . Thus,

MII(s) =
M(s)

S′(zR) (s− zR)
. (36)

γN πN
Conversely,  the  couplings  of  this  second  RS  pole  to

the  and  systems are defined as the residue via

MII(s→ zR) =
gγgπ
s− zR

, (37)

gγ gπ γN πNwith  and  denoting  the  and  couplings, re-
spectively. Compared with Eq. (37), we obtain

gγgπ =
M(zR)
S′(zR)

. (38)

πN
πN

The  coupling  can  also  be  extracted  from  elastic
 scattering, i.e.,

g2
π =
T (zR)
S′(zR)

, (39)

T πNwhere  is the corresponding partial-wave  scattering
amplitude.

N∗(890)
N∗(890)

gγgπ
g2
π

N∗(890)
√

s = 0.882−0.190i
sc = −1

√
s = 0.960−0.192i

sc = −9

We now proceed with the numerical calculation of the
couplings of . According to Eqs. (39) and (B12),
the pion photoproduction  residue couplings, i.e.,

,  can be extracted from the multipole amplitudes. In
the meantime,  can be computed using Eq. (40), which
was  already  done  in  Ref.  [19].  Results  of  the  couplings
are listed in Table 3. The results based on Fit II are also
shown  to  verify  the  stability  of  the  obtained  values.  We
employed  two  solutions  for  the  pole  position  of  the

,  i.e., ,  corresponding  to  the
cutoff  GeV, and , correspond-
ing to  GeV; see Ref. [19] for a detailed explana-
tion.

gγgπ g2
π N∗(890) zR

N∗(890) s M(zR)
In  the  extraction  of  and  of ,  is

treated as the  pole position in the  plane, 

a

b GeV−1

Table  2.    Results  of  the  fit  parameters.  is  dimensionless,
and the unit of  is .

target case parameter value χ2/d.o. f

p

Fit I 102 ×a −0.0712±0.1334 1.58

Fit II
102 ×a 0.0287±3.2525

1.63
102 ×b −0.210±2.504

n

Fit I 102 ×a −1.43±0.35 1.22

Fit II
102 ×a 12.50±6.90

0.643
102 ×b −10.4±5.2

gγgπ g2
π GeV 10−2 GeV2 g2

πTable 3.    Results of  and . Pole position, moduli, and phase are in units of , , and degrees, respectively. values
are the same for the p target and n target because of the isospin symmetry.

gγgπ
g2
πFit I Fit II

target pole position moduli phase moduli phase moduli phase

p
0.882−0.190i (1.212±0.014) −79.2±1.3 1.203±0.302 −78.9±11.4 19.7±0.3 32.6±1.0

0.960−0.192i (1.467±0.016) −71.3±0.9 1.459±0.279 −71.2±3.5 21.4±0.2 33.6±0.8

n
0.882−0.190i (0.6416±0.0265) 111±7 2.025±0.731 81.4±6.9

0.960−0.192i (1.111±0.050) 103±3 2.342±0.605 98.0±1.5

Dispersive analysis of low energy γN→πN process and studies on the N*(890) resonance Chin. Phys. C 45, 014104 (2021)
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P T (zR)
S(zR) = 1+2iρπNT = 0 1

S ′(zR)
SII

N∗(1535) √
s

11

s

can  be  obtained  from  the  dispersion  relation  in  Eq.  (8)
once  is  determined,  can  be  obtained  through

, and  is simply the residue of
 from  Ref.  [19].  However,  to  compare  the  results  of

,  which  are  extracted  directly  from  multipole
amplitudes  parameterized  in  the  plane  in  Ref.  [39],
the conventions should be consistent. In the S  channel,
the  following  equation  can  be  used  to  translate  these
residues from different conventions into residues directly
extracted from multipole amplitudes in the  plane.

E
I= 1

2
II

0+ (s→ zR) =−
√

2
3s

gγgπ
s− zR

=−
√

2
3s

gγgπ
2
√

zR(
√

s− √zR)
, (40)

R N∗(890) N∗(1535) 11 pE
2.41 mfm ·GeV2

120◦ N∗(1535)

0.736 mfm ·GeV2 −27◦

N∗(890)
N∗(1535) |g2

π| N∗(890) 0.2 GeV2

N∗(1535)
0.08 GeV2 g2

π

N∗(890)

gγ |gγ|
N∗(890) 0.032 GeV N∗(1535)
0.024 GeV

where  stands  for  or .  In S ,  the
modulus  of  the  residue  is  with  phase

;  meanwhile,  the  magnitude  of  residue
coupling  from  Ref.  [39]  is  approximately

,  and the phase is .  The magnitude
of  the  residue  is  thus  larger  than  that  of  the

 residue.  The  of  is ,  and
that  of ,  which  is  obtained  using  the  value  in
Ref.  [45],  is .  The  of  these  two resonances
may  account  for  part  of  the  reason  why  photo-
production  residue  is  large,  and  using  the  above  results,

 for these two resonances can be obtained. The  of
 is ,  while  that  of  is

,  so  it  is  clear  that  the  magnitudes  are  almost
the same. Note that the results of the n target are quite un-
stable. The fact that data points are few, having large er-
ror bars, may account for the main reason.

A 1
2

N∗(890) gγ
We can also calculate the decay amplitude  at the

 pole position, which is related to the coupling ,
using the equation given in Ref. [39]:

A 1
2 = gγ

√
π

q2
r mN
ργN , (41)

qrwhere  is the modulus of the photon momentum calcu-

lated at the resonance pole position.

N∗(890)→ γN
Furthermore,  we  can  obtain  the  partial  widths  of  the

 channel  at  the  pole  using  the  following
equation,  which  is  from  Ref.  [46]  and  converted  to  our
convention:

ΓγN =

∣∣∣∣∣∣∣ργN g2
γ√
zR

∣∣∣∣∣∣∣ , (42)

zR N∗(890)
A 1

2

ΓγN

where  is treated as the  pole position. The val-
ues  of  the  decay  amplitudes  and  the  partial  decay
width at the pole  are presented in Table 4.

|A 1
2 | N∗(890) N∗(1535)

0.074 GeV−
1
2 −17◦

11 pE

The  of  is  larger  than  that  of ,
which  is ,  with  the  phase  being  in
S  from Ref. [39], but the decay widths at the pole are
almost the same, regardless of the instability of the n tar-
get results.

V.  SUMMARY

11

πN

O(q2)

11 pE
11nE πN

1.440 GeV2

In this paper, we have performed a careful dispersive
analysis  of  the  process  of  single  pion  photon production
off the nucleon, in the S  wave of the final pion-nucleon
system. In such a dispersive representation, the right-hand
cut  contribution  can  be  related  to  an  Omnés  solution,
which  takes  the  elastic  phase  shifts  as  inputs,  and
hence is  known  up  to  a  polynomial.  Conversely,  we  es-
timate the left-hand cut contribution by making use of the

 tree amplitudes taken from chiral perturbation the-
ory.  A  detailed  discussion  of  how  to  establish  a  proper
analytic structure of the partial-wave pion photon produc-
tion amplitude is also presented for easy reference in the
future. To pin down the free parameters in the dispersive
amplitude, we perform fits to experimental data of multi-
pole amplitudes in the channels, indicated by S  and
S ,  for  energies  ranging  from  the  threshold  to

.

N∗ γN πN

The  experimental  data  can  be  well  described  by  the
dispersive amplitude with only one free subtraction para-
meter.  We then  continue  the  dispersive  amplitude  to  the
second Riemann sheet to be able to extract the couplings
of  to  the  and  systems,  which  are  denoted  by

A 1
2 ΓγN N∗(890) A 1

2 ΓγN

GeV−
1
2 MeV

Table 4.    Values of the decay amplitude ( ) and decay width ( ) calculated at the  pole position. Phase, , and  are
in degrees, , and , respectively.

target pole position
A 1

2 ΓγN

Fit I Fit II
Fit I Fit II

moduli phase moduli phase

p
0.882−0.190i 0.165±0.004 −129±2 0.165±0.043 −129±12 0.369±0.014 0.363±0.210

0.960−0.192i 0.191±0.004 −43.4±1.4 0.191±0.038 −43.3±3.9 0.396±0.013 0.391±0.168

n
0.882−0.190i 0.0879±0.0043 61.7±8.2 0.277±0.102 31.4±7.4 0.103±0.011 1.03±0.89

0.960−0.192i 0.145±0.008 130±4 0.305±0.096 125±3 0.227±0.023 1.01±0.73

Yao Ma, Wen-Qi Niu, De-Liang Yao et al. Chin. Phys. C 45, 014104 (2021)
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gγ gπ
gγgπ

11 pE N∗(890)
2.41 mfm ·GeV2

N∗(1535) 0.736 mfm ·GeV2

N∗(890) πN
N∗(1535)

N∗(890)
πN N∗(1535)

πN
N∗(890)

 and ,  respectively.  Based  on  the  obtained  value  of
,  the  modulus  of  the  corresponding  residue  of  the

multipole amplitude (S ) at the  pole position
is , which is much larger than the modu-
lus of the residue of , i.e.,  [39].
This  result  means  that  the  strength  of  the  interaction  of

 with  the  system  is  stronger  than  that  for
. It is physically reasonable and within expecta-

tion  because  is  thought  to  be  composed  of  the
 system, and it is well-known that  has a tiny

coupling  with ,  as  we  all  know.  The  results  provides
further evidence of existence of . As byproducts,

N∗(890)
Ah ΓγN

the  decay  amplitude  and  the  decay  width  at  the 
pole position  and the  are obtained for future ref-
erence.
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APPENDIX A. PARTIAL WAVE AMPLITUDE
(GJ

Hs
)
i

11

The functions  defined in Eq. (31) are shown for
the S  wave in the following:

(GJ= 1
2

+++)1 = ik1
√
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)
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with

kl =
√

s− sL ,

kr =
√

s− sR ,

k1 =

√
s+m2

N −m2
π−
√

s− sR
√

s− sL ,

k2 =

√
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√
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√
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Ai(s, t) O(q2)The amplitudes  up to  contain the follow-
ing terms:

t 1
t−m2

π

●  channel pion exchange: ;
u 1

u−m2
N
= 1

m2
N+m2

π−s−t●  channel nucleon exchange: ;
1

P·q =
4

t−2m2
N−m2

π+2s● Kinematic decomposition: .
They lead to logarithm terms:
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D3 = ln
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 APPENDIX B: CGLN AMPLITUDES

F
Traditional pion photoproduction partial wave analys-

is is in CGLN amplitudes ( ) with

dσ
dΩ
=

q′

q

∣∣∣⟨χ f |F |χi⟩
∣∣∣2 , (B1)

χi( f )where  is the Pauli spinor and

F =iσ⃗ · ϵ⃗F1+
(
σ⃗ · q⃗′

)
σ⃗ · (q⃗× ϵ⃗)F2

+ i
(
σ⃗ ·q) (q⃗′ · ϵ⃗)F3+ i

(
q⃗′ · σ⃗

) (
q⃗′ · ϵ⃗

)
F4 , (B2)

where there  are  four  independent  amplitudes.  The  con-

Fnection  of  our  scattering  amplitudes  to  can be  ob-
tained as follows:

M f i = 8π
√

sF f i , (B3)

f , iwhere  the  subscripts  mean  that  the  initial  and  final
states are substituted into Eq. (B2), which we will omit in
the following discussion.

F JFurthermore,  the  partial  wave  amplitude  is
defined in Ref. [3]:

F J
±;λr
=

1
4π

∫ 1

−1

∫ 2π

0
F±;λr

DJ(θ,ϕ)dΩ , (B4)

±
λr =

1
2 or 3

2

where  denote  the  final  nucleon  helicity,  and
,  which  is  the  modulus  of  the  initial  helicity.

Also, definite parity amplitudes can be obtained:

An+ =−
1
√

2

(
F J
+, 1

2

+F J
−, 1

2

)
,

A(n+1)− =
1
√

2

(
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2
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2

)
,
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2

n (n+2)
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F J
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2
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−, 3

2

)
,

B(n+1)− =−

√
2
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(
F J
+, 3

2

−F J
−, 3

2

)
, (B5)

An±,Bn± J = n± 1
2

P = −(−1)n
where  are  amplitudes  with  and

.

An± Bn±
En± Mn±

According to Ref. [3], the following relation between
CGLN partial wave amplitudes (  and ) and multi-
pole amplitudes (  and ) can be obtained:

E0+ = A0+ , (B6)

M1− = A1− . (B7)

l ⩾ 1and for 

El+ = (l+1)−1
(
Al++

1
2

lBl+

)
, (B8)
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Ml+ = (l+1)−1
(
Al+−

1
2

(l+2) Bl+

)
, (B9)

E(l+1)− = −(l+1)−1
(
A(l+1)−−

1
2

(l+2) B(l+1)−

)
, (B10)

M(l+1)− = (l+1)−1
(
A(l+1)−+

1
2

lB(l+1)−

)
. (B11)

E
I= 1

2

0+Furthermore,  consider  the  fact  that  is not  nor-

√
3

S 11

malized  in  isospin  space,  according  to  Refs.  [47]  and
[48]; therefore, we have an additional  in the normal-
ization factor,  and the relation in the  channel can be
obtained as follows:

E
I= 1

2

0+ = −
√

2
3s
M (S 11) , (B12)

E
I= 1

2

0+
0 +

where  is the conventional multipole amplitude, and
 and  refer  to  the S wave and  minus  parity,  respect-

ively.
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