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An optimal scheme for top quark mass measurement near the tt̄

threshold at future e+e− colliders *
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Abstract: A top quark mass measurement scheme near the tt̄ production threshold in future e+e− colliders, e.g. the

Circular Electron Positron Collider (CEPC), is simulated. A χ2 fitting method is adopted to determine the number

of energy points to be taken and their locations. Our results show that the optimal energy point is located near the

largest slope of the cross section v. beam energy plot, and the most efficient scheme is to concentrate all luminosity

on this single energy point in the case of one-parameter top mass fitting. This suggests that the so-called data-driven

method could be the best choice for future real experimental measurements. Conveniently, the top mass statistical

uncertainty can also be calculated directly by the error matrix even without any sampling and fitting. The agreement

of the above two optimization methods has been checked. Our conclusion is that by taking 50 fb−1 total effective

integrated luminosity data, the statistical uncertainty of the top potential subtracted mass can be suppressed to

about 7 MeV and the total uncertainty is about 30 MeV. This precision will help to identify the stability of the

electroweak vacuum at the Planck scale.
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1 Introduction

The Higgs potential is closely related to both the
Higgs boson mass and the top quark pole mass. Es-
pecially, if the top quark mass is too heavy, the quartic
Higgs coupling λ in the Standard Model may be neg-
ative at large energy scale before the Planck scale and
the stability of electroweak vacuum breaks. Therefore,
the determination of the electroweak vacuum stability
needs precise measurements of both the Higgs boson
mass and the top quark mass. At the Large Hadron
Collider (LHC), the Higgs mass is measured with a pre-
cision of O(200) MeV [1], which means, currently, the
electroweak vacuum stability is more sensitive to the un-
certainty of the top quark pole mass.

Before detailed investigation of the top quark mass,
one should keep in mind that the top quark mass is not a
direct experimental observable. This means the value of
the experimental output mass depends on the theoretical
input definitions.

Theoretically, several kinds of top mass can be de-

fined.
1) Pole mass
The pole mass has an inherent ambiguity of the or-

der of O(ΛQCD) [2–4] and leads to an instability of top
threshold peak location at different orders. The pole
mass is therefore not a good definition for experimental
measurements and unambiguous definitions of top mass
are necessary. The top quark propagator is expressed as

D(/p)=
i

/p−m0−
∑

0(/p)
=

i

/p−mR−
∑

R(/p)
. (1)

From the denominator, we have

mpole=m0+
∑

0(/p)=mR+
∑

R(/p), (2)

where m0/mR is the bare/renormalized top mass, and
∑

0(/p)/
∑

R(/p) is the unrenormalized/renormalized top
quark self-energy contribution. The ultraviolet diver-
gence of

∑(1)

0
(/p) should be absorbed by the bare mass

and its infrared (IR) part has the form

∑(1)

0 (/p)→−1

2

∫

Λ

d3~q

(2π)3
4πCFαs(q)

~q2
, (3)
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where Λ is the lower bound of the loop momentum q and
CF=4/3. Considering the RGE running of αs from the
loop momentum scale q to mR [5],

αs(q) =
1

b0 ln(q2/Λ2)
=

αs(mR)

1−αs(mR)b0 ln(m2
R/q

2)

=

∞
∑

n=0

αn+1
s (mR)b

n
0 ln

nm
2
R

q2
. (4)

and

∫ mR

o

dq lnn
m2

R

q2
=mR2

n

∫ 1

0

dxlnn
1

x
=mR2

nn!, (5)

the pole mass can be expressed as

mpole=mR

(

1+

∞
∑

n=0

cnα
n+1
s (mR)

)

, (6)

where the coefficient cn→ 2nn! and the convergence of
perturbative expansion breaks when n→∞. The behav-
ior of this IR renormalon results in an intrinsic ambiguity
of the pole mass. The ambiguity is estimated as [4]

δmpole=
CF

2Nf |β0|
e−C/2ΛQCD

(

ln
m2

Λ2
QCD

)β1/(2β
2
0
)

∼ΛQCD,

(7)
where βi is the i+1th-loop beta function, and C is a
constant related to renormalization scheme.

To avoid the pole mass ambiguity, several short dis-
tance masses can be defined due to the IR-sensitive term
cancellation between the pole mass and the static poten-
tial V (r) of toponium.

2) Potential subtracted (PS) mass
From conservation of the total energy, we have

2mpole+V (r)=2mPS+V (r,µf), (8)

where V (r,µf) is the subtracted potential and can be de-
fined as [6]

V (r,µf)=V (r)−
∫

|~q|<µf

d3~q

(2π)3
Ṽ (~q). (9)

At αs leading order, Ṽ (~q)=−4πCFαs(µ)

~q2
is the potential

in momentum space. So the relations between different
masses are

mPS=
1

2
[2mpole+V (r)−V (r,µf)]

=mpole+
1

2

∫

|~q|<µf

d3~q

(2π)3
Ṽ (~q). (10)

By considering Eqs. (2)and (6), we have

mPS=mR

(

1+
∞
∑

n=0

cnα
n+1
s (mR)

)

−1

2

∫

|~q|<µf

d3~q

(2π)3
4πCFαs(µ)

q2

=mR

(

1+
∞
∑

n=0

cnα
n+1
s (mR)

)

−µf
∞
∑

n=0

c′nα
n+1
s (mR).

(11)

From Eqs. (4) and (5) we see that the coefficients cn
and c′n have the same divergent form (cn, c

′
n →2nn!) as

n→∞ in order for the IR renormalons to be cancelled.
Only non-ambiguous terms remain. The remaining coef-
ficient µf cannot be removed. This is why the PS mass
depends on the scale µf when it is expressed by other
short-distance masses (such as the MS mass).

3) 1S mass
The 1S mass is defined as half of the perturbative

mass of the toponium 1 3S1 ground state and is given
by [7, 8]

m1S=
1

2
(2mpole+E1S(mpole,αs(µ))), (12)

where

E1S(mpole,αs(µ))=

∫

d3~p

(2π)3
d3~q

(2π)3
ψ̃∗
1S(~p)H̃(~p,~q)ψ̃1S(~q),

(13)
H̃(~p,~q) and ψ̃1S are the Hamiltonian and the wave func-
tion in the 1 3S1 state in momentum space respectively.

Considering the IR behavior,

EIR
1S(mpole,αs(µ))=

∫

IR

d3~p

(2π)3
d3~q

(2π)3
ψ̃∗
1S(~p)H̃(~p,~q)ψ̃1S(~q)

=

∫

IR

d3~p

(2π)3
d3~q

(2π)3
ψ̃∗
1S(~p)

×
(

~p2

2mpole

+
~q2

2mpole

+Ṽ (~p−~q)
)

ψ̃1S(~q).

(14)

Dropping the momentum terms in the Hamiltonian and
denoting the IR region |~q|,|~p|<µf ,

EIR
1S(mpole,αs(µ))∼

∫

IR

d3~p

(2π)3
d3~q

(2π)3
ψ̃∗
1S(~p)Ṽ (~p−~q)ψ̃1S(~q)

∼
∫

|~q|,|~p|<µf

d3~p

(2π)3
d3~q

(2π)3
|ψ̃∗

1S(~p)|2Ṽ (~p−~q)

∼
∫

|~q|<µf

d3~q

(2π)3
Ṽ (~q).

(15)
We see that it is very like the PS mass case, as the IR

behavior of the E1S(mpole,αs(µ)) results in an IR renor-
malon which cancels with the ambiguity of mpole. Thus
the 1S mass is non-ambiguous.
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4) MS mass: defined by the modified minimal sub-
traction renormalization scheme.

Experimentally, the top quark mass can be measured
mainly by two methods. The first method is from the
reconstruction of top decay products [9]. For example,
the current most precise top mass is obtained from the
lepton+jets channel. The main source of errors comes
from the jet energy scale calibration. However, the ex-
perimentally measured top mass corresponds to none of
the above theoretical mass definitions. This problem has
been well discussed in a recent study [5], in which three
arguments are listed. Firstly, the top mass derived from
kinematical reconstruction does not correspond to a well
defined mass from perturbation theory. Secondly, jets
from top decay have non-perturbative effects. Thirdly,
parton shower models in Monte Carlo have irreducible
non-perturbative error. To have a clear distinction, the
experimentally measured top mass from decay product
reconstruction is usually named the MC mass. As an
approximation, sometimes people do not distinguish the
MC mass and the pole mass, as their difference is esti-
mated to be less than 1 GeV.

The second method is to extract the top mass from
the measured tt̄ cross section by comparing it with the
theoretical cross section [10–13]. The two cross section
curves have different dependent relations on the fictional
top mass and the overlap region corresponds to the real
top mass. The advantage of this method is that it has
a relatively clear mass definition (the non-perturbative
effects are still inevitable), but the accuracy is not so
good.

Current PDG values are [1]:
Direct measurement

m=173.1±0.6 GeV,

MS mass from cross section measurements

m=160+5
−4 GeV,

Pole mass from cross section measurements

m=173.5±1.1 GeV.

Alternatively, there is a third method which uses a
top pair threshold scan at future 350 GeV e+e− colliders,
e.g. the International Linear Collider (ILC), the Compact
Linear Collider (CLIC), the e+e− Future Circular Col-
lider (FCC-ee), CEPC, and so on. The corresponding
simulations have been performed in Refs. [14–16]. Be-
cause of the clear mass definition, sensitive dependence
of the cross section on the top mass and low background
pollution, this method is believed to be the best choice
to obtain the most accurate top mass, although it is ex-
pensive and time consuming.

This paper is organized as follows. In Section 2, we
review the framework of threshold top pair production
cross section, which has been calculated up to NNNLO

QCD level. In Section 3, we perform Poisson sampling
and χ2 fitting by using Minuit [17] code, and present an
equivalent error matrix analysis for the statistical uncer-
tainty estimation. In Section 4, we discuss briefly the
impact of future CEPC top mass measurement on the
electroweak vacuum stability. In Section 5, we give a
short summary.

2 Cross section

The theoretical higher order QCD calculations of
the cross section e+e− → γ

∗/Z∗ → tt̄ near threshold
are built in the framework of nonrelativistic quantum
chromodynamics (NRQCD) [18, 19] and potential non-
relativistic quantum chromodynamics (pNRQCD) [20].
NRQCD is obtained by integrating out the hard part
O(m) of the QCD and pNRQCD is obtained by in-
tegrating out the soft part O(mυ) of NRQCD. The
top pair production cross section at NNLO was first
calculated in the 1990s, e.g. Ref. [8], and has recently
been updated to NNNLO QCD [21]. However, when
the energy approaches the threshold, the top quark ve-
locity υ becomes very small. The corresponding re-
summation for Coulomb singularities and large loga-
rithms is obtained at next-to-leading-logarithmic or-
der (NLL) [22] and known partially at next-to-next-to-
leading-logarithmic order (NNLL) as shown in Refs. [23–
26]. However, as argued in Ref. [27], the NNLL QCD pre-
diction can still be employed, because the missing mixing
corrections from soft and potential NLL RG evolution
of non-Coulomb QCD potential are very likely negligi-
ble. These are implemented in the Monte Carlo genera-
tor Whizard [28], which can produce multi-particle pro-
cess simulations at e+e− colliders. It includes a model
“SM tt threshold.mdl ” that can be used to calculate
the top pair production cross section near the thresh-
old at LL order and NLL order [29–31]. Because top
quark pairs are unstable and decay to W+W−bb̄ in-
stantaneously when they are produced, the full process
e+e−→W+W−bb̄ should be taken into account, thus it
has backgrounds which come from the decay of W+W−,
ZZ and ZH etc. As pointed out in Ref. [32], these back-
grounds can increase the total cross section. In or-
der to reduce these backgrounds, invariant mass cuts
for W+b and W−b̄ are needed and can take the form
|MW,b−mt |64Mt. The analysis in Ref. [33] shows that
a cut with 4Mt v 15 – 35 GeV is moderate, so in our
calculations we set 4Mt = 30 GeV.

In the following, we briefly review the theoretical
framework of the total cross section calculations for the
top pair bound state. The top pair total cross section
can be written in the form

σ(e+e−→tt+X)=σ0·(Rυ+Ra), (16)

where σ0 = 4πα2/3s is the cross section for the µ+
µ
−
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pair at tree level, with s= q2=(E+2mt)
2 is the square

of center-of-mass energy, and Rυ and Ra are the ratios
contributed by vector current and axial-vector current
respectively. These can be related to the two-point func-
tions of the vector current and the axial-vector current
separately by the optical theorem,

Rυ=

[

(

et−
q2υeυt
q2−m2

Z

)2

+(
q2

q2−m2
Z

)2·a2eυ2e

]

Im(Πυ(q2)),

Ra=

(

q2

q2−m2
Z

)2

(υ2e+a
2
e)a

2
t Im(Πa(q2)),

(17)
where the vector and axial-vector couplings of fermions
to the Z boson are

υf=
T f
3−2ef sin2θw
2sinθwcosθw

, af=
T f
3

2sinθwcosθw
, (18)

with ef the electric charge of the fermion in units of
positron charge (ef = 2/3 for top quark and ef = 1 for
electron), T f

3 is the third component of its weak isospin,
and θw denotes the Weinberg angle.

The two-point Green function of vector (or axial-
vector) current is given by [34]

ΠX
µν=i

∫

d4xeiq·x〈0|TjXµ (x)jXν (0)|0〉

=(qµqν−q2gµν)ΠX(q2)+qµqνΠ
X
L (q

2), (19)

where X = v (or X = a) denotes the vector (or axial-
vector) current, and jXµ = t̄γµt (or t̄γµγ5t).

In the framework of (p)NRQCD, the expansion of
the vector and axial-vector currents read

jυk=cυψ
†σkχ+

dv
6m2

t

ψ†σkD
2χ+...,

jak=
ca
2mt

ψ†[σk,(−i)~σ·D]χ+..., (20)

where σk is the Pauli matrix and D=−~5, ψ is the top
quark field and χ is the anti-top quark field, and cv, dv
and ca are the non-relativistic QCD (NRQCD) matching
coefficients of vector and axial-vector currents [34, 35].
In the center-of-mass frame (CM frame), the momentum
qµ = (q0,0) = (E+2mt,0). From Eq. (19), one can easily
rewrite Eq. (17) in d-dimensional space, and

Rυ=
1

(d−1)q2

[

(

et−
q2υeυt
q2−m2

Z

)2

+

(

q2

q2−m2
Z

)2

·a2eυ2e

]

×Im(i

∫

d4xeiq
0·x0〈0|TjXk (x)jXk (0)|0〉),

Ra=
1

(d−1)q2
(

q2

q2−m2
Z

)2

(υ2e+a
2
e)a

2
t

×Im
(

i

∫

d4xeiq
0·x0〈0|TjXk (x)jXk (0)|0〉

)

. (21)

By inserting Eq. (20) into Eq. (21) and making the fol-

lowing substitutions

GS(E)=
i

2Nc(d−1)

∫

d4xeiEx
0〈0|T (χ†σkψ)(x)(ψ†σkχ)(0)|0〉,

GP (E)=
i

2Nc

∫

d4xeiEx
0〈0|T (χ†iDkψ)(x)(ψ

†iDkχ)(0)|0〉,
(22)

where the superscripts “S” and “P” denote the S-wave
state and the P -wave state respectively, the Rυ and Ra

are simplified to

Rυ=

[

(

et−
q2υeυt
q2−m2

Z

)2

+

(

q2

q2−m2
Z

)2

·a2eυ2e

]

· Nc

2m2
t

cv

[

cv−
E

mt

(

cv+
dv
3

)]

Im{GS(E)},

Ra=(
q2

q2−m2
Z

)2(υ2e+a
2
e)a

2
t ·
Ncc

2
a

2m4
t

d−2
d−1Im{G

P (E)}. (23)

In (p)NRQCD perturbation theory, the expansion for the
Green function GS(q0) takes

GX(E)=GX
0 (E)+

n
∑

i=1

δiG
X(E), (24)

where GX
0 (E)=GX

0 (0,0;E) is the zero-point Green func-
tion in coordinate space, which can be derived by solving
the non-relativistic Schrödinger equation in spherical co-
ordinates,
[

− 1

mt

(

d2

dr2
+
2

r

d

dr

)

−CFαs

r
−E
]

G0(r,r
′

;E)=
1

4πr2
δ(r−r′

).

(25)
δiG

X(E)(i = 1,2,3,...) are the higher order corrections,
which are not only related to the higher order correc-
tions of the Coulomb potential but also GX

0 (E). The
complete S-wave GX(E) =GS(E) calculations at third
order are provided in Ref. [35] and the P -wave GX(E)=
GP (E) at the same order is included in Ref. [34]. The
complete numerical calculations are implemented in the
QQbar threshold code [36].

The experimentally observed cross section is calcu-
lated by convoluting the theoretical cross section with
the initial state radiation (ISR) factor and the luminos-
ity spectrum (LS),

σobstt̄ (
√
s)=

∫ ∞

0

d
√
s′G(

√
s′ ,
√
s)·
∫ 1

0

dxF (x,s
′

)σthtt̄ (
√
s′(1−x)),
(26)

where G(
√
s′ ,
√
s) is the correction function due to large

energy spread mainly caused by beamstrahlung and syn-
chrotron radiation [37, 38], which is usually described by
a Gaussian function at circular colliders [39], F (x,s

′

) is

the initial state radiation factor [40], and σth
tt̄ (
√
s′(1−x))

is the theoretical cross section at NNNLO QCD order
computed by QQbar threshold code. In Fig. 1, the red
curve is the purely QCD calculation of total cross section
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at NNNLO order. The so-called top pair bound state can
be clearly seen just above the threshold energy point.
The blue and green curves are the total cross sections
corrected by luminosity spectrum (LS) and ISR respec-
tively. The black curve corresponds to the observed total
cross section. We see that the ISR correction observably
decreases the total cross section.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 340  345  350

σ
 [

p
b

]

√
−
s [GeV]

NNNLO QCD
CEPC LS
ISR
Observed

Fig. 1. (color online) The red curve corresponds to
the theoretical cross section at NNNLO QCD or-
der obtained by the QQbar threshold code. The
blue curve includes the luminosity spectrum (LS)
correction at the CEPC. The green curve adds the
impact from the initial state radiation (ISR) cor-
rection, and the black curve is the experimentally
observed cross section.

To simulate a top mass threshold scan experiment, we
should assume an attempt top mass value as an initial
input parameter. The locations of the optimal energy
points, which are determined by the simulation, may
vary when the real top mass is different from our as-
sumed value. However, the optimization method itself
will not change. We will discuss this problem after the
simulation.

In our calculation, we adopt the PS mass scheme and
our input parameters are set the same as in Ref. [21];
mt

PS(µf = 20 GeV) = 171.5 GeV , and Γt = 1.33 GeV.
Other input parameters are set as the default values
in the QQbar threshold code. We set an approximate
value for the energy spread of 0.1629%, which is the de-
signed energy spread at 240 GeV center-of-mass energy
at CEPC [37–39] and which we estimate will not change
much in the tt̄ threshold region.

3 Top mass measurement scheme

First, the experimental top mass measurements are
simulated by using the software Minuit to perform the

χ2 fittings. The number of optimal energy points and
their locations are determined. Second, a substitutable
theoretical analysis on the statistical error matrix in a
one-point scheme is provided, which can calculate the
statistical error directly even without any data-sampling
and fitting. Finally, the luminosity dependence of the
top mass statistical error is analysed and the accuracy of
the top mass that can be achieved at the future collider
CEPC is discussed.

The crucial problem for a top mass threshold mea-
surement optimization is to determine the number of
energy points to be taken and their locations. Actu-
ally, related studies [14–16] have already been made to
simulate the threshold scan at future e+e− colliders. In
these studies, the data taking schemes are usually de-
signed as 10 equal-distance energy points in a selected
near-threshold energy region with equal luminosity dis-
tributed on each energy point. It is easy to imagine that
these 10 points definitely will not contribute equally to
the fitted top mass, due to their different sensitivity to
the variations of the top mass and cross sections. In fact,
it has been shown [41] in the case of a similar tau lep-
ton mass threshold scan that the most efficient scheme is
to concentrate all luminosity on a single optimal energy
point in one free mass parameter fitting (sometimes the
background cross section and the selection efficiency can
also be taken as free parameters to be fitted, which is
called multi-parameter fitting, and which we do not con-
sider here). We have checked this result and find that
the additional energy points far from the optimal energy
point have a negligible contribution to minimizing the
statistical error of the fitted top mass, and this indicates
that they are completely unnecessary.

To find the location of the single optimal energy
point, we perform several χ2 fittings in the one energy
point scheme, with the single energy point ranging from
342 GeV to 346 GeV with a step size of 0.1 GeV. The
general χ2 function takes the form:

χ2=

n
∑

i=1

[Ni−µi(mt)]
2

µi(mt)
, (27)

where n is the number of energy points (n = 1 in the
single energy point case), and Ni is the number of top
pair events simulated by Poisson sampling according to
the Poisson expectation value µi(mt) of the ith energy
point. One may bring the criticism that a real simu-
lation should include event generation, signal selection,
and background estimation. However, we emphasize that
this simplified simulation has already demonstrate the
stochastic behavior in top pair production and the opti-
mization result will not change. A simulation based on
Monte Carlo event generators is being analyzed and will
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be reported elsewhere. µi is given by

µi=[εsig·BrWb·σobstt̄ (
√
si,mt)+σBG]·Li

∼L
i
eff ·BrWb·σobstt̄ (

√
si,mt), (28)

where εsig is the top pair selection efficiency; BrWb is the
branching ratio for the decays of t→W+b and t̄→W−b̄,
and we set BrWb = 1; σobstt̄ (

√
si,mt) can be obtained

from Eq. (26); σBG is the background cross section; and
L i

eff =Li ·εsig is the effective luminosity for the ith en-
ergy point. Most of the backgrounds can be reduced by
the invariant mass cut, as discussed in Section 2. Back-
ground can also be suppressed by other selection cuts
[42]. The interference between the resonant top pair de-
cay and the single top decay process is also suppressed
by v2 [43], with v being the top quark velocity. There-
fore, the backgrounds can safely be neglected in such a
clean experiment.

Generally speaking, the observable cross section σobs
tt̄

has two variable parameters, the top quark PS mass mt

and the ECM
√
s. The change of the top quark width, as

well as the strong coupling constant due to the variation
of mt and

√
s, can be neglected. For convenience of the

numerical calculations, the shape of the cross section can
be approximately taken as stable and the change of mt

can only cause a horizontal shift along the energy axis.
Thus, the two variables mt and

√
s can be reduced to a

single one
√
s - 2∆mt as

σobstt̄ (
√
s;mt)=σ

obs
tt̄ (
√
s−2∆mt,mt0), (29)

where ∆mt = mt - mt0, mt is the top quark PS mass
and mt0 =mPS

t (µf =20 GeV)= 171.5 GeV is our initial
input parameter.

Besides the χ2 fitting, the statistical error of the top
mass can also be obtained from the error matrix analysis.
The covariant matrix is described by

V =
σ(mt;

√
s)

Leff

[

∂σ(mt;
√
s)

∂mt

]−2

. (30)

The statistical error is just the square root of the covari-
ance matrix [17],

δmstat.
t =

√

σ(mt;
√
s)

Leff

[

∂σ(mt;
√
s)

∂mt

]−1

. (31)

So with Eq. (31) we can calculate the statistical uncer-
tainty directly.

Figure 2 shows the variation of the statistical error
of the fitted top mass with different locations of the sin-
gle energy point to be taken. The red crosses are our
fitted results from Minuit with fixed Leff = 5 fb−1 at
each energy point for each fitting. The black curve is
the corresponding statistical uncertainty from the ana-
lytic calculation of error matrix by Eq. (31). A point
“A” at

√
s' 342.6 GeV is found to be the optimal en-

ergy point. This point is located near but not exactly on

the largest slope of the plot of total cross section against√
s in Fig. 3, as there is a

√
s dependent term in front

of the derivative shown in Eq. (31). From the figure,
the statistical uncertainties from the analytic calcula-
tion agree well with those from the χ2 fitting in region√
s ∈ [342.0,344.0] GeV, but the consistency is not so

good when the energy points approach or go above the
threshold. This is due to the tiny value of the slope of
the cross section here, as shown in Fig. 3. Neither the
χ2 fitting by Minuit nor the error matrix analysis have
rapid convergence in this region and this indicates that
it is a waste of luminosity to take energy points in this
small slope region.
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  [
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e
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]
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−
s [GeV]

 . . . . . . err-matrix calc
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MC sample fit

Fig. 2. (color online) The relation between the sta-
tistical error δmt and the location of the single
data-taking energy point along the

√

s-axis. The
black curve is calculated by Eq. (31) from the er-
ror matrix with fixed Leff = 5 fb−1, and the red
crosses correspond to the χ2 fitted results.
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Fig. 3. The first order derivative of the total cross
section with respect to the energy.
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Figure 4 shows the decrease of the statistical un-
certainty as Leff increases at the fixed optimal point√
s=342.6 GeV. The red curve corresponds to statistical

uncertainty from analytic calculation of the error matrix
and the black dots are fitted results from Minuit. Both
of them coincide with each other. When Leff=50 fb−1,
the statistical uncertainty is δmstat.

t =7 MeV. Higher lu-
minosity will not result in a significant decrease of the
statistical error.

 0
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Fig. 4. (color online) The correlation between the
statistical error δmstat.

t and the Leff in the opti-
mal one-point

√

s=342.6 GeV scheme. The black
dots are χ2 fitted points, and the red curve is
computed from error matrix analysis.

The theoretical uncertainty of the normalized total
cross section at NNNLO QCD order is estimated at 3%
[21]. In our analysis, we assumed that the variation of
top mass depends linearly on the total cross section, then
the theoretical error of the top mass can be derived by
the error transmission formula,

δmtheory
t =δσ(mt,

√
s)·
[

∂σ(mt,
√
s)

∂mt

]−1

. (32)

Substituting the approximate formula ∂σ(mt;
√
s)/∂mt=

2∂σ(mt;
√
s)/∂

√
s into Eq. (32), the top mass theoreti-

cal uncertainty is extracted to be ± 25.6 MeV, which
is significantly larger than the statistical uncertainty. A
similar result has previously been presented in Ref. [16].
For systematic uncertainty, simulation studies show it is
expected to be about 10 MeV at FCC-ee [44]. Without a
careful analysis, which depends on detailed information
about the hardware, we expect here an equal value of the
systematic error at CEPC. Thus, the total accuracy of
the PS top mass that can be measured at CEPC is esti-
mated at about δmtotal

t ∼30 MeV, in which the statistical

and systematic errors are comparable and the theoretical
error is the dominant source.

Considering a real experiment, the situation is some-
what different from our simulation, as the initial input
top mass is not necessarily equal to the real top mass.
The solution is to iterate the fitting until it reaches an
acceptable accuracy. This means we put in an initial
top mass and find the corresponding single optimal en-
ergy point location, accumulate some events here, do the
fitting and get a measured top mass. Then we take this
experimentally measured top mass as input parameter to
determine the new location of the single optimal energy
point, take data, and do the fitting again. The itera-
tion can be stopped when the statistical uncertainty is
suppressed to an acceptable accuracy. So, the single op-
timal energy point does not mean we only take data at
one energy point in the whole experiment, but one en-
ergy point in each fitting. The fitting itself can be done
many times. This iterative technique is the so called
“data-driven” method.

In order to compare the different point selection
schemes, we also perform a 10 point scheme as employed
in the simulations in Refs. [15, 16]. We take energy points
from 340 GeV to 349 GeV in steps of 1 GeV and assign an
average of 5 fb−1 effective integrated luminosity for each
point. The total effective 50 fb−1 integrated luminosity
results in about 15 MeV statistical uncertainty, which is
similar to the results in Refs. [15, 16]. In comparison, the
one point scheme leads to a sizeable improvement, about
50% decrease in the top mass statistical uncertainty.

4 Impact of accurate top mass on elec-

troweak vacuum stability

The sensitivity of the electroweak vacuum stability
to the top mass is usually calculated in the pole mass
scheme. The reason is that currently the most precise
value is the directly measured top mass from hadron col-
liders. In principle, one could also use the short distance
masses, such as the PS or MS mass directly obtained
from the future e+e− collider, in the study of vacuum
stability, as long as a self-consistent mass definition and
renormalization scheme is adopted. Thus, the ambiguity
of the pole mass can be avoided. Recent discussions on
the pole mass ambiguity can be found in Refs. [45, 46].

Different theoretical defined top masses can be con-
verted from each other. For example, Ref. [47] discussed
the relation between MS and the pole mass. Here we
show the conversion from the PS mass taken in our simu-
lation to the pole mass. The relation between the PS top
mass and the pole mass with corrections up to NNNLO
QCD order takes the form [48],
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mt
pole=mt

PS(µf)+
µfCFαs(µ)

π

[

1+
αs(µ)

4π
(2β0l1+a1)+

(

αs(µ)

4π

)2

(4β20 l2+2(2a1β0+β1)l1+a2)

+

(

αs(µ)

4π

)3(

8β30 l3+4

(

3a1β
2
0+

5

2
β0β1

)

l2+2(3a2β0+2a1β1+β2)l1+a3+16π2C3
A

)]

, (33)

where CF = 4/3, CA = 3, l1 = ln(µ/µf) + 1, l2 =
ln2(µ/µf)+2ln(µ/µf)+2, l3 = ln3(µ/µf)+3ln2(µ/µf)+
6ln(µ/µf)+6, µf is the subtraction scale and we set µf =
20 GeV for consistency with setting mt

PS(µf = 20 GeV)
= 171.5 GeV, µ is the renormalization scale as mentioned
above and we set µ = 80 GeV, β0, β1, β2 are the renor-
malization QCD β-functions calculated in [49], and a1,
a2, a3 are constant coefficients related to the color factors
and the number of light quarks, as given in Refs. [48, 50].

The top pole mass reads

mpole
t = 173.294±0.007(stat.)±0.026(theory)

±O(0.2)(ambiguity) GeV, (34)

where the three-loop strong running coupling [51] has
been used. Obviously, the uncertainty of the top pole
mass is dominated by the intrinsic ambiguity, which is
estimated to be O(200) MeV [4]. Neither experimen-
tal efforts nor higher order theoretical calculations can
contribute to reduce this intrinsic uncertainty.

As far as studies of vacuum stability at colliders are
concerned, the LHC could extract the Higgs boson mass
with an accuracy of O(200) MeV [1] and top quark pole
mass with an accuracy of O(1) GeV [52], as concluded
in Ref. [53]. The stable vacuum can be excluded at 98%
confidence level (C.L.) and only a small stable vacuum
region is left in the [mh,m

pole
t ] contour. At the future

ILC, the top quark pole mass is estimated with an ac-
curacy of 200 MeV and uncertainties of the Higgs boson
are assumed to be below 50 MeV. A metastable vacuum
in the Standard Model is expected at 95% C.L. [54]. At
the future CEPC, the Higgs boson mass can be extracted
with an experimental accuracy of O(10) MeV [55]. Our
research here shows that at CEPC, the uncertainty of the
top short distance mass is about 30 MeV. It is hopeful
that the precision of the vacuum stability will be highly
improved by using the more accurate short distance top
mass obtained from the future lepton colliders.

5 Summary

In this paper, a threshold scan of a top quark mass
measurement experiment at a future e+e− collider near

350 GeV has been simulated, and the data taking strat-
egy optimized to minimize the statistical fluctuation of
the top mass. The top pair production cross section
adopted is up to NNNLO QCD level and the potential
subtracted top mass is selected, as it is free from the
intrinsic ambiguity in the pole mass definition. The op-
timization shows that there should be only one energy
point, located near the largest slope region of the plot
of cross section against beam energy. The result has
been checked by error matrix calculation of the statis-
tical error. The so called data-driven method could be
the best choice for future real top mass measurement ex-
periments, which means the fitted top mass should be
taken as a new input parameter to determine the next
location of the optimal energy point, with this iterative
fitting stopped when the statistical error is minimized to
an acceptable value. Our research has already shown the
advantage of this optimized scheme. As data events are
recorded at the most efficient single energy point, 7 MeV
statistical uncertainty can be achieved within 50 fb−1

effective integrated luminosity, which is about half the
uncertainty of the 10 average distributed points scheme
used in Refs. [15, 16] with an equal total integrated lu-
minosity.

The 3% theoretical uncertainty for the normalized
top pair production cross section caused by the renor-
malization scale variation leads to a 25.6 MeV theoreti-
cal uncertainty for the top mass. Although a hardware-
dependent systematic uncertainty analysis is still absent
here, our simulation shows that the systematic error at
the future CEPC is expected to be comparable to the
statistical uncertainty at about O(10) MeV, the same
as at the FCC-ee [44]. Actually, short distance top
masses, which could be accurately determined from a
threshold scan in the future 350 GeV lepton colliders,
can be adopted directly in the vacuum stability calcula-
tion. Together with the precise Higgs mass measured at
a future e+e− 250 GeV collider, it is sufficient to make a
final conclusion of the fate of the Standard Model elec-
troweak vacuum stability. It is hard to imagine that a
metastable vacuum is just coincidental, and undiscovered
new physics is highly expected.
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