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Revisiting the heavy vector quarkonium leptonic widths *
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Abstract: We revisit the heavy quarkonium leptonic decays ¢/(nS) — £*¢~ and Y(nS) — £*£~ using the Bethe-Sal-

peter method. The emphasis is on the relativistic corrections. For the ¢(1S —55) decays, the relativistic effects are
223%, 34*3%, 41%8%, 52711% and 62*]3%, respectively. For the T(1S —5S) decays, the relativistic effects are
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consistent with the experimental data.
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1 Introduction

As it gives a clean experimental signal, the dilepton
annihilation decay of the heavy vector quarkonium plays
an important role in determining the fundamental para-
meters such as the strong coupling constant [1, 2], heavy
quark masses [1, 3—5], heavy quarkonium decay con-
stants [2, 6—8], etc. Its decay amplitude is a function of
the quarkonium wave function, and this process can be
used to test various theories such as the quark potential
model, non-relativistic Quantum Chromodynamics (NR-
QCD), QCD sums rules, lattice QCD, etc. The Standard
Model prediction of the universality of lepton flavor is
questioned by the measured ratios R(D™) and R(K™)
[9-14], and the quarkonium leptonic decay is another
way to test the lepton flavor universality.

The vector quarkonium leptonic decays have been
studied since a long time [15-21]. With the progress in
computer science and experimental technology, many ad-
vances have been reported in literature. For example, one
can find the lattice QCD predictions of the leptonic de-
cays of the ground-state Y and its first radial excitation Y~
in [22]; Ref. [23] reported the next-to-leading non-per-
turbative prediction and Ref. [24] the next-to-leading-log
perturbative QCD (pQCD) prediction; in Ref. [25], the
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two-loop QCD correction was computed; Ref. [26] stud-
ied the inclusive leptonic decay of Y up to the next-to-
next-to-leading order (NNLO) by including the re-sum-
mation of the logarithms (partly) up to the next-to-next-
to-leading logarithmic (NNLL) accuracy; the NNNLO
corrections have been discussed by various groups
[27-31]. A pQCD analysis of the Y(1S) leptonic decay up
to NNNLO using the principle of maximum conformal-
ity (PMC) [32-35] was presented in Refs. [36, 37], where
the renormalization scale ambiguity of the decay width is
eliminated with the help of the renormalization group
equation.

Even though considerable improvements have been
made, there are still deviations between the theoretical
predictions and the experimental data for the heavy vec-
tor quarkonium leptonic decays. There are two sources
which may cause such deviations. The first are the un-
known higher order perturbative QCD corrections. By us-
ing PMC, the conventional pQCD convergence of the
series can be greatly improved by elimination of the di-
vergent renormalon terms, and a more accurate decay
width can be obtained. However, there are still large er-
rors due to unknown high-order terms [36, 37]. The
second source is the relativistic correction, which could
be large. However, almost all pQCD predictions are cal-
culated using NRQCD, in which the decay constant of
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quarkonium, or its wave function at the origin, is treated
simply in the non-relativistic approximation.

One may argue that the relativistic correction is small
for a heavy quarkonium, since the relative velocity
among the heavy constituent quarks is small, e.g.
v2 ~0.1-0.3 [38]. However, many analyses in literature
have found that the relativistic effect could be large. For
example, Bodwin ef al. computed the coefficients of the
decay operators for the 3S| heavy quarkonium decay into
a leptonic pair and found large relativistic correction [39];
Gonzalez et al. pointed out that large relativistic and
QCD corrections of the quarkonium leptonic decays are
necessary to fit the experimental data [7]; Geng et al.
studied the B. meson semileptonic decays into charmoni-
um and also found that the relativistic corrections are
large [40], especially for highly excited charmonium
states. Moreover, from the experimental standpoint, Ref.
[41] showed that a careful study of leptonic decays is still
needed for highly excited charmonium states.

In this paper, we focus on the leptonic decays of char-
monium and bottomonium, including their excited states,
using the relativistic method. In a previous short letter
[42], we presented a relativistic calculation of the
quarkonium decays into e¢*e~, where the results disagree
with the experimental data. As a step forward, we revisit
this topic in more detail, and include the decays into u*pu~
and t+7~ as well as the ratios R,;. We present the relativ-
istic effects in these quarkonium decays, and discuss the
universality of lepton flavor.

The paper is organized as follows. The general equa-
tion of the quarkonium leptonic decay width is given in
Sec. 2. In Sec. 3, we give a brief review of the Bethe-Sal-
peter equation, and its instantaneous version, the Salpeter
equation. We then show in Sec. 4 in detail how to solve
the full Salpeter equation and obtain the relativistic wave
function for a vector meson. The calculation of the decay
constant in the relativistic method is given in Sec. 5. Fi-
nally, in Sec. 6, we give the numerical results and a dis-
cussion. A summary is presented in Sec. 7.

2 The quarkonium leptonic decay width

The leptonic partial decay rate of a vector charmoni-
um or bottomonium S state V' is given by
47m/§me2 F?2 m2 m2
— 20 Ve 2—L |4 f1-4a—L, ()

3Ms ﬁs

Tyope- =

where «., is the fine structure constant, ey is the electric
charge of the heavy quark Q in units of the electron
charge, eg = +2/3 for the charm quark and e = —1/3 for
the bottom quark, M,s is the mass of the nS state
quarkonium, m, is the lepton mass, Fy is the decay con-
stant of the vector meson that is defined by the following

matrix element of the electromagnetic current
<010y, QIV(P,€) >= FyM,s¢€,, 2)

where P is the quarkonium momentum, and ¢ is the polar-
ization vector.

In the non-relativistic method, the well-known for-
mula for the decay constant is

[12
FNR — ¥, (0)], 3
v Mnsl v(0)| 3)

where NR means the non-relativistic (NR), and Wy (0) is
the non-relativistic wave function evaluated at the origin.
In the NR method, there is only one radial wave function,
and the vector meson and its corresponding pseudoscalar
have the same radial wave function and the same decay
constant. However, in the relativistic method, they have
different wave functions and different decay constants,
and more than one radial wave function gives a contribu-
tion to the vector meson decay constant.

In the relativistic method, the decay constant
Fy=F ‘1}"' is not related to the wave function at the origin,
but in the full region. In the following, we focus on the
calculation of F \1}" in the relativistic method.

3 The Bethe-Salpeter equation and the Sal-
peter equation

In this section, we briefly review the Bethe-Salpeter
(BS) equation [43], which is a relativistic dynamic equa-
tion describing the two-body bound state, and its instant-
aneous version, the Salpeter equation [44]. The BS equa-
tion for a meson, which is a bound state of a quark, la-
belled as 1, and anti-quark, labelled as 2, can be written
as [43]

d*k
By =P @y +ma) =1 f SV REQKD . ()

where yp(g) is the relativistic wave function of the
meson, V(P,k,q) is the interaction kernel between the
quark and anti-quark, pi, py,m;,m; are the momenta and
masses of the quark and anti-quark, P is the momentum
of the meson, ¢ is the relative momentum between quark
and anti-quark. The momenta p; and p, satisfy the rela-
tions, p; = a;P+q and p> = @, P —¢q, where a; = ml'% and
ay = ml”j_jm. In the case of quarkonium, where m; = m,, we
have (3] 5&2 =0.5.

In the general case, the BS equation is hard to solve
due to the complex interaction kernel between the con-
stituent quarks. For the doubly heavy quarkonium con-
sidered here, the interaction kernel between the two
heavy constituent quarks can be treated as instantaneous,
leading to a simpler version of the BS equation. In this
case, it is convenient to divide the relative momentum ¢

into two parts, ¢ = q’H’+cfi, where qﬁ’ =(P-q/M*)P* and
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q. zqﬂ—qﬁ, M is the mass of the bound state, and we
have p? = m2. Then, we have two Lorentz invariant vari-
ables, gp = % and g7 = \Jq5—¢* =\/—7qi. When P =0,
that is in the meson center-of-mass frame, they reduce to
the usual components gy and |g], and g, = (0,4).

With this notation, the volume element of the relativ-
istic momentum % can be written in an invariant form
d*k = dkpk2.dkrdsdg, where ds = (kpgp —k-q)/(krgqr) and ¢
is the azimuthal angle. Taking the instantaneous approx-
imation in the center-of-mass frame of the bound state,
the kernel V(P,k,q) changes to V(k,,q.,s) . We introduce
the three-dimensional wave function

d
=i [ S, )

and the notation
K2 dkrdsdg
)= f (;)3 Vke.qu.)¥p®).  (6)
The BS eqution Eq. (4) is then rewritten as
X(q1,q1) = S1(pIn(gL)S 2(p2), (7

where S(p1) and S,(p;) are propagators of quark 1 and
anti-quark 2, respectively, which can be decomposed as

Af(q1)
(=D*lgp+a;M — w; + i
A7 (q1)
( Ditlgp + aiM + w; —ie

Si(pi) =

®)

Here, we have defined the constituent quark energy
wi= Jm?+q3 and the projection operators A¥(g.)=
%@[%wii(—l)i+l(mi+ gl)], where i=1 and 2 for quark
and anti-quark, respectively.

Using the projection operators, we can divide the
wave function into four parts

Yp(g) =Y (g +¥5 (qO)+¥p (q)+¥p (q0), (9)

with the definition W5*(q.) = A%(q) L ¥r(g )b AZ(qL).
Here, ¥}*(¢q.) and ¥, (g.) are called the positive and
negative energy wave functions of the quarkonium.

After integrating over ¢gp on both sides of Eq. (7) us-
ing contour integration, we obtain the famous Salpeter
equation [44]:

AT(gm(g)AS(q1)

A7 (gn(gA; (q.)
(M —w; —w) '

Yp(gL) = M+, +w)

(10)
Equivalently, the Salpeter equation can be written as

four independent equations using the projection operat-
ors:

(M —w; —w)¥5(q0) = A (qn(g )Ny (g, (1)
M +wy +w2)¥p () = —A7(qn(g )N (qL) , (12)

¥} (q)=0, (13)

¥ (q1)=0. (14)
The normalization condition for the BS wave func-
tion reads
612 dgr —++ P
[ [‘P TR
Note that usually in literature, it is not the full Sal-
peter equation Eq. (10) that is solved (or equivalently, the
four Eqgs. (11)-(14)), but only Eq. (11), which involves
only the positive wave function. There is a good reason
why such an approximation is made: it is its effective
range. The numerical value of M —w; —w, in Eq. (11) is
much smaller than of M +w;+w, in Eq. (12), which
means that the positive wave function ¥, (g, )is domin-
ant, and that the contribution of the negative wave func-
tion ¥, (¢.) can be safely neglected. However, we point
out that if only Eq. (11) for W;*(g.)is considered, then
not only is the contribution of the negative wave function
neglected, but so are the relativistic effects of these wave
functions. The reason is that the number of eigenvalue
equations limits the number of radial wave functions, and
as is shown below, only the four coupled equations Egs.
(11)-(14) can provide sufficient information to derive a
relativistic wave function.

@"f\y;—g =2M. (15)

4 Relativistic wave function and the kernel

Although BS or the Salpeter equation is the relativist-
ic dynamic equation describing the two-body bound state,
the equation cannot by itself provide the information
about the wave function. This means that we need to
provide an explicit form of the relativistic kinematic
wave function as input, which can be constructed using
all allowable Lorentz and y structures.

From literature, we have the familiar form of the non-
relativistic wave function for the 1~ vector meson, e.g.

Yp(@) =P+ M) (), (16)

where M, P and ¢ are the mass, momentum and polariza-
tion of the vector meson, ¢ is the relative momentum
between the quark and anti-quark. There is only one un-
known wave function ¢(g) in Eq. (16), which can be ob-
tained numerically by solving Eq. (11) or the non-relativ-
istic Schrodinger equation. The relative momentum ¢ is
related to the relative velocity v between the quark and
anti-quark in the meson, § = %” A relativistic wave
function should depend on the relative velocity ¥ or mo-
mentum ¢ separately, not merely on the radial part ¥(q),
because the radial part is in fact ¢(|4]) or equally y(Z%).

To obtain the form of the relativistic wave function,
we start from J?¢ of a meson, because J? or JP¢ are in any
case good quantum numbers, where J is the total angular
momentum, and p and c¢ are the parity and the charge
conjugate parity of the meson. The parity transform
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changes the momentum ¢ = (qo,q) into ¢’ = (qo,—§), so for
a meson, after applying the parity transform, the four-di-
mensional wave function yp(q) changes to p-yoxpr (¢’ )yo,
where p is the eigenvalue of parity. The charge conjugate
transform changes yp(g) to c~C)(1T3(—q)C‘1, where c is the
eigenvalue of charge conjugate parity, C=1y,yy is the
charge conjugate transform operator, and 7 is the trans-
pose transform. Since the Salpeter equation is instantan-
eous, the input wave function Wp(g,) is also instantan-
eous, and the general form of the wave function for the 1-
vector meson can be written as [45, 46]

W (g0)=q. €L [wqu + %wxqu + %w(qu

’;ﬁ; Yalqo) |+ M ¢ ps(qu)

+ £ PUs(q )+ (g, £ —qi e (q)
1
+ M(}”ﬁ% —Pq. e )s(qL). (17)

There are in total 8 radial wave functions ¢;(¢.) = (1))
with i=1~8, which obviously cannot be obtained by
solving only one equation, e.g. Eq. (11), but can be ob-
tained by solving the full Salpeter Eqs. (11)-(14). The
above expression does not include the terms with P-gq,
since the condition of instantaneous interaction is
P-q=P-g, =0. There are also no higher order ¢, terms
like ¢2, 3, ¢, etc., because the even powers of ¢, can be
absorbed into the radial part of ¢;(¢q.), while the odd
powers of ¢, can be changed to lower power, for ex-
ample, ,ﬁw;(q 1) = 4, ¥i(qg.). By the way, if we delete all
g, terms except those inside the radial wave functions,
then the wave function Eq. (17) reduces to
M¢ ys(q)+ ¢, Pys(qr). If  we  further  set
Us(gL) = —we(qr) =¢(q.), the wave function reduces to
the non-relativistic case, e.g. Eq. (16). Thus, the terms
with ¢, ¥, W3, W4, W7 and yg in Eq. (17) are all relativist-
ic corrections.

When the charge conjugate parity is taken into ac-
count, the terms with y,(g,) and ¥7(g.) vanish because of
the positive charge conjugate parity ¢ = +, and the gener-
al instantaneous wave function for the 1-— quarkonium
becomes

+

‘P}’”(qL) =q. € |Y1(gL)+ %lh(‘h) + %W&(QL)
+MeE Ys(q)+ €0 Pve(qL)
1
+ M(f’ﬁ 4. —Pq.-es(qu). (18)

Before moving on, we would like to discuss the inter-
action kernel V(r). We know from Quantum Chromody-
namics that the strong interaction between a quark and
antiquark is given by the exchange of gluon(s), and that
the basic kernel contains a short-range y, ®y* vector in-
teraction —% plus a long-range 1®1 linear confining

scalar interaction Ar suggested by the lattice QCD calcu-
lations [47]. In the Coulomb gauge and in the leading or-
der, the kernel is the famous Cornell potential
4 ay
3r° (19)
where / is the string tension, Vj is a free constant appear-
ing in the potential to fit the data, and «; is the running
coupling constant. In order to avoid infrared divergence
and incorporate the screening effects, an exponential
factor e™" is added to the potential [48], i.e.

V(r)y=Ar+Vy—vo ®yo

1 day _
Vi) = 20— )+ Vo—y0®y° = Le™ . (20)
a 3r

It is easy to check that when ar <« 1, Eq. (20) reduces to
Eq. (19). In the momentum space and in the rest frame of
the bound state, the potential takes the form:

V(@) = V(D +7007Y Vi@, ()
where
A A 1
V(@) =-— (E + Vo)53(@ + 2@ adr
__ 2 a@
12 1
@ y(§) =

33-2N 7Y
! log (e + ‘21 ]
AQep

Here, a,(qg) is the running coupling of the one loop QCD
correction, and e =2.71828. The constants A, a, V; and
Aqcp are the parameters which characterize the potential,
and N = 3 for the ¢¢ system, N; = 4 for the bb system.
The reader may wonder why we have chosen a simple
basic kernel, and not a relativistic one [47, 49] which in-
cludes details of the spin-independent potential and the
spin-dependent potential, like the spin-spin interaction,
spin-orbital interaction, tensor interaction, etc. The reas-
on is that in our relativistic method, with a relativistic
wave function for the bound state, we only need the ba-
sic potential and not a relativistic one, otherwise we
would have double counting. To explain this, let us show
how the relativistic potential is obtained: the potential
between a quark and anti-quark is constructed from the
on-shell ¢g scattering amplitude in the center-of-mass
frame motivated by single gluon exchange, where the
gluon propagator is given in the Coulomb gauge. The ba-
sic non-relativistic vector potential —% is obtained at
leading-order from the amplitude (usually in the mo-
mentum space). To obtain the relativistic corrections of
the potential, the on-shell Dirac spinors of the quark and
anti-quark are expanded in quantities like the mass, mo-
mentum, etc. The relativistic potential is then obtained,
and the relativistic corrections from the free spinors
(wave functions for a bound state) are moved to the po-
tential. The corresponding wave function becomes non-
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relativistic.

In our case, we have a relativistic wave function and
the potential is non-relativistic. If both of them are re-
lativistic, then there is double counting. In general, a re-
lativistic method should have a relativistic wave function
with a non-relativistic potential, or a non-relativistic wave
function with a relativistic potential. In principle, a half-
relativistic wave function with a half-relativistic potential
is also permitted, but one has to be careful to avoid
double counting. The method with a non-relativistic wave
function and a relativistic potential is usually good for
calculating the mass spectrum of bound states, while the
method with a relativistic wave function and a non-re-
lativistic potential is not only good for calculating the
mass spectrum as an eigenvalue problem, but is also good
for calculating the transition amplitude.

With the kernel Eq. (21) and the relativistic wave

=
(M—zwo{(m@ ws@) (m@%wﬁ@)

function Eq. (17) or Eq. (18), we are ready to solve the
coupled Salpeter equation Egs. (11)-(14). Substituting the
wave function Eq. (18) into Eq. (13) and Eq. (14), taking
the trace on both sides, multiplying with the polarization
vector on both sides, e.g. g, -€* or ¢] - P, and then using
the completeness of the polarization vector, we obtain the
relations

qL3(90) + MPYs(q.) _ UslgOM
Mm > ‘J’S(QL)——m—,

1 1
where we have used m; = m, for a quarkonium state. We
now have only four independent unknown radial wave
functions, y3(q.), ¥4(qL), ¥s(qL), ¥e(qL), whose numeric-
al values can be obtained by solving Eq. (11) and Eq.
(12). Substituting the wave function Eq. (18) into Eq.
(11) and Eq. (12) and taking the trace again, we finally
obtain four coupled equations

Yi(qu) =

2
(2 )3 {(V +V)[lﬁ%(k)——lﬂ5(k)J(k q9)

2 2
-(Vi=W) ml(llfs(k)(Mz?Q l/’s(k)] +miw (d’4(k) M;Y_),z +l//6(k)) } (22)
7 a3k 2
(M +2wy) l/@(i)ﬁ —WS(CY)) 1/14(@ +¢’6(67)) o o Vs+ W) l//3(k)— —ys(0) || (k-
k- 2 2
V-, )[ml [ws(lo (qu:)z —%(k)] [m(k) 2‘732 +w6<k)ﬂ} (23)
# w1 2
(M—le){(l!’3(67)+¢’4(67) )——3(1!/5(67) l!/é(éf)m]) }=
BE 1
-3 {(V +Vy) ——lﬁﬁ(k) lﬁ3(k)— +lﬂ5(k)} ()
2m)° w
2 - 1?2 > > ];? > @2 2
+ (Vs = V) |w) llfs(k)ﬁ =3ys(k) |+ myw; ¢4(k)w + 36 (k) lﬁs(k) =¥s(g || (24)
e e
(M+2w1){[¢3(67) a2 ]——3(%(@')4‘%(@’) )+lﬂ6(67) }
d3k 1 LL)] > -, S| -
| o7 {(vs V)| 2R - sy +l//5(k)} ®-3)
2 - ]z = =, ]?2 = ( _)2
+ (Vs =V |w; lﬁ3(k)w =3ys5(k) | - miw; W(k)ﬁ +3yr6(k) (25)
where we have used the relation w; = w, for a quarkoni- function is
um, and V= V(g - l?), V, = Vv(ci—l?). Since we have four d3q 8w,
coupled equations, the four independent radial wave np 3M {3',’/5(67)'//6(5)—
functions can be obtained numerically, and the mass 7 -
spectrum obtained simultaneously as the eigenvalue prob- + 1 [lﬁ A DUs(@) - w3 (W 4(@q_2 + %(@)]} -1
lem. 2ml M
The normalization condition Eq. (15) for the 1—— wave (26)
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S The decay constant in the Salpeter method

The relativistic decay constant F 56 in Eq. (2) for a
vector quarkonium can be calculated in the BS method as

d4
FRMe, = N, f G Tl @]

=iyN. f LG oy,
c (271_)3 P uls

where N, = 3 is the color number, and Tr is the trace oper-
ator. We note that when calculating the decay constant,
the Salpeter wave function ¥p(§), and not merely the pos-
itive wave function W;*(g) gives a contribution. For a
vector quarkonium with the relativistic wave function Eq.
(18), we obtain the relativistic decay constant

d*q

=2
Ae=a5 [ ST us@- Toua@| o

where we note that the 5 and y3 terms both contribute.

@7

6 Results and discussion

6.1 Input parameters and the heavy quarkonium wave

functions

The input parameters can be fixed by fitting the mass
spectra of charmonium and bottomonium. We choose
my =4.96GeV, m.=160GeV, a=006 GeV, and
Agcp =021 GeV [42]”. We also choose A =0.23 GeV?2
and Vy=-0.249 GeV for the charmonium system, and
1=0.2GeV? and V, = -0.124 GeV for the bottomonium
system.

The mass spectra of vector charmonium and bot-
tomonium are shown in Table 1. The theoretical predic-
tions are consistent with the experimental data given by
the Particle Data Group (PDG). As an example of the
wave functions, we present four J/y radial wave func-
tions in Fig. 1: the dominant radial wave functions s and
W and the two minor ones 2y3/M? and #y4/M?”. From

now on, we use the symbols |§] = ¢ and |/] = v for simpli-
city.

As described in Sec. 4, the terms with radial wave
functions ¥s and s in the total wave function Eq. (18),
are non-relativistic, while all the others are relativistic
corrections. Figure 1 shows that the relativistic wave
functions 3 and ¢4 are small and could be safely neg-
lected, but in fact this is not the case. Figure 1 only shows
the relative importance of the wave functions in the re-
gion of small q, and to see the relative importance of the
wave functions in the whole ¢ region, we plot the ratio
¥s/(g*y3/M?) in Fig. 2. It can be seen that in the large ¢
region, the value of s is only a few times larger than of
(¢*y3/M?). Thus, the terms which are proportional to 3
(¥4 and others) may have a sizable contribution in the
large g region, leading to possibly important relativistic
corrections.

6.2 Charmonium leptonic decay widths

Our results for y(nS) — £*¢~ are shown in Table 2,
where in the second column, ‘NR’, the non-relativistic
decay rates are shown, meaning that in Eq. (28) the y3
term is ignored, so that the only contribution is from the
W5 term. The third column, ‘Re’ , show the relativistic
results including the contributions of s and 3. One can
see that for charmonium the relativistic results are differ-
ent from the non-relativistic ones. To see this clearly, we
add the fourth column in Table 2 with the ratio (NR-
Re)/Re, whose value can be called the ‘relativistic effect’.

Table 2 indicates that the relativistic effect is about
22% for the J/y decay, which is consistent with the usu-
al power relation for the relativistic terms, e.g.
v2~0.2-0.3. For the excited states, the relativistic ef-
fects are much larger than for the ground state. For the
28, 385, 4S5 and 58S states, the relativistic effects are about
34%, 41%, 52% and 62%, respectively. These results are
consistent with our previous study of the semi-leptonic
decays B} — cc +{* + v, where higher excited charmoni-
um states were shown to have larger relativistic effects

Table 1. Mass spectra of the S wave c¢ and bb vectors in units of MeV. 'Th' is the theoretical prediction, 'Exp' are the experimental data from
PDG [50].
nS Th(c?) Exp(c?) Th(bb) Exp(bb)
N 3097.3 3096.9 9460.7 9460.3
28 3686.4 3686.1 10020.5 10023.3
3S 4059.3 4039 10362.6 10355.2
48 4337.5 4421 10622.2 10579.4
58 4559.4 - 10835.1 10889.9

1) In this previous Letter, we have chosen different Agcp for charmonium and bottomonium. Since this parameter appears only in a, which depends on ¢, and for

more convenience of fitting the data, we choose the same Aqcp for the two systems.

2) Here we show the curves of g3 /M? and §*y4/M? other than y3 and 4, because they always appear in such a combined form in the applications.
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Fig. 1. (color online) Four typical radial wave functions of
I

Table 2. Decay rates of Y/(nS) — £*¢~ in units of keV.

from PDG [50].

Ratio of the radial wave functions of Jiy

v, /@, /M)

q (GeV)

Fig. 2. Ratio % of the J/y radial wave functions.

q*y3/M?

‘NR’ is the non-relativistic result, ‘Re’ is the relativistic result, ‘Exp’ are the experimental data

modes NR Re NR-Re Exp
Iy — oo 10.95+220 8.95%1 % 22.327% 3.550.16
- K 0.60
Y28) - ete 5.92748 4437054 33.6539% 2.33+0.04
— 1.68 B
Y(28) =77 23155 17353 33.6132% 0.9120.14
- 0.69 0.35
W(38) - ete 4'30t0,66 3.04t035 41 .4t2:?% 0.86+0.07
W(3S) > Tt 2.877941 2.037088 41.4+690, -
) ) =63
- . 0.24
Y(AS) > e*e 3.537083 2.3270%6 52.2¢ 111 0.48+0.22
YAS) -1t 2707028 1787022 52.2+1340, -
: - £-13,
- . 0.16
Y(5S) - ete 3.05%9% 1.88%015 62.2+143, 0.58+0.07
W(5S) > T 2497030 1.547021 62241649, -

[40]. This conclusion can also be obtained qualitatively
from the plots of the radial wave functions. We men-
tioned that the relative momentum ¢ concerns the relat-
ive velocity vy between the quark and antiquark in
quarkonium, g = 0.5mgvo. As shown in Fig. 1, two non-
relativistic J/y radial wave functions always dominate
over the relativistic wave functions in the whole ¢ region,
leading to a small relativistic correction. For the excited
states, see Fig. 3 as an example of the radial wave func-
tions of ¥(2S), the non-relativistic wave functions still
dominate in the small ¢ region, but there is a node struc-
ture in each curve where the wave function changes sign.
The contributions in the low ¢ region may cancel each
other, and the wave functions for large g (vo) may give
sizable contributions, resulting in large relativistic correc-
tions.

There are other methods for considering the relativist-
ic effects in heavy quarkonium decays. For example,
Bodwin et al. [39] and Brambilla et al. [51] computed the

vo? and the vo* corrections of the decay rate of QQ
quarkonium in the framework of NRQCD. In the case of
J/w [39], the predicted relativistic effect is 34.1% for
v} ~0.3, and is 23.0% for v.2 ~0.18. These values are
consistent with our prediction of 22.3%.

In Table 2, we also show the theoretical uncertainties
caused by the choice of input parameters. We vary all
parameters simultaneously within £10% of their central
values, and take the largest variation as the uncertainty.
With the errors, most predictions are much larger than the
experimental data. The only exception is the channel
W(2S) — t*17, which has large uncertainties”. We note
that a calculation of the J/y leptonic decay in lattice
QCD with fully relativistic charm quarks was reported in
Ref. [52], and gave I'(J/y — ete™) = 5.48(16) keV , con-
sistent with the experimental data. This indicates that the
disagreement of our results with the experimental data
may be due to the lack of QCD corrections.

We note that in a recent paper, Soni et al. [53] calcu-

1) The reason is that the ¢(2S) mass is only a slightly heavier than that of two 7, so the phase space of this channel is very sensitive to the variation of parameters.

063104-7



Chinese Physics C Vol. 44, No. 6 (2020) 063104

6 5

1 ‘-.\ q°y, M’
5'_ “'-, _qz v, M2
4 II". — vy,
3—_ '|‘| A

Radial wave functions of w(2S) (GeV )

-2 T T | SRS I | T T T
05 00 0.5 1.0 15 20 25 3.0 35 4.0

q(GeV)

Fig. 3. (color online) Radial wave functions of ¢(2S).
lated the quarkonium leptonic decay using the Cornell
potential in a non-relativistic version and with the pQCD
correction up to NLO. Their results for charmonium are
neither consistent with the experimental data nor with our
results, while for bottomonium their results are compar-
able with ours (see below). Also, Badalian et al. [54] cal-
culated the decay rates of the ¢(1S —4S) leptinic decays
with the QCD correction at NLO using the Cornell poten-
tial and the semi-Salpeter equation, and obtained 5.47
keV, 2.68 keV, 1.97 keV, and 1.58 keV , respectively,
which are smaller than our charmonium results. These
studies indicate that the relativistic corrections and QCD
corrections are large for the charmonium system.

6.3 Bottomonium leptonic decay widths

We present the non-relativistic and relativistic results
of the bottomonium leptonic decay widths in Table 3.
Similarly to charmonium, the relativistic corrections are
sizable. For the ground state Y(1S), the relativistic effect
is about 14%, and for the excited states T(2S —5S), they

vary from 20% to 28%. These predictions agree with
those in literature. For example, Bodwin et al. [39] pre-
dicted the relativistic effect of 13.2% for v;? ~ 0.10 using
NRQCD up to the v,* accuracy, and a lattice QCD predic-
tion indicated that the relativistic effects are about 15%-
25% [22] for T(1S) and T(2S) up to the v, accuracy.

We should point out that the above large relativistic
effects are specific for bottomonium leptonic decays
T(nS)— £*¢", and are not universal for processes in-
volving a bottomonium. In the di-lepton decays, the amp-
litude is proportional to the wave function as

[d3q [wﬂ@—%%(&)], i.e. the wave function is to the
power of one. For other processes, such as meson A4 to
meson B semileptonic decays, the amplitude is propor-
tional to the overlapping integral of the wave functions
for the initial and final states f d*G 4 -yp. Because the
wave functions are large in the small g region, the
product of two wave functions is suppressed in the large
q region compared to the case with one wave function,
and the contributions from the relativistic terms are
greatly suppressed.

In Table 3, we also give the theoretical uncertainties,
which are obtained by varying all parameters simultan-
eously within +£10% of the central values, and the largest
variations are taken as the errors. Our relativistic results
agree well with the experimental data. We also note that
for Y(1S) — e*e™, PDG gives two different results: dir-
ectly listed is T, =1.34 keV, but a branching ratio
Br=238% 1is also given, leading to T'y(1s)—ee- = 1.29
keV using the full width I'vqs)=54.02 keV [50]. The
second value is the same as our relativistic result. Simil-
arly, in the case of Y(4S)— ete”, PDG directly lists
I.. =0.272 keV [50], but from the branching ratio also
given in PDG, we get I',, =0.322 keV. We hope PDG
will update the data in the near future.

Table 3 shows that all relativistic results for
Iy (1S —5S8) are consistent with the experimental data.

Table 3. Decay rates of Y(nS) — ¢*¢~ in units of keV. ‘NR’ is the non-relativistic result, ‘Re’ is the relativistic result, ‘Exp” are the experimental
data [50].
modes NR Re NR-Re Exp
T(1S) - ete” 1'47t8:%(3) 1‘29t8212 14.04:(1):2% 1.340+0.018 (1.29+0.09)
Ts) e 146793 1287018 14,0 L40:0.09
T2S)—>ete 0.771*+9:123 0.629+0104 22.6*99% 0.612+0.011
Tes) e 076673130 0625700 2.698% 06420.12
T(3S)—>ete 0.541+0088 0.450*9970 20.247%% 0.443+0.008
i ossw e sy w27 072010
T(@4S) = e*e 0'429t8:8§g 03554:8:828 20-8i3;§% 0.272+0.029 (0.322+0.056)
T@S) > 7r 0.427+0.081 0.353+9.956 20.8°63%
1ES) > ee” 03801408 0296:201% 2.40110% 031:0.07
TES) > 0.378+0047 0.295+9.947 28.4+10%
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Our predictions also agree with the lattice QCD predic-
tion [22], T(Y(1S)—>ete)=1.19(11) keV and
[(r2S)— e*e™) =0.6909) keV, with the NRQCD predic-
tion [26], T'(Y(1S) — ete™) = 1.25 keV, and with the NR-
QCD prediction with NNNLO pQCD corrections [30],

T(Y(1S) — e*e™) = 1.08 +0.05(ar;)* 9% () keV.

6.4 Lepton flavor university

To test the lepton flavor university, we give the ratios
R”s and R in Table 4. Their definitions are similar, for
example,

Lns > 7777)
T(ns = ptum)’

The deviation of the ratio RY* from the lepton flavor
universality indicates the presence of new physics bey-
ond the Standard Model.

Table 4 shows the ratios calculated with the ‘Re’ val-
ues. The uncertainties of the ratios are from the variation
of the input parameters. In the case of charmonium, the
ratios RY are quite different from each other, since the
charmonium mass is a bit higher than of the two 7 . For
the same reason, we get a large uncertainty. For bot-
tomonium, since the 7 mass is much smaller than the bot-
tomonium mass, we get almost the same values for all ra-
tios RisTheir uncertainty is also very small due to the

Ry = (29)

cancellation between the numerator and denominator.
Even though all central values of the ratios R are smal-
ler than 1, they are consistent with the existing experi-
mental data within errors.

To cancel the model dependence of the theoretical
predictions, we give in Table 5 and Table 6 the ratios
T'W(nS)—>ete”)/T(J/Yy —ete”) and T(Y(nS)— 1)/
[(r(1S) — ¢£*¢7). For the Y(nS) decay, we obtain the
same central values for the e and 7 final states, so we only
present the ratio I'(Y(nS) — £7¢7)/T(Y(1S) — £*¢7) in Ta-
ble 5 and Table 6, which are calculated using the e*e™ fi-
nal states listed in Table 3.

Table 5 shows that the ratio %ﬁi;) is larger but close
to the experimental data, while the ratios for highly ex-
cited states are much larger than the experimental data.
Table 6 shows the bottomonium leptonic decay ratios. In
the row ‘Expl’, the value of I',,(15) = 1.340+£0.018 keV
is used, which is directly listed in PDG. In the row
‘Exp2’, Tee(15) = 1.29 £0.09 keV is used, which is calcu-
lated using the branching ratio of Y(1S) — e*e™ given in
PDG. For Y(4S), the results outside the brackets were ob-
tained using [,.(4S) = 0.272 £ 0.029 keV from PDG, while
the results inside the brackets used I'..(4S) = 0.322 + 0.056
keV obtained from the PDG branching ratio. It can be
seen that all our theoretical predictions are consistent
with the experimental data.

Table 4. Ratios RS = % and R'#S. The experimental data are from PDG [50], with the statistical and systematic uncertainties added
together.
Re® Ry Ry Ry
0 0210 0073 0.026 0.039
urs 0.39125301 0.668575 0.7672511 0.819% 001
RS R RS RS RS
(0] 0.001 0.003 0.002 0.001 0.000
urs 0.9922 006 0.994%5 003 0996200 099525002 0.997%002
CLEO [12] 1.02+0.07 1.04+0.09 1.05+0.13 - -
BABAR[14] 1.005 +0.035 - - - -
PDG [50] 1.05+0.06 1.04+0.20 1.05+0.24 - -
Table 5. Ratio T(y(nS) — ete™)/T(J/p — ete™).
Fy(Q2S)) LwEs) FyAs)) L(sS)
') ') '/ LU/
(0] 0.019 0016 0013 0.013
urs 0.495%.017 0.340%5017 0.259%5016 0.21025015
Exp [50] 0.42+0.02 0.15+0.02 0.086+0.042 0.10+0.02

Table 6. Ratio ['(Y(nS) — *¢7)/T(Y(1S) — £*¢7). ‘Expl’ are the experimental data with T'.(1S) = 1.340+0.018 keV, ‘Exp2’ are the experimental
data with T',.(15) = 1.29+£0.09 keV. For T(4S), I',.(4S) = 0.272 +0.029 (0.322 £ 0.056) keV for the result inside (outside) the brackets.

T(r2s)) T'(r(@3S)) T'(Y(4S)) L(rGs))

T(r{as)) T(T(1S)) T(T(13)) T(T(15))
O 0.008 0.003 0.004 0.003
urs 0'488t0.009 0'349t0.008 0'275t0,000 0'229t0.001
Expl [50] 0.4570.014 0.33£0.01 0.203+0.024 (0.240+0.045) 0.23£0.06
Exp2 [50] 0.47+0.04 0.34+0.03 0.2120.04(0.25+0.06) 0.24+0.07
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7 Summary

In this paper, we studied the leptonic decays of heavy
vector quarkonia. For the charmonium decays, not all
states are consistent with the experimental data, while for
the bottomonium decays, almost all S wave states are in
good agreement with the data.

Theoretical results of the ratios T(y(nS)— e*te™)/
T(J/y —ete™) and T(Y(nS)— €+€)/T(YS) - £767)
were given in Ref. [55], where the potential model was
used including the v2Q relativistic corrections and pQCD
corrections at NLO. These results are comparable with
ours, i.e. the charmonium leptonic decay widths are not
consistent with the experimental data and the bottomoni-
um leptonic widths are in good agreement with the data.
This situation was also observed in Ref. [56]. It seems
that the same theoretical tool cannot provide satisfactory
results for both the charmonium and bottomonium sys-
tems [57]. There are several possible reasons for this dif-
ference in our study. It may be that the instantaneous ap-
proximation works well for bottomonium, but is not good

enough for charmonium. An improvement of the Cornell
potential may be needed, and more importantly, the per-
turbative QCD corrections may have larger effect in char-
monium decays than in bottomonium decays. Since the
BS equation is an integral equation, the QCD corrections
from the gluon ladder diagrams are already included, but
other QCD corrections in the kernel or in the quark
propagators may need to be improved in future calcula-
tions.

The Bethe-Salpeter method provides a strict way to
deal with the relativistic effects. In this framework, we
found that the relativistic corrections are large and im-
portant for the leptonic decays y(nS)— ¢*¢~ and
T(nS)— £*¢". For the (15 —5S) leptonic decays, the re-
lativistic effects are 22*3%, 34*3%, 41*%%, 52*{1% and
62+13%, respectively. Therefore, for the highly excited
states @(nS), the relativistic corrections give dominant
contributions. For the Y(1S —5S) decays, the relativistic
effects are 14*1%, 23*9%, 20*5%, 21*9% and 28%3%, re-
spectively. Thus, relativistic effects should be considered
for a sound prediction of the heavy quarkonium decays.
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