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Abstract: Nuclear matrix elements (NME) and phase space factors (PSF) entering the half-life formulas of the
double-beta decay (DBD) process are two key quantities whose accurate computation still represents a challenge. In
this study, we propose a new approach of calculating these, namely the direct computation of their product as an
unique formula. This procedure allows a more coherent treatment of the nuclear approximations and input paramet-
ers appearing in both quantities and avoids possible confusion in the interpretation of DBD data due to different indi-
vidual expressions adopted for PSF and NME (and consequently their reporting in different units) by different au-
thors. Our calculations are performed for both two neutrino (2v88) and neutrinoless (0v88) decay modes, for five
nuclei of the most experimental interest. Further, using the most recent experimental limits for OvBS decay half-lives,
we provide new constraints on the light mass neutrino parameter. Finally, by separating the factor representing the
axial-vector constant to the forth power in the half-life formulas, we advance suggestions on how to reduce the errors
introduced in the calculation by the uncertain value of this constant, exploiting the DBD data obtained from different

isotopes and/or decay modes.
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1 Introduction

The double-beta decay (DBD) is a rare nuclear pro-
cess intensively studied due to its potential to test nuclear
structure methods and investigate beyond standard model
(SM) physics [1-3]. According to the number and type of
released leptons, there are several possible DBD modes
that can be classified in two categories. One category is
where two anti-neutrinos or two neutrinos are emitted in
the final states along with the two electrons (2v387) or
two positrons (2vB*B*). The double-positron decays can
also be accompanied by one or two electron capture pro-
cesses (2vB*EC, 2vECEC). These decay modes occur
with lepton number conservation (LNC) and are allowed
within the SM. In the other category, the decay processes
are similar with the one described above, however no
anti-neutrinos or neutrinos are emitted in the final states.
They are generically called neutrinoless DBD processes
(0vBB), such that we may have OvB=8-, 0vB*B8*, OvB*EC,
and OvECEC decays in this category. All these processes
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violate LNC, hence they are not allowed within the ori-
ginal framework of the SM, however they can appear in
theories that are more general than the SM. The discov-
ery of any 0vBB8 decay mode would first demonstrate the
lepton number violation by two units, but would also
provide us with valuable information on other beyond
SM processes. From the 2vB8 decay study, information
about nuclear structure can be obtained, different nuclear
methods can be tested, and the violation of the Lorentz
symmetry can be investigated in the neutrino sector.
Meanwhile, from the 0v38 decay study, the neutrino char-
acter can be decided (is it a Dirac or a Majorana
particle?), one can constrain beyond SM parameters asso-
ciated with different mechanisms that may contribute to
this decay mode, and one can obtain information about
neutrino mass hierarchy, the existence of heavy neutrinos,
right-handed components in the weak interaction cur-
rents, etc. Therefore, the DBD study is a highly import-
ant and timely topic.

The first step in the theoretical study of the DBD pro-
cess is to derive half-life expressions and calculate the
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quantities therein, for each possible decay mode and for
different transitions and mechanisms that may contribute
to the 0vBB decay mode. With a good approximation, the
DBD half-life formulas can be written in factorized form,
as follows [4], [5]:

-1
(T71) = G™(Eo,Z)x ghx | mec* M I, (1)
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where G?9” denotes the phase space factor (PSF), p(20v
is the NME for the (2,0)v decay modes, and (5;) is a para-
meter related to the specific mechanism I that can contrib-
ute to the 0vBB decay. We note that the half-life expres-
sions above are written such that the product of the nucle-
ar (NME) and atomic part (PSF) is expressed in [yr~'].
Moreover, we note that the axial-vector constant to the
forth power is separated from other components. Such
form of the half-life expressions allows facilitated use of
the theoretical results for interpreting DBD data and the
possibility to make connections between data from differ-
ent decay modes and experiments in an attempt to find
solutions to reduce the errors in computation related to
the value of the axial-vector constant, which is not pre-
cisely known. As previously shown, to estimate/predict
DBD lifetimes and derive beyond SM parameters, a pre-
cise, reliable computation of both the PSF and NME is
mandatory. The largest uncertainties in the DBD calcula-
tions originate from the NME. They are calculated with
different nuclear methods, the most currently employed
method being pnQRPA [3, 6—10], Shell Model [11-14],
IBA2 [15-17], PHFB [18], and GCM with EDF[19].
They differ mainly by the choice of model spaces and the
type of correlations taken into account in the calculation.
Each of these methods has its own advantages and draw-
backs, and errors in the NME computation associated
with each of method have been extensively debated in the
literature over time [3, 6— 19]. The differences in the
NME values computed by different methods may stem
from different sources such as i) the choice of the model
space of single-particle orbitals and type of the nucleon-
nucleon correlations included in calculation, which are
specific to different nuclear methods, i) the nuclear struc-
ture approximations associated with short range correla-
tions (SRC), finite nucleon size (FNS), higher order terms
in the nucleon currents (HOC), inclusion of deformation,
etc., or ii1) the use of input parameters whose values are
not precisely known, like nuclear radius, the average en-
ergy of the virtual states in the intermediate odd-odd nuc-
lei or the value of the axial-vector constant, g4, etc. Par-
ticularly important is the value of g4, (which can be 1.0 =
quark value; 1.273 = free nucleon value; or other
quenched value (0.4-0.9)) because of the strong depend-
ence of the half-life on this constant. We note that errors
originating from the different choice of values of these

parameters can significantly increase uncertainty in the
half-life computation, hence appropriate attention should
also be paid to this source or errors.

In contrast, the PSF have long been considered to be
computed with sufficient accuracy [3, 20—25]. However,
newer calculations [4—-5, 26] using more rigorous meth-
ods, i.e., employing exact electron Dirac wave functions
(w.f.) and improving the method by which the finite nuc-
lear size (FSN), electron screening effects, and a more
realistic form of the Coulomb potential is considered, re-
vealed notable differences in the PSF values as compared
with older results, especially for heavier nuclei, positron
emission and EC decay modes, and transitions to excited
states.

Errors in the PSF computation originate from i) the
method of calculation of the electron w.f., namely - the
non-relativistic approach [20]; -relativistic approach with
approximate electron w.f. [3]; - relativistic approach with
exact electron w.f. [4-5, 26]; i1) numerical accuracy both
in the resolution of the Dirac equations for obtaining the
electron radial functions and the integration of PSF ex-
pressions for different decay modes.

We also note that some input parameters appear both
in the NME and PSF expressions, such as the axial-vec-
tor constant g4, the nuclear radius R4 (R4 = rpA'/3), the
value of the average energy of the virtual states in the in-
termediate odd-odd nucleus used in the closure approxim-
ation, (Ey), etc. Moreover, when these quantities are cal-
culated separately, different groups have sometimes used
different values for these parameters. Furthermore, the
NME and PSF have been reported in different units de-
pending on which factors were included in their expres-
sions, and this led sometimes to some confusion/diffi-
culty in theoretical predictions and the interpretation of
experimental data.

In this study, we propose a new approach of calculat-
ing the NME and PSF entering the DBD half-lives to cal-
culate their product directly, in an unique formula, in-
stead of calculating them separately. This is indeed natur-
al, since to predict half-lives and obtain information bey-
ond SM physics from the DBD study, we need to pre-
cisely know the product NME x PSF. The computation of
the product as a whole has some advantages. By calculat-
ing its values in units of [yr~'], the prediction and inter-
pretation of experimental DBD data is facilitated, thereby
removing any confusion related to the units, whose com-
ponents are reported when these are calculated separately.
Moreover, the formula of the product has the unique de-
pendence on a certain parameter, which assumes a single
value. Thus, the computation of the atomic and nuclear
part of the DBD half-life obtains coherence, which has
not been paid attention to so far. Finally, we note that the
separation of the g4 factor in the half-life expressions also
provides advantages. For example, by combining experi-
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mental data and information from different DBD iso-
topes and/or decay modes and transitions, one can reduce
the uncertainty of the calculation related to this parameter.

2 Products of phase space factors and nucle-
ar matrix elements

We define the products as follows:

P2V — GZV x |mgC2M2V|2,

A3)

POV — GOV % |M?V|2’ (4)
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where G is the Fermi constant, 6¢c is the Cabbibo angle,
Qpgp denotes the Q-value for the DBD, m, depicts the elec-
tron mass, and €, and w;, are the electron and neutrino
energies, respectively. Moreover,

A= %Qﬁﬁ+2m36‘2+<EN>—E1:|, (9)
where (Ey) is an average energy of the states E; in the
odd-odd intermediate nucleus that contribute to the de-
cay. (Ky) and (Ly) are quantities that depend on the elec-
tron and neutrino energies, as well as on the energies
(Ey) and E; [21]. 1((1)) depicts the combinations of the ra-
dial electron functions g; and f;, which are solutions of
the Dirac equations [26]. Finally, M@0 is the NME for
the 2v and Ov decay modes.

To compute the products p?* and P%, we construct
numerical codes by taking advantage of our previous
codes to separately compute the NME and PSF quantities
[13, 26, 27]. The expression of the product p20v con-
tains factors outside the integrals that stem from the sim-
plification and separate multiplication of the nuclear and
kinetic parts. Further, their kinetic part (PSF) and the nuc-
lear part (NME) have common input parameters R4, (En),
and gu.

First, we refer to the p?’ computation. The kinetic
part is computed following the main lines of the ap-
proach developed in our previous work from Refs. [5-26].
Here, we shortly review the main ingredients of the code
and computation. We first use a subroutine where the
electron wave functions are obtained as radial solutions
(gr and f;) with appropriate asymptotic behavior of the
Dirac equations with a Coulomb-type potential, includ-
ing the finite nuclear size and electron screening effects.

Qps+2m,*—€

therefore, the half-life expressions become:

(1) = () % PP (5)
(Toy)f1 = (89{@5)4 x P x (m)?, (6)

where g4.r is the effective value of the g4 constant,
which can be different for different nuclei and decay
modes, as it can depend on nuclear medium and many-
body effects. Hence, providing the products P20 in
[yr~!], one can use them easily for predicting half-lives
and/or constraining beyond SM parameters. The detailed
expressions of these products read:

Qpp+2m,c*—€,—6 © 5
de [ dwo1 O 10203 (p1)(pac)
0

O]

Qp+m,c’

e1&(pi1o)(p20)def [(Ky) — (Ln)T, ®)

The Coulomb-type potential is deduced from a realistic
proton density in the daughter nucleus. To obtain the
single particle densities inside the daughter nucleus, we
solve the Schrodinger equation for a spherical Woods-
Saxon potential with a spin orbit and Coulomb terms
[5]-[26]. Subsequently, the PSF part of the code is com-
pleted by performing the integrals over the electron phase
factors constructed with the Dirac radial functions. The
code exhibits an improved numerical accuracy for find-
ing the electron w. f. and a better interpolation procedure
for integrating the PSF final expressions, particularly at
low electron energies. For the NME part, we employ a
code similar to that from Ref. [13] for computing the
double Gamow-Teller transitions, assuming the follow-
ing effective nucleon-nucleon interactions: GXPF1A [28]
for “8Ca, JUN45 [29] for "°Ge, and 3?Se and gcn50:82
[30] for *°Te and '3°Xe.

The values for the products p2” are presented in the
third column of Table 1 for the five nuclei of experiment-
al interest. With the values of gf{eff, written in the forth
column of the table as first entries, we reproduced the
most recent measured half-lives found in literature, which
are displayed in the second column. In the forth column,

Table 1. Results for 2v3B decay mode.
nucleus TP, /yr P [yr! S/ 8xp €(%)
BCa  640x10°[31]  12381x1072'  0650.71[34] 845
"Ge 1.92x 102 [32] 5.16x 10721 0.56/0.60[35]  6.60
PSe  092x10°[32]  186.62x1072"  049/0.60[35] 18.33
PTe  820x1020[33]  2526x1072'  047/0.57[35] 17.33
BiXe  2.16x 10?1 [31] 2030x 102" 039/0.45[35] 13.33
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we also show the gf{exp values taken from Refs. [34-35],
which were obtained by comparing the theoretical B(GT)
strengths with the experimental ones extracted from
charge-exchange reactions. In the last column, we present
the difference in percentages between the gs s values ob-
tained within our calculations to reproduce the experi-
mental DBD half-lives and those obtained by fitting the
B(GT) experimental data, estimated in percentages,
€= (g2y—g§"’eﬁ) /g%. As observed, the two sets of values
are close to each other, the smallest differences being in
the case of 7°Ge and *3Ca nuclei.

Subsequently, we calculated the P products in the case
of the light Majorana neutrino exchange mechanism, with
(1) = {m,)/m, and the light neutrino parameter defined as:

3
(my= > UZm], (10)
k=1

where U,; denotes the first row elements of the Ponte-
corvo-Maki-Nakagawa-Sakata neutrino mixing matrix,
and my. depicts the light neutrino masses [36]. The expres-
sion of the nuclear matrix elements can be written as a
sum of Gamow-Teller (GT), Fermi (F), and tensor (7)
components [9, 27]:

2
M0V=MgVT—(g—V) MY+ MY, (1)
84

where M7, MY, and M) are these components. These

are defined as follows:
MY =" {(05lIr s OB, lI0] ), (12)

m,n
0%, are transition operators (@ = GT,F,T) and the sum-

mation covers all nucleon states. Correspondingly, the
two-body transition operators Of, can be expressed in
factorized form as [27]:

k
0%, = NoS P - [RE x|, (13)

where N, is a numerical factor including the coupling
constants, and S ,, R,, and C, are operators acting on the
spin, relative, and center-of-mass wave functions of the
two-particle states, respectively. Thus, the calculation of
the matrix elements of these operators can be decom-
posed into products of reduced matrix elements within
the two subspaces [14]. The expressions of the two-body
transition operators are:

O =y -aaH(r), OF, =H(),

o, = \/g [0y X 0]+ %H(V)C(z)(?)- (14)

The O, operators contain three components, namely
the spin, center-of-mass, and the radial component, and
the expectation values of the first two components are
easily managed. The radial part is the most difficult to
calculate, as it contains neutrino potentials written in dif-

ferent approximations, where the expectation values are
double integrals over these potentials. Moreover, short-
range correlations and finite nucleon size corrections are
introduced in this part of the computation. The neutrino
potentials depend weakly on intermediate states, and they
are defined by integrals over momentum carried by the
virtual neutrino exchanged between the two nucleons [9].
They include Fermi (F), Gamow-Teller (GT), and tensor
(T) components:

oy 28 [
n Jo q+(En)

X [jo(gr) (hp(q) +her) + jo(gr)hr], (15)
where R=rgA'? fm, with ro=12fm, joo(qr) are the
spherical Bessel functions, and the integrals are over the
neutrino exchange momentum ¢q. In our calculations, we
use the closure approximation. (Ey), as mentioned above,
represents the average energy of the virtual states in the
intermediate odd-odd nucleus included in the description
of the decay. Furthermore, we note that the factor 2Ra is
canceled by a similar factor from the denominator of the
PSF expression, such that p% does not depend on the
nuclear radius. The expressions of neutrino potentials
hrgrr can be found in many references (see for example
[9]). These expressions include FNS effects taken into ac-
count through vector and axial-vector form factors, Gy
and G4 [9].

A2 2 A2 2
GA(QZ):gA(T_:‘qQ) , Gv(q2)=gv(T+Vq2) . (16)

The vector and axial vectors form factors are specified as
Ay =850 MeV and A4 = 1086 MeV [2].

For computing the radial matrix elements (nl|H,|n'l'),
we use the harmonic oscillator HO wave functions ,,;(Ir)
and ¢, (r) corrected by a factor [1+ f(r)], which takes in-
to account the SRC effects induced by the nuclear inter-
action [27]:

Y (r) = [1+ £(0) ] u(r). (17)
For the correlation function, we take the functional form
f)==c-e™ (1-br). (18)

For the a, b, and ¢ constants we use the parametrization
employed in Ref. [37].

Taking into account the HOC and FNS effects, the ra-
dial matrix elements of the neutrino potentials become:

(nll|Ho(DlIn'l') = fo Pdrgu (W (D[ 1+ £

x fo dgVa(@)jolan. (19)

We note that in the case of PO products, the axial-vector
constant also enters the expressions of the neutrino poten-
tials, in addition to the factor gi,eﬁ, such that the half-life
expression for the OvgBB decay, Eq. (5), contains a
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"double" dependence on this constant. Naturally, for co-
herence, the same values of the g4 . constant should be
assumed in both places, i.e., both in the P% and in the
half-life computation. We note that these values may dif-
fer from the values of this constant used in the 2v88 de-
cay mode. Because presently we do not know the correct
value of gs . for the 0vBB decay mode, we calculate the
P9 products for the free nucleon value (1.273). As input
parameters, the p% values can be easily computed for
other effective values of the g, ¢ constant. The obtained
values of the products p%, in [yr~!] units, are presented in
the third column of Table 2.

Table 2. Results for the 0v38 decay mode.

nucleus T?/VQ /yr Py fyr”! (my)eV
*Ca >2.0%x1022[31] 7.30% 10715 <26.49
"Ge >8.0x 1025 [38] 9.95% 10715 <0.29
©3e >3.6x 1023 [39] 34.45% 10713 <2.87
0Te > 4.0x 1024 [40] 71.45% 10715 <0.59
Xe > 1.8x 105 [41] 71.01x 10715 <0.28

The values of the products P29 from Tables 1 and 2,
obtained with the approach described above, are very
close to the computed values, obtained by multiplying the
separately calculated values of NME and PSF. This is un-
derstandable, as in their calculation by the two methods,
we employed the same values of input parameters and the
same nuclear approximations and parametrizations. The
small differences stem from the numerical precision of
numerical codes we used. We emphasize, however, that
the importance of our current approach is the elimination
of the incoherence by using NME and PSF values calcu-
lated separately with different values for common nucle-
ar parameters, which can introduce significant errors in
the evaluation of NME x PSF product as a whole. The er-
rors in the evaluation of these products can indeed be sig-
nificant if different values of g4 are assumed in the com-
putation of NME and PSF, and if these values are not the
same as the value used in the g4 factor. For example, the
errors introduced in the NME computation by the use of a
quenched (1.0) or an unquenched (1.27) value of g4 were
analyzed in Ref. [27] for “8Ca, 7°Ge, and 3?Se nuclei, and
found to be within 10%—14% (without the factor g3 ). The
use of different values for the other (common) paramet-
ers involved in calculations as the nuclear radius, < Ey >,
etc. can bring additional uncertainties of the same order.
The errors can be amplified by the use of different values
of these parameters in the PSF computation. Thus, relev-
ant errors may occur in calculating the products
NME xPSF when the NME and PSF values are taken
from separate calculations reported in the literature.

Subsequently, we revise the limits of the light neut-
rino mass parameter {m,) using our calculations and the

most recent experimental limits reported for the 0v38 de-
cay half-lives. These results are presented in the last
column of Table 2. One observes that presently, the most
stringent constraints on this parameter stem from the nuc-
lei 7°Ge and '3®Xe, because of both the experimental res-
ults (the lowest limits measured at present for the OvGB
decay half-lives [38], [41]) and the accurate theoretical
calculations. An important issue in this case remains the
use of a correct value for the g4 constant. As far as this
value remains unknown, for accurate half-life predictions
and constrains of beyond SM parameters, the goal is to
reduce the errors associated with this constant. One sug-
gestion is to apply information from different decay
modes and/or from DBD experiments on different nuclei.
For example, for a particular nucleus, the ratio of the 2v
and Ov half-life expressions reads:

Ov 4
T2 ) (gA off ] pov 5
=5 | X5z X" (20)
( TOV gi‘:eff P2v

As seen from the above formula, any information that we
obtain regarding the relative magnitude of the gs.¢ val-
ues for the 2v and Ov decays in the same nucleus can be
exploited to improve the constraints on the neutrino mass
parameter, when improved calculations of P20 are avail-
able. Further, referring to two different nuclei, denoted
with m and n, the ratio of their half-lives reads:

For the 2vBB decay mode:
2v 4
(m) 2y
<T2V> — gA eff % (P2 ) (TZV) . (21)
R VAR Py
For the 0vBB decay mode:

oy _ [l
(T )n_ gAeﬁ(n)

4 0y
X ( m ) X (TOV)m . (22)

Therefore, the g7” . for one particular nucleus can be de-
duced if one knows with (more) precision the value of
this constant for another nucleus, using the experimental
half-lives and the calculated p?” for both nuclei. For ex-
ample, one can take advantage of the possible experi-
mental determination of this parameter for some particu-
lar isotopes, as recently proposed in Ref. [42]. Similar
considerations, i.e., the exploitation of data from several
experiments, are valid for predicting 2v38 decay half-life
for a nucleus that was not yet measured, if accurate data
for another nucleus and good estimations of the g2 deff
value from other (non-DBD) experimental data are avail-
able. For such predictions, information on DBD half-lives
not yet measured obtained from empirical formulas, as
proposed in Ref. [43], is valuable.

Similarly, for the Ovﬁﬁ decay, more information about
the effective value of g% can be deduced for a particular
nucleus if we this value is known for another nucleus. For
example, we might know g ¢ With more precision in the
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case of nuclei where the single state dominance (SSD)
approximation is valid, where the half-life can be com-
puted with reasonable precision by taking into account
only one state in the intermediate odd-odd nucleus (for
example '“’Mo case), and where g and g, might
have close values.

3 Conclusions

We proposed a new approach for calculating the
NME and PSF for DBD, by directly computing their
product. The product as a whole can be computed more
consistently, with a unique dependence on some paramet-
ers that were previously entered separately in the NME
and PSF expressions, which thus assumed single values.
The values of the product are given in the same units as
T;), (i.e. [yr™']), removing any possible confusion by us-
ing the theoretical calculations for interpretation of DBD
data. The new codes for calculating NME x PSF product
include improved routines used in our previous studies

for the separate computation of these two quantities. We
provide the values of these products for the 2v and Ov
DBD modes for the five nuclei of most experimental in-
terest. Subsequently, using our calculations and the new-
est half-life values for the 0vB8 decays reported in literat-
ure, we revise the upper limits for the light mass neutrino
parameter. In the half-life formulas, we separate the
strong dependence on the axial-vector constant, i.e., the
factor g4, which brings a large uncertainty in the calcula-
tion and suggest some ways to reduce/avoid the errors re-
lated to the uncertain value of this constant. This can be
done by employing ratios of gﬁiff)fv and P20 (instead of
their individual values) and exploiting data on the same
nucleus but for different decay modes and/or DBD data
from experiments on different nuclei, including the pos-
sibility of experimentally determining this constant for
some particular isotopes. We hope that our work proves
to be a step forward for more consistent DBD calcula-
tions, which will aid in predicting and interpreting experi-
mental data.
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