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Calculation of dissociation temperature of quarkonium
using Gaussian Expansion Method *
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Abstract: The dissociation temperatures of quarkonium states in a thermal medium are obtained in the framework

of the quark model with the help of the Gaussian Expansion Method (GEM). This is the first time this method

has been applied to the dissociation problem of mesons. The temperature-dependent potential is obtained by fitting

the lattice results. Solving the Schrödinger equation with the GEM, the binding energies and corresponding wave

functions of the ground states and the excited states are obtained at the same time. The accuracy and efficiency of

the GEM provide a great advantage for the dissociation problem of mesons. The results show that the ground states

11S0 and 13S1 have much higher dissociation temperatures than other states, and the spin-dependent interaction

has a significant effect on the dissociation temperatures of 13S1 and 11S0. We also suggest using the radius of the

bound state as a criterion of quarkonium dissociation. This can help to avoid the inaccuracy caused by the long tail

of quarkonium binding energy dependence on temperature.
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1 Introduction

One important question in relativistic heavy ion col-
lisions is the presence of quark-gluon plasma (QGP). As
bound states, heavy quarkonium states can survive in
QGP where the light hadrons are already dissociated.
However, since there are dissociated light quarks and
light gluons in a thermal environment, the interaction
between the constituents of a quarkonium state is weak-
ened by the color screening produced by light quarks and
light gluons [1]. When the interaction within a quarko-
nium state is weak enough, the binding energy will be-
come low enough and eventually leads to the dissociation
of quarkonium. Since the interaction potential is temper-
ature dependent, we can obtain the dissociation temper-
ature of quarkonium when the binging energy reaches
zero.

In 1986, Matsui and Satz pointed out that charmo-
nium state suppression can be recognized as a signature

of QGP formation in relativistic heavy ion collisions [2],
and the existence of charmonium states carries informa-
tion about the QGP properties. There have been numer-
ous theoretical and experimental studies from the Super
Proton Synchrotron (SPS) to the Large Hadron Collider
(LHC) on this subject. In 2006, Satz pointed out that
the the properties of QGP can be investigated by study-
ing the in-medium behavior of heavy quark bound states
[1]. Qu et al. calculated the dissociation temperature
of charmonium states by defining the maximum distance
between two constituents of the states [3]. The melting
temperatures of charmonium and bottomonium states
are also discussed by Satz [4].

In the present work, the quark potential model is
used to calculate the binding energies of heavy quarko-
nia. The temperature dependent potential between two
constituents of the quarkonia is obtained by fitting the
lattice QCD results on the free energies of the system.
The Gaussian Expansion Method (GEM) [5], a power-
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ful few-body method, is used to solve the Schrödinger
equation.

The structure of this article is as follows. The poten-
tial model is presented in Section 2. Section 3 is devoted
to the calculation method. Results and discussions are
given in Section 4. In Section 5, the spin-dependent in-
teraction is taken into account. Section 6 gives a crite-
rion for the dissociation temperature, the radius of the
quarkonium. A brief summary is given in the last sec-
tion.

2 Potential model

Lattice quantum chromodynamics (QCD) indicates
that the ground state of charmonium can survive in QGP
up to 1.5Tc [6–10]. In contrast, excited states are disso-
ciated at 1.1Tc [9], where Tc is the critical temperature
of the deconfinement phase transition.

Because of the large masses of the charm quark
and bottom quark, it is appropriate to apply the non-
relativistic potential model to the study of charmo-
nium states and bottomonium states. By solving the
Schrödinger equation with the temperature-dependent
heavy quark potential V , we can get the dissociation
temperature of the ground state and excited states. The
most frequently used potential for quarkonium states is
the Cornell potential,

V (r)=−α

r
+σr, (1)

where α is the coupling constant and σ is the string ten-
sion linking the two heavy quarks. It combines a linear
part at large distance and a Coulomb part at short dis-
tance. However, this version of the Cornell potential is
independent of temperature. In QGP, considering that
a non-vanishing effective mass is given to the exchanged
gluon, which used to be massless, the functional form
of screening can be obtained using a generalized Debye-
Hückel formalism [11–14].

In the Debye-Hückel formalism, when T =0, free en-
ergy F (r,T = 0), which can be taken as the interacting
potential V (r), has the form

F (r,T =0)=βrη, (2)

which can be derived from a corresponding Poisson equa-
tion

−∇2F

rη+1
+

η+1
rη+2

∇F ·r̂=4πβδ(r), (3)

where β and η are parameters which determine the form
of free energy. In the medium, the source term δ(r)
is substituted by δ(r)+AF , and all the effects of the
medium are in the factor A. Defining the screening mass
as μ = (4πβA)

1
η+3 , one has the following Poisson equa-

tion,

1
rη+1

d2F

dr2
+

1−η

rη+2

dF

dr
−μη+3F =−4πβδ(r). (4)

The solution of this equation gives the form of free energy
in the medium with interaction in the form of Eq. (2).

We consider Eq. (1) separately. For the Coulomb
part, the parameters are β =−α, η =−1, and the free
energy is

Fc(r,T )=−α

r
[e−μr+μr]. (5)

For the string part, the parameters are β=σ, η=1 and
the free energy is

Fs(r,T )=
σ

μ

[
Γ (1/4)

23/2Γ (3/4)
−

√
μr

23/4Γ (3/4)
K1/4

[
(μr)2

]]
.

(6)
The free energy of Eq. (1) in the medium is given by

F (r,T )=Fc(r,T )+Fs(r,T ). (7)

All the effects of the medium are in the factor A and A
leads to screening mass μ. So in this form of F (r,T ),
only the parameter μ is temperature-dependent, while α
and σ are not.

The temperature-dependent free energy F (r,T ) be-
tween two heavy quarks at finite temperature has been
calculated by lattice QCD [15, 16]. Satz obtained the
temperature dependence of screen masses by fitting this
function with the results of lattice QCD.

To solve the Schrödinger equation for the quarko-
nium, the interacting potential between quark and an-
tiquark is needed. The temperature-dependent potential
can be obtained from the free energy of the system. A
model has been applied which relates the internal energy
U(r,T ) of a qq̄ pair at separation distance r to the free
energy of the system. In this model [1],

U(r,T )=F (r,T )−T
∂F (r,T )

∂T
, (8)

and it is assumed that U(r,T ) is equal to the interacting
potential V (r,T ) between two constituents.

For the sake of simplicity, we consider this quarko-
nium as the problem of a central force field and solve
the Schrödinger equation (this is also a common approx-
imation used for solving the dissociation temperature of
heavy quarkonium in the past),[
− 1

2μm

∇2+V (r,T )−V (∞,T )
]
ψi(r,T )=εi(T )ψi(r,T ),

(9)

where μm is the reduced mass and μm = mq/2 in the
quarkonium case. mq is the mass of the charm quark or
bottom quark. The binding energy of the quarkonium
state at finite temperature is defined as

ΔE=−εi(T )=−(mψ−2mq−V (∞,T )). (10)
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The quark potential we use is the internal energy
U(r,T ) in Eq. (8).

3 Numerical method

In order to solve the Schrödinger equation, we use a
variational method, GEM [5], which was first proposed
by Kamimura in 1988 to solve the nonadiabatic three-
body problem of muonic molecules and muon-atomic col-
lisions [17, 18], and developed by Hiyama in the last
two decades. This method has been extensively ap-
plied to hypernuclei physics [19–22]. Its accuracy has
been proved in applications in nuclear physics [5], hadron
physics [23], and cold atomic systems [21, 22, 24].

Consider the two-body Schrödinger equation[
Ĥ−E

]
ΨJMJ

=0, (11)

ΨJM =
∑

ms,m

CJMJ
sms,lmψlm(r)χsms (12)

where J,l,s are the total, orbital and spin angular mo-
menta of the two-body system, respectively. An efficient
way to solve the Schrödinger equation is the Rayleigh-
Ritz variational principle. The key of the Rayleigh-Ritz
variational principle is how to choose the trial wave func-
tion. Generally, the trial wave function is expanded into
a set of wave functions,

ψlm(r)=
nmax∑
n=1

Cnlφnlm(r). (13)

The variational principle leads to a generalized matrix
eigenvalue problem,

nmax∑
n′=1

(Hnn′−ENnn′)Cn′l=0, (n=1−nmax). (14)

Therefore, we can obtain the eigenvalues and wave func-
tions of both ground state and excited states. A good set
of basis functions can make the calculation more accurate
and less laborious. In this case, we use a set of Gaussian
basis functions with ranges in geometric progression [5],

φnlm(r) = φnl(r)Ylm(r̂), (15)

φnl(r) = Nnlr
le−νnr2

, (16)

where the Nnl is for normalization and Gaussian range
νn is given by

νn=
1
r2

n

, rn=rmin

(
rmax

rmin

) n−1
nmax−1

. (17)

4 Results

In Fig. 1, we show the resulting binding energy be-
havior for different charmonium states, obtained with
mc=1.25 GeV and

√
σ=0.445 GeV and α=π/12. Td is

the dissociation temperature.
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Fig. 1. (color online) Dependence of binding en-
ergy of (top) J/ψ(1S), and (bottom) χc(1P ) and
ψ′(2S) on T .
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Fig. 2. (color online) Dependence of binding en-
ergy of (top) Υ(1S), and (bottom) χb(1P ),
Υ(2S), χb(2P ), and Υ(3S) on T .
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The same formalism, with mb =4.65 GeV replacing
mc, leads to the resulting binding energy behavior for
bottomonium states. The results are shown in Fig. 2.
In Fig. 3, we show the comparison between the ground
states of charmonium and bottomonium.
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Fig. 3. (color online) Comparison between the
ground states of charmonium and bottomonium.

Table 1. Dissociation temperatures Td/Tc of char-
monium, compared with the results in Ref. [1]

Charmonium 1S 1P 2S

Ref. [1] 2.10 1.16 1.12

our results 2.06 1.16 1.13

Table 2. Dissociation temperatures Td/Tc of bot-
tomonium, compared with the results in Ref. [1]

bottomonium 1S 1P 2S 2P 3S

Ref. [1] > 4.0 1.76 1.60 1.19 1.17

our results 5.81 1.71 1.56 1.18 1.17

Table 3. Dissociation temperature Td/Tc of char-
monium for different potentials, compared with
the results in Ref. [3]

potential charmonium 1S 1P 2S

V1 Ref. [3] 2.34 1.14 1.14

Our Results 2.23 1.17 1.14

V2 Ref. [3] 2.57 1.15 1.15

our results 2.32 1.17 1.15

The results for dissociation temperatures of charmo-
nium and bottomonium in Ref. [1] and our calculation
results are listed in Table 1 and Table 2 respectively.

We also calculate the dissociation temperature with
different parameters for the potential in order to make a
further comparison with the previous work. In Ref. [3],
two different potentials, the Cornell potential and mod-
ified Cornell potential, have been applied to the quarko-
nium system. The parameters in the potential model,
α, σ, and mc, are determined by fitting the charmonium

masses mJ/ψ=3.10 GeV, mχc =3.53 GeV, and mψ′ =3.68
GeV [25]. Solving the Schrödinger equation with the
Cornell potential V1 and with the modified Cornell po-
tential V2 [3], almost the same results are obtained, and
are listed in Table 3, with the results of Ref. [3] for com-
parison.

5 Spin-dependent potential

In the past, the dissociation temperature of heavy
quarkonium was limited to 1S,1P and 2S states with-
out invoking the spin-dependent interaction. Now we
are extending this study to other states, such as 1S0 and
3S1. In order to do this, we need to introduce the spin-
dependent interaction VSD in addition to the confinement
Vconf and color Coulomb interactions,

V =VCornell+VSD. (18)

The form of the spin-dependent part is given in Ref. [26],

VSD(r) =
(

σq

4m2
q

+
σq̄

4m2
q̄

)
·L

(
1
r

dε

dr
+

2
r

dV1

dr

)

+
(

σq+σq̄

2mqmq̄

)
·L

(
1
r

dV2

dr

)

+
1

12mqmq̄

(3σq·rσq̄·r−σq·σq̄)V3

+
1

12mqmq̄

σq·σq̄V4

+
1
2

[(
σq

m2
q

−σq̄

m2
q̄

)
·L+

(
σq−σq̄

mqmq̄

)
·L

]
V5, (19)

where ε=ε(r) is the static potential given by Gromes in
Ref. [27],

dε

dr
=

dV2

dr
−dV1

dr
. (20)

We apply a simple nonrelativistic potential model,
the BGS model [28]. Its Cornell part is

VCornell=−4
3

αs

r
+br. (21)

For quarkonium, the quark and antiquark have the same
mass. Then the spin-dependent parts, corresponding to
the vector one-gluon-exchange and scalar confinement
ansatz, are:

V1=−br, (22)

V2=−4
3

αs

r
, (23)

V3=4
αs

r3
, (24)

V4=
32
3

παs

(
β√
π

)3

e−β2r2
, (25)

V5=0, (26)
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where the parameters are determined by fitting the char-
monium spectrum: αs = 0.5462, b = 0.1425 GeV2, β =
1.0946 GeV, and mc=1.4794 GeV.

Since the quarkonium free energy is fitted with
the Cornell potential, we only replace the Cornell
part VCornell in the BGS model with the temperature-
dependent potential V (r,T ) in Eq. (8). We solve the
Schrödinger equation with the Hamiltonian

Ĥ=− 1
mc

∇2+V (r,T )−V (∞,T )+VSD(r). (27)

The wave functions are:

ΨJMJ
=

αmax∑
α=1

AαΦα(r), (28)

Φα(r)=[φnl(r)χsms ]JMJ
, (29)

and with α specifying α≡{s,n,l}, we can get the eigen-
energies and the corresponding wavefunctions. Further-
more, the dissociation temperatures can be obtained.
Applying the GEM to solve the Schrödinger equation,
accurate results can be obtained. The dissociation tem-
peratures for the S-, P - and D-states can be found in
Table 4 with charm quark mass mc=1.4794 GeV.

From Table 4, we can see that the ground states 11S0,
13S1 have much higher dissociation temperatures than
other states. The experimental spectrum of charmo-
nium states gives m(13S1)−m(11S0) � 113.5 MeV and
m(23S1)−m(21S0) � 46.9 MeV [29]. However, the dis-
sociation temperatures of 13S1 and 11S0 have a signif-
icant difference and the difference in dissociation tem-
peratures of 23S1 and 21S0 is less than 0.01Tc. The
binding energies of all states reduce rapidly before 1.2Tc.
For states which have low dissociation temperatures (less
than 1.2Tc), the differences in dissociation temperature
caused by the spin-orbit coupling effect are very small.

Table 4. Dissociation temperature Td/Tc of char-
monium states.

state Td/Tc state Td/Tc state Td/Tc

11S0 2.79 11P1 1.168 21P1 1.088

13S1 2.22 13P0 1.194 23P0 1.099

21S0 1.149 13P1 1.170 23P1 1.089

23S1 1.141 13P2 1.161 23P2 1.082

state Td/Tc state Td/Tc

11D2 1.106 21D2 1.044

13D1 1.112 23D1 1.049

13D2 1.107 23D2 1.044

13D3 1.103 23D3 1.041

6 Bound state radii

The results show that the dependence of binding en-
ergy of bound states on temperature T has a long tail
(see Fig. 4). With the increase of temperature, the re-
duction in binding energy becomes slower, especially for

the states with high dissociation temperature. So instead
of binding energy, we suggest that bound state radii can
be used as a criterion of dissociation. The root mean
square (RMS) radii of the bound states can be defined
as [30] √

〈r2〉=
[∫

Ψ∗
JMJ

r2ΨJMJ
dτ

]1/2

. (30)

The temperature dependence of bound state radius for
each state is shown in Fig. 5 and Fig. 6 for charmonium
and bottomonium respectively, corresponding to Fig. 1
and Fig. 2.
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Fig. 4. (color online) Dependence of binding en-
ergy of 11S0, 13S1, 21S0, and 23S1 on T .

With increasing temperature, the bound state radii
increase rapidly and approach infinity when the state dis-
sociates. Since the average free path of QGP is estimated
to be 1.0 fm, we take 2.0 fm as the criterion. When the
RMS bound state radius of a state is larger than 2.0 fm,
we think it dissociates. The results obtained are listed
in Tables 5–7.

The results show that the dissociation temperatures
obtained by RMS bound state radii are lower than or
the same as those obtained by binding energy. For the
states which have low dissociation temperature, the de-
crease of binding energy and increase of RMS bound
state radii are both rapid with increasing temperature,
so they reach the criterion points at nearly the same
time. For states which have high dissociation temper-
ature, however, when temperature becomes higher, the
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Fig. 6. (color online) Dependence of bound state
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Table 5. Dissociation temperature Td/Tc of char-
monium and bottomonium with mc =1.25 GeV,
mb = 4.65 GeV, obtained by RMS bound state
radii.

charmonium Td/Tc bottomonium Td/Tc

1S 1.83 1S 5.40

1P 1.16 1P 1.70

2S 1.13 2S 1.44

2P 1.18

3S 1.16

Table 6. Dissociation temperature Td/Tc of char-
monium with Cornell potential V1 and Cornell po-
tential V2, obtained by RMS bound state radii.

cornell potential V1 Td/Tc cornell potential V2 Td/Tc

1S 1.98 1S 2.08

1P 1.17 1P 1.17

2S 1.13 2S 1.14

Table 7. Dissociation temperature Td/Tc of char-
monium with spin-dependent potential, obtained
by RMS bound state radii.

state Td/Tc state Td/Tc state Td/Tc

11S0 2.47 11P1 1.167 21P1 1.087

13S1 1.98 13P0 1.194 23P0 1.098

21S0 1.139 13P1 1.170 23P1 1.088

23S1 1.131 13P2 1.159 23P2 1.080

state Td/Tc state Td/Tc

11D2 1.105 21D2 1.044

13D1 1.112 23D1 1.049

13D2 1.107 23D2 1.044

13D3 1.103 23D3 1.041

Table 8. Dissociation temperature Td/Tc of char-
monium with mc = 1.25 GeV and mc = 1.4794
GeV. The results in (a) are obtained by bind-
ing energy and results in (b) are obtained by
RMS bound state radii. In the case of mc =
1.25 GeV, the three states are J/ψ(1S), χc(1P ),
and ψ′(2S); in the case of mc =1.4794 GeV, the
three states are J/ψ(13S1), χc(1

3P0,1
3P1,1

3P2),
and ψ′(23S1).

(a)

mc=1.25 GeV Td/Tc mc=1.4794 GeV Td/Tc

1S 2.06 13S1 2.22

1P 1.16 13P0 1.194

13P1 1.170

13P2 1.161

2S 1.13 23S1 1.141

(b)

mc=1.25 GeV Td/Tc mc=1.4794 GeV Td/Tc

1S 1.83 13S1 1.98

1P 1.16 13P0 1.194

13P1 1.170

13P2 1.159

2S 1.13 23S1 1.131
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decrease of binding energy becomes very slow while the
increase of RMS bound state radii is still rapid. In this
case, the difference between the two criteria is obvious
and the results obtained by RMS bound state radii are
always lower. This shows the RMS bound state radii is
more valid than binding energy as a dissociation temper-
ature criterion.

In Table 8, we show the comparison for J/ψ, χc,
and ψ′ between the cases of mc = 1.25 GeV and mc =
1.4794 GeV.

These two different potentials (with or without spin-
dependent interaction) can both lead to the vector char-
monium spectrum at zero temperauture, but only the
dissociation temperatures of the ground state have obvi-
ous differences. For excited states, the dissociation tem-
peratures are very close even when the difference of the
two charm quark masses is larger than 15%.

7 Summary

Using a temperature-dependent interacting potential
between quark and antiquark, the dissociation tempera-
tures of charmonium and bottomonium have been calcu-
lated. The results show that the ground state has a much
higher dissociation temperature than the excited states
for both charmonium and bottomonium. This means
that the ground state is much more insoluble than the

excited states. In addition, it is found that the binding
energies drop rapidly before 1.2Tc. Here we need to point
out that the function form of free energy obtained from
Debye-Hückel theory can be fitted well with lattice data
only in the range of temperature 0�T �2Tc [14].

The binding energies and bound state radii of ground
states and excited states for charmonium and bottomo-
nium at finite temperature are obtained by solving the
Schrödinger equation with the help of the GEM. The
binding energies of all the ground states and excited
states obtained at each temperature are convergent with
enough Gaussians. The GEM gives accurate numerical
results even when the binding energy is very close to
zero. Another advantage is that the diagonalization of
the Hamiltonian automatically gives the lowest eigen-
state and many excited eigenstates with the same spin
and parity at the same time.

Because of the long tail of the dependence of the
binding energy on temperature, we also use RMS bound
state radii as a criterion of dissociation. In this way, the
dissociation temperature of the heavy quarkonium can
be fixed more accurately.

We are grateful to Pengfei Zhuang, Yunpeng Liu and
Emiko Hiyama for their earlier work and helpful discus-
sions.
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