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Collision of spinning particles near BTZ black holes”
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Abstract: We study the collision property of spinning particles near a Bafiados-Teitelboim-Zanelli (BTZ) black hole.

Our results show that although the center-of-mass energy of two ingoing particles diverges if one of the particles pos-

sesses a critical angular momentum, the particle with critical angular momentum cannot exist outside of the horizon

due to violation of the timelike constraint. Further detailed investigation indicates that only a particle with a subcritic-

al angular momentum is allowed to exist near an extremal rotating BTZ black hole, and the corresponding collision

center-of-mass energy can be arbitrarily large in a critical angular momentum limit.
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1 Introduction

Particle collision near a black hole background has
long history. The possibility of having an infinite center-
of-mass energy collision near a black hole was first poin-
ted out by Piran, Shaham, and Katz in 1975 [1]. In 2009,
Bafiados, Silk, and West [2], rediscovered this mechan-
ism, known as the BSW process and pointed out that be-
cause of the infinite center-of-mass energy caused by this
collision, the rotating black holes can act as particle ac-
celerators [2, 3]. Along this line, many aspects of the
BSW mechanism with various black hole backgrounds
have been investigated. Examples are the Kerr naked sin-
gularity [4], charged spinning black hole [5], Kerr-
(anti)de-Sitter black hole spacetime [6], and the universal
property of rotating black holes was given in Ref. [7].
Other research related to a higher or lower dimensional
spacetime background [8—10] is also interesting, such that
a five-dimensional Kerr black hole can be found in Ref.
[8] and a three-dimensional rotating charged hairy black
hole has been studied in Ref. [10]. Furthermore, the BSW
mechanism can help us optimize the collisional penrose
process, which extracts energy from a black hole through
particle collision [11-19].

In three-dimensional spacetime, there is a typical sta-
tionary black hole solution with a negative cosmological
constant that was first discovered by Bafiados-Teitel-
boim-Zanelli (BTZ) [20]. This black hole solution, be-
cause of its similarity and simplicity compared with the
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(3+1)-dimensional Kerr black hole, has recently received
increasing attention. For example, the spinless particles
collision around the BTZ black hole has been the subject
of study in Ref. [21]. Researchers are interested in the
(2+1)-dimensional BTZ black hole, as it can be a good
toy model, which helps gain a deeper understanding of
the same problem in Kerr spacetime. This is becausethe
analytical expression is usually possible in the BTZ back-
ground [22-24], while in the Kerr spacetime the same
analytical treatment for the same problem is generally
very difficult. For example, the collision of fast rotating
dust thin shells in the (2+1)-dimension is significantly
more simple compared with the (3+1)-dimensional Kerr
spacetime [22-25].

In contrast, numerous authors focus on the point
particle, whose trajectory is a geodesic. However, a real
particle should be an extended body with inclusion of
self-interaction. Compared with the spinless particle, the
orbit of a spinning test particle is no longer a geodesic,
and it has been shown [26—32] that the equations of mo-
tion of spinning particles around a given spacetime back-
ground are discribed by the Mathisson-Papapetrou-Dix-
on (MPD) equations [33—35]. By collecting these results,
the authors in Ref. [30] show that the collision center-of-
mass energy could be divergent for the extremal Kerr
black hole. With these motivations, our research in this
study is devoted to investigate the collision of spinning
particles around the BTZ black hole.

The paper is organized as follows: In Sec. 2, we intro-
duce Mathission-Papapetrou-Dixon (MPD) equations,
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which describe the spinning particles' motion in curved
spacetime, and apply it to the Bafiados-Teitelboim-Zanel-
li (BTZ) black hole. In Sec. 3, we obtain the collision
center-of-mass energy of spinning particles and find the
condition for the divergence of center-of-mass energy
with either of the particle possessing critical total angular
momentum. Subsequently, in Sec. 4, the motion of spin-
ning particles with critical and subcritical angular mo-
mentum near the event horizon is analyzed in detail, and
it is shown that a spinning particle with subcritical total
angular momentum is allowed to exist on or outside the
horizon. In Sec. 5, the collision of two spinning particles
with subcritical total angular momenta near the horizon
are calculated, and the diverging center-of-mass energy in
the critical limit is obtained. Conclusions are provided in
Sec. 6. Throughout the paper, we adopt the convention
that the speed of light ¢ = 1.

2 Equations of motion for spinning particles

The metric of the BTZ black hole in the Boyer-
Lindquist coordinates reads [20]

2 2
ds? = —g(r)dit + 3 4 (d¢ - dt) : (1)
g(r) Ir
where
(=) =r)
8 = =, )
and
r2+r?
M=see )
rer—
=G @

and r = r, is the outer horizon, r = r_ is the inner horizon,
M is the ADM mass, J is the angular momentum and / is
a parameter determined by the negative cosmological
constant A (> =-A/3). Note that for the angular mo-
mentum J, |J| < Ml must be satisfied. When the black
hole is extremal (r,. = r_), we have |J| = Ml.

Under the given BTZ spacetime, the spinning
particle's motion can be described by MPD equations [28,
30]

D 1

EPQ = —ERZCdVbSCd, (5)
D
ES”” = Pyt — PPy, (6)

Along the center-of-mass world line z(7), v* = (%)“ is the
tangent vector, % is the covariant derivative, pe is the
momentum of the spinning particles, and S is the spin-
ning angular momentum tensor.

To obtain the detailed relation between p¢ and V%,

supplementary conditions need to be imposed: [30, 31]
S%pP, =0, (7)
P, =-m, (8)

where 7 is not necessarily the proper time of the spinning

particle. Combining Egs. (5), (7), and (8), the difference
between v and u“ reads [30, 34]

mva _pao S abRbcdePCS de

1 SO
2(m2 + ZRbcdeS beg de

With direct calculation, we find that v* =y in BTZ
spacetime, where u“ = P*/m. Notably, the velocity v is
parallel to the momentum »“ in the specific property in
(2+1)-dimensions, and in general not valid in four-dimen-
sional spacetime.

There are two Killing vector fields & = (9/dt)* and
¢* =(0/0¢)" in BTZ spacetime, and because BTZ space-
time is axi-symmetric and stationary, they can be expan-
ded in the orthonormal triad basis ¢ as

_ © _T+r- )
o =—+gre, 5 Ca (10)
o =re,
where
e = \g(r(d),,
1
)
=T d as
e(l g(r)( r) (11)

e = r((d)a— " (an).
Ir?
Then, a corresponding conserved quantity can be defined
by the Killing vector field & as follows:

1
Q¢ = Péu =55V 1bs (12)

From the equation above, two conserved quantities
can be obtained, namely the energy of per unit mass of
the particle E,, and the angular momentum per unit mass
of the particle J,:

1
Enp=—u"é,+ Z—S“bv,,ga,
e (13)
I = ua¢a - Z_Sabvb¢a-
m

Combining these with Egs. (6) and (7), we can intro-

duce the spin s of the particle as
1
2. ab
s = ﬁS Sab, (14)
where s is the spin of unit mass. Moreover, combining
with Egs. (5), (6), and (7), the spin tensor can be written
reversely as

§@®) _ms(a)((l;))u(c)s’ (15)

where gy)p)) is the completely anti-symmetric tensor
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with the component £¢)1y2) = 1.
From Eq. (15), the non-zero components of the spin
tensor can be expressed in terms of (@ as

SO = _p @

SO = gD, (16)

S = O

The explicit expressions of the energy and the angu-
lar momentum per unit mass E,, and J,, in terms of u(®
can be obtained using Eq. (16) and Eq. (13) as:

Ey = +g(ru® + (_r+r_ + E)u(z), 17
Ir I
I = sg(u® + (% + r) u®. (18)
r

Solving Eq. (17) and Eq. (18) gives
l(lEm (lr2 +r_ry s) —Jn (lr_r+ + rzs))

u® = . (19)
r (r2 - r%) (r2 - }gzr)(l2 —52)
—E,,:
u® = Im=Ems, (20)
rs
r— l_2

By considering the normalization condition of mo-
mentum u@u, = —m?, we obtain the u') as follows:

@MY = @) — @) — 2. (21)

For direct comparison to the spinless case in [21],
now express the momentum in the coordinate basis:

o g W)

prn= i 20 (22)

- dr
P = =pVY(®), (23)

T

d¢  roar W) P(Jm—Ens)
P(r)= — =
pin = dr  Ig(r)r? " r2(2-s2) "’ 24)
where

Wer) = Eml(lr2 + r_r+s) —Jn (lr_r+ + r2s) 25)

r2(2 - s2) ’

2
I —En
Y(r) = W2(r) | m? + [—S] g, (26)
r(1-%)
p = +1 for the outward direction, —1 for the inward direc-
tion.
We define the critical angular momentum as

_ E l(lry+r_s)

Jo = @7

Ir_+rys

and a particle with critical angular momentum J. corres-
ponds to:

Wi(r+) = 0» (28)

where i = 1,2 refers to particle 1 or particle 2 in the colli-

sion process. When the particle's spin s =0, the critical
angular momentum introduced here will be reduced to the
spinless case, which has already been investigated in Ref.
[21].

The timelike constraint of Eq. (22) indicates p'(r) > 0
outside the horizon for massive particles, which in turn
implies W;(r) > 0. Therefore, for particles with the angu-
lar momentum J,, < J,, the positivity of W;(r) gives rise to
a constraint on the particle's spin, as > — s> > 0. Therefore,
in the following sections, we restrict ourselves to the case
-l<s<l.

3 Center-of-mass energy of collision

In this section, we intend to find the condition re-
quired for infinite center-of-mass energy collision of two
spinning massive particles near the BTZ horizon. These
are particles i = 1,2 that start at infinity with masses m;,
energy per unit mass E,,;, total angular momenta per unit
mass J,,;, and spins s;, falling to the black hole and collid-
ing near the event horizon. Then, the collision center-of-
mass energy E.p, is given by [21, 30]:

Egp == (P10 + P50 (P1u(r) + pou(r)
o o WiWa(r) - VYi(nYa(r)
=mj+m;+
8(r)
_ 214(Jm1 —En151)(Um2 = Em152)
r2(2 = sH)(P - s3)
where Y;(r) and W;(r) are defined by Egs. (25) and (26)
with i = 1,2 again labeling particle 1 or particle 2.
We find that the third term of Eq. (29) is a 8 type

when r approaches the event horizon r,, hence we first
need to regularize this term as

, 29

lim 2Wl(r)Wz(F)— VY1 (nYa(r) _ Wz(m)zl Wi(ry) ]
ror. g Wi(ry) Wa(ry)
in which
2
7= |m2 4| T Emisi | 31)

1 S.z
r(l—l—z]

It is easy to see that E2 blows up with r — r, if one
of the particles has the critical angular momentum J.
(which means W;(r,) =0). If both particles possess J,
then we have,

Wa(ry)  Wi(re)  Ep(r-+res:)
Wi(ry)  Wi(ry)  Epp(r-+ris)’

(32)

in which , denotes the derivative with respect to ». For an

equal spin collision (s; =s,), the ratio % = g—; be-

comes a finite value, which is similar to the spinless case
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[21]. Therefore, the only possibility for the center-of-
mass energy to approach infinity is one of the spin, for
example, sy, satisfies

Ir_
1 =sc=—L. 33)

Iy
However, this is equivalent to require J,,; = J.; to be in-
finity according to Eq. (27) and thus impossible to

achieve in practice.

4 Motion of a particle with critical and sub-
critical total angular momentum

In the previous section, we showed that if one of the
collision particle possesses critical angular momentum,
the center-of-mass energy E.,, will blow up. However, to
solidify this conclusion, we still need to verify whether
the particle with critical angular momentum J, can satis-
fy other constraints, such as the timelike constraint in
subsection IVA and radial equation of motion, which
guarantees that the particles can reach the horizon. There-
fore, the aim of this section is to discuss these constraints
carefully.

First, we note that for the spinless case [21], a particle
with critical total angular momentum J,, = J,. isnot al-
lowed to exist outside the event horizon, while one with
subcritical angular momentum can be allowed. Later, we
shall investigate the same issue by taking account of the
spin effect in subsections IVB to IVC.

4.1 Timelike constraint of p’(r)

The first subsection is devoted to the timelike con-
straint of p'(r). To avoid superluminality, p’(r) should be
non-negative. From Eq. (22) we have

P =0 5, (34)
g(r)
since f(r) > 0, the above equation is equivalent to
WIE, (Ir+r_rys)=Jp(lr_ry +12s
WU)=( ( )= In{ir-r. ))>0 (35)

r(? - s?)
Eq. (35) states a restriction of J,, to ensure p’(r) > 0 near

the event horizon, where the infinite center-of-mass en-
ergy collision takes place. Considering an extremal black

Y(r)=Yc(r)+

S(=2E l(r* = ) = s¥)(Iry +1_8) = (Ir— +ry )P (=r* + 12 + 1)+ 2lr_ry s + r*5%)5)

hole and the case —I < s < [, this leads to
Jn<Epnl=1J, (36)

which means that for J,, < J., the timelike condition is
satisfied. However, for a massive particle, when the total
angular momentum assumes the critical value J,, = J., the
timelike condition is violated. Therefore, in the follow-
ing sections, we consider the subcritical total angular mo-
mentum J,,, < J..

4.2 Radial motion of particle: Y(r)

Now we come to the radial motion of the particle,
starting with the expression of p”(r) Eq. (23), and obtain
the radial equation of motion of the spinning particle:

|
Eﬂvf+wm=a (37)

where V(r) is the radial effective potential defined by
V(r) = =Y(r)/2, and 7 is the geodesic parameter. Particles
are only allowed to exist in regions where V(r) <0 or
Y(r) > 0 from Eq. (37).
For a massive particle with m # 0, we consider that
the tendency of Y(r) at infinity is
lim Y(r) = =m* X 00 < 0, (38)

r—co

which implies that a massive particle cannot escape to in-
finity. As the expression of Y(r) for massive particle is
complicated, we investigate it with subcritical total angu-
lar momentum in IVC, especially for an extremal black
hole.

4.3 Motion of a particle with subcritical total angular

momentum

In the last subsection, we already know that particles
with critical total angular momentum cannot exist out-
side the event horizon. Thus, we consider a particle with
subcritical total angular momentum J,(J,, <J. for the
case —[ < s <[ according to Eq. (36)):

~ Enl(lry+r_ ~
‘]mEJC_(;:M_& (39)
Ir_+r.s

and attempt to find the range of § that enables the particle
to exist outside the black hole (i.e. Y(r) >0). With this
well-defined subcritical total angular momentum, we ob-
tain the corresponding function Y(r) as follows:

where

r*-r?) E%llz(r%r -2 mA(rt-ro)?
r2 (Ir— +r,5)? 2

Y.(r)=- ) 41

When the spin s is taken as zero, our result will reduce to

r2(2 = s2)2(lr_ +rys)

(40)

[
the spinless case by identifying 6 = %[6 with § introduced
in Ref. [21]. From Eq. (40), a particle with subcritical
total angular momentum can exist on the event horizon or

nearby outside of the black hole, since
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%2
(lr_+r+s)c5) >0 2)

r(B=s?)

Y(r+)=(

We proceed to discuss Y’(r), which is the derivative
of Y(r) with respect to r, determining how far the colli-
sion point departs from the event horizon r, [21].
First, Y’(r) with critical total angular momentum (i.e.
6=0)1s

Y'(r)=Y{(r)—-

215(—2Emr3(l2 - sz)(lr+ +r_s)+(r_+ry s)(l(r% + r%) +2r_ry S)S)

2 (r% - r%) (l4E,2n +m2(r_+rys) 2)

Prio(Ir_+rys)?

Y/(ry) = (43)

on the event horizon. For the extremal case with critical
total angular momentum, since we have r, =r_, using
Egs. (41) and (43), we obtain Y(r,)=Y'(r;)=0 on the
event horizon.

Then, with subcritical total angular momentum, Y’(r)
is relevant to &

On the event horizon, the above equation becomes
Y'(ry) = D28* + D1 + Dy, (45)
where the coefficients read
ZZ(l(r% + ri) +2r_ry s)

SIS

D, = , (46)

4lE,, (Iry +7r_s)
D = , 47
! re(B=s2)(Ir_+rys) “7)

2(r% - ri) (I4E,2n +m*(r_+r, s)2)
Dy = . 48
0 Pro(Ir_+rys)? (48)

The coefficient D, < 0 by considering s> < /2, the sign
of D, is the same as in the spinless case [21]. Along the
same line as in Ref. [21], by solving Eq. (45), we found
that there exists a Epmax

m \/ri —r2 \/lr% + lr?r +2ror_s

Enax = B2y s

(49)

if the unit mass energy E, < Emax. The corresponding
Y’(r;) is always negative; on the contrary if E,, > Epax,
which is more interesting, the corresponding Y’(r;) can
be non-negative in the range of 6. <& < g, and it is neg-
ative elsewhere with the boundaries defined as

l3Emri(l2 —sOUry+r_s)— VA
L = b
Br_+r.s) (l(r% + r%) + 2r_r+s)

- BE. AP - (Iri+r_s)+ VA

f Bdr_+r.s) (l(r% + ri) + 2r_r+s)7

A=Pra(P - s*)(Ir- +res5)?
X (ZSE,%lr% +m? (r% - ri) (l(r% + ri) +2r_ry s)) (50)
For the extremal black hole, E.x = 0. It is worth not-
ing that particles with subcritical total angular momenta
J.—6 satisfying 6. <d<d0r have Y(r,)>0 with
Y’(r+) > 0. Furtunately, they can exist outside the event

r3(Ir_+ res)(2 - s2)?

(44)

horizon, which is in contrast to the non-existence of
particles with critical total angular momentum in subsec-
tion 4.1.

For the spinless particle, the infinite center-of-mass
energy collision occurs at the extreme point of Y(r),
which usually serves as return point of the particle. This
is because in BTZ spacetime, except in the point where
the particle starts to fall, ¥(r) has no other zero point,
which is usually taken as the collision point [21]. To find
this turning point of radial motion, we solve the equation
Y’(r) = 0 with the positive root r,:

’ 2 %
MG ) . (51)

rm=r+|1+
" ( 2r m?

Consequently, whether r,, is greater than event horizon r,
relies directly on the sign of Y’(r,) that has been ana-
lyzed above. When E,, > En.x and 6 <6 <dr are satis-
fied, we have Y’(r,) > 0, which in turn implies
Tm 2Ty, (52)

Eq. (52) indicates that the turning point of radial motion
is on or outside the event horizon.

After applying the extremal condition
Emax = 0, the boundaries of Eq. (50) become:

5= 1Em (1-s—Va-s7).

2

r-=rs,

or = %Em (1-s5+ Vu-97?). (53)

Thus, the relation between r,, and r, can be summarized
as follows:

Since —I < s <[, we have 6. =0< 8 < E,,(I—s5) =g Or
equivalently E,,s < J,, < Epl, ry > ry; for other values of
d, ry < ry, which is disfavored by the current discussion.

In Fig. 1, § is assumed to be 0.01, and we compare
the effective potentials of radial motion V(r) = —Y(r)/2 of
a particle with different spins s and a subcritical total an-
gular momentum J,, = E,,/ -4 in an extremal BTZ space-
time, in which the minimum points mark r,, where the
particle is about to return, and it is shown that r,, with
spins satisfying —/ < s < [ are greater than r,.
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Fig. 1.  (color online) Effective potential of radial motion

V(r) = -1Y(r) of a particle with different spins s and a sub-
critical total angular momentum J,, = E, /-6 < J. in an ex-
tremal BTZ spacetime. The minimum point of V(r): r,, with
spin  s=-0.5,0,0.5 is greater than r,. Here,
m=1,6=0.01,
marks the event horizon r,.

re=ry=E,=1= and the longitudinal axis

5 Collision of spinning particles near an ex-
tremal BTZ black hole and its critical total
angular momentum limit

The divergence condition for center-of-mass energy
with critical total angular momentum J. in Sec. 3 was
found to be unavailable in subsection IVA. Because of
the timelike constraint, both spinning particles are re-
quired to possess subcritical values of total angular mo-
mentum J,,1 = E,l— (51, w2 < Eypl, with SLI < 51 < SRI
because we pick r,,; as the collision point. Then, we con-
sider the collision center-of-mass energy E>, by taking
the limit §; — 0.

2]4(Eml (l -8 ))JmZ

Jim Een(rn) = 113+ 0= sy Y
in which
QE limZWl(rm)WZ(rm)_ VYl(rm)YZ(rm). (55)

e 8(rm)
Both numerator and denominator of Q tend to zero in
the limit of §; — 0. For this reason, we express Q using
L'Hopital's rule with respect to & as

. Wa(ry) Yl (fm)
— lim Fop) = )
0= & m>( 1o x/Y1<rm>)
T WZ(rm) 5 _ Wl(rm)
=30 2m) [ZW‘(“) ? (l—sl)}’ 0

with - indicating derivative with respect to 41, in which

o E,2n114+m r2(1+s51)?
,,hm W](rm)_ 2 £
0,—0 l +(l—S])(l+S])

(57)

and after a series expansion, g(r,,) becomes:

_ 26, E2 It
lim §(ry) =

lim —m% oy (58)

Eventually, collecting all the above ingredients, O can
be expressed as

T Wa(rm) 5 _ Wl(rm)
073 2w [ZWI(””) ? (l—so]
= 2k lim 22,
6-0 &(rm

m%(l— sl)(Efnll4 +m r+(l+ sl)z)

=k lim Wa(r,, = 59
511—>0 2(7) S1EX I (59)
where k is
Wi (r, m2r2(1+s1)2
k=1- ](m)/Wl(m) — + .
(I-s1) EF+m r+(l+s1)

(60)
Therefore, the collision center-of-mass energy E2,, of

the two spinning particles is easily observed to diverge,
as Q diverges at the point r = r,, in the limit §; — 0.

6 Conclusions

We analyzed the collision center-of-mass energy of
two spinning particles near the BTZ black hole. Our res-
ult shows that the center-of-mass energy of two ingoing
spinning particles in the near horizon limit can be arbit-
rarily large if one of the particles possesses a critical an-
gular momentum, and the other has a noncritical angular
momentum. However, a particle with critical angular mo-
mentum cannot exist outside of the horizon due to the vi-
olation of the timelike constraint. Moreover, we proved
that the particle with a subcritical angular momentum is
allowed to exist in the neighbourhood of an extremal
BTZ black hole and the corresponding collision center-
of-mass energy of two spinning particles taking place at
the point near an extremal BTZ black hole can be arbit-
rarily large in the §; — 0 limit.

Notably, there are still many important issues that
need to be investigated in the future. For example, in-
spired by the BSW mechanism, people found that the ef-
ficiency of extracting energy from a rotating black hole,
which is usually called the Penrose process, can be signi-
ficantly improved, especially for spinning particles [12,
13, 19, 36]. Therefore, with the BSW mechanism for
spinning particles, studying the corresponding Penrose
process becomes possible. We hope to address this issue
in the near future.
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