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Abstract: In recent years there has been a lot of interest in discussing frame dependences/independences of the

cosmological perturbations under the conformal transformations. This problem has previously been investigated in

terms of the covariant approach for a single component universe, and it was found that the covariant approach is

very powerful to pick out the perturbative variables which are both gauge and conformal invariant. In this work, we

extend the covariant approach to a universe with multicomponent fluids. We find that similar results can be derived,

as expected. In addition, some other interesting perturbations are also identified to be conformal invariant, such as

entropy perturbation between two different components.
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1 Introduction

Cosmological perturbation theory constitutes the
cornerstone of our knowledge to understand the origin
and evolution of the large-scale-structure in our uni-
verse. This theory had been plagued by the gauge is-
sue: not all the perturbative variables which appear in
this theory correspond to real and physical perturba-
tions. The uncertainties originate from arbitrary choices
of the correspondence between the real inhomogeneous
and anisotropic universe and the background Friedmann-
Lemâıtre-Robertson-Walker (FLRW) spacetime. One
solution to the gauge problem is fixing a gauge at the be-
ginning. Another is to circumvent it by focusing on the
gauge invariant quantities. There are two approaches
to find the gauge invariant perturbations. In the con-
ventional coordinate approach, gauge invariant pertur-
bations can be constructed as combinations of gauge-
dependent metric and matter perturbations in a specified
coordinate, as first done by Bardeen [1] and reviewed in
Refs. [2–4]. Another approach is the so-called covariant
approach which was developed in Refs. [5–8], based on
earlier works by Ehlers [9], Hawking [10] and Ellis [11].
With this approach, all the perturbative variables are co-
variantly defined and gauge invariant perturbations can
be selected out in terms of the Stewart-Walker Lemma
[12]. For example, for linear perturbation theory, accord-
ing to this lemma, a covariantly defined variable which

vanishes at the background is automatically a gauge in-
variant perturbation. The advantage of the covariant ap-
proach is that all the gauge invariant perturbations have
clear geometric and physical meanings. One can refer
to Refs. [13–16] for more applications and discussions of
this approach.

Besides the gauge issue, the problem of whether the
cosmological perturbations depend on the frame has at-
tracted much interest in recent years. As we know, when
considering those theories in which the gravity is differ-
ent from general relativity or in which matter couples to
gravity non-minimally, such as the Brans-Dicke theory
[17], f(R) theory [18, 19], Galileon theory [20–22] and so
on, we are confronted with the problem of frame choice.
Theoretically, there are infinitely many frames which can
be used. Different frames are related by the conformal
transformations (Weyl rescalings), g̃ab=Ω2gab. The two
most familiar frames used in scalar-tensor theories are
the Jordan frame and the Einstein frame. Convention-
ally, in the Jordan frame, matter is minimally coupled
to the metric but the action for gravity contains a non-
minimal coupling of a scalar field to the Ricci scalar.
However, after transforming to the Einstein frame, the
action for gravity becomes the Einstein-Hilbert one, but
matter is non-minimally coupled to the scalar field. Al-
though variables change from one frame to another, the
physics should be equivalent at least at the classical level.
Especially, the observables should be frame independent
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or conformal invariant. It is known from studies with the
coordinate approach that some key cosmological pertur-
bations [23–28] are frame independent or conformal in-
variant at the linear and non-linear order. One example
of a conformal invariant variable is the Weyl tensor. An-
other famous example is the co-moving curvature pertur-
bation ζ [29] in single scalar field inflation models. Some
implications of the equivalence between different frames
in the early universe were discussed in Refs. [30–43].

In our previous work [44], we studied the problem
of frame (in)dependences of cosmological perturbations
via the covariant approach, focusing on a cosmology
model with a single component. We have investigated
how the common perturbative variables (covariantly de-
fined) change under the conformal transformation, and
have shown that the covariant approach is very conve-
nient and powerful to pick out the cosmological pertur-
bations which are both gauge and conformal invariant.
In this paper, we will generalize the method developed
in our previous work and apply it to a universe with
multiple components. As we know, our universe con-
tains many species, including baryons, photons, neutri-
nos, dark matter, dark energy and so on. Even in studies
on the primordial universe, such as inflation, bouncing
and emergent universe, models with multiple fields are
frequently proposed and investigated. Hence this gener-
alization is necessary. For a multicomponent universe,
in many cases, each component can be treated approxi-
mately as a perfect fluid. We will use this approximation
through out this paper.

This paper is organized as follows. In Section 2, we
will briefly review the covariant approach and define co-
variant and gauge invariant variables which characterize
the velocity and density perturbations in a multicom-
ponent fluid medium. In Section 3 the transform rules
of various variables under the conformal transformation
will be derived and some conformal invariant perturba-
tions will be identified. In Section 4 the links of the
covariant approach to the coordinate approach will be
presented, and we can see what forms those conformal
invariant perturbations in the covariant approach take
in the coordinate approach. In Section 5 we apply our
results to an example where the gravity is modified. In
Section 6 we present our conclusions.

2 The covariant approach

At the first step of the covariant approach, one
chooses a preferred family of world lines representing the
motion of typical observers (fundamental observers) in
the universe. The four-velocity ua=dxa/dλ (tangent to
these world lines) is timelike, future-directed and unit.
This is used to define the projection tensor into the tan-
gent three-space orthogonal to ua,

hab=gab+uaub , with habh
b
c=h

a
c , h

b
a ub=0 . (1)

Then the first covariant derivative of the four-velocity is
decomposed as follows,

∇bua=ωab+σab+
1

3
Θhab−aaub , (2)

where ωab is the antisymmetric vorticity tensor with
ωabu

b=0, σab is the symmetric and traceless shear tensor
with σabu

b=0 and σaa=0, Θ≡∇au
a is the local expan-

sion rate, and aa≡ub∇bua is the acceleration vector and
also orthogonal to the velocity, aau

a = 0. The vorticity
and shear magnitudes are defined by ω2≡ (1/2)ωabω

ab,
σ2≡(1/2)σabσ

ab. For our purposes, it is useful to intro-
duce a local scale factor S=eα, where α is the integration
of Θ along the flow lines with respect to the proper time,

α≡ 1

3

∫

dλΘ, (3)

which is defined up to an integration constant.
The matter sector is described by its energy-

momentum tensor. For a single component perfect fluid,
the fluid velocity is identified with the four-velocity of
the fundamental observers ua. Thus we have

Tab=ρuaub+phab , (4)

where ρ = Tabu
aub is the proper density and p =

(1/3)habTab is the pressure. In the case of a scalar field,
we usually define a four-velocity as

ua=− ∇aφ√
−∇bφ∇bφ

, (5)

then the energy-momentum tensor of the scalar field has
the same form of that of perfect fluid, and the covariant
approach can be applied in a similar way.

As we mentioned in the previous section, the real uni-
verse in general contains several components. For sim-
plicity we will assume each component is a perfect fluid.
Then for each component there is a projection tensor
h(m)
ab =gab+u

(m)
a u(m)

b associated with its four-velocity ua(m),
where m represents the mth component. Correspond-
ingly we have the vorticity ω(m)

ab , shear σ(m)
ab , acceleration

a(m)
a , local expansion rate Θ(m), and α(m) through the

decomposition of the first derivative of ua(m), and density

ρ(m) and pressure p(m) read from the energy-momentum
tensor T (m)

ab , which has the following form,

T (m)
ab =ρ(m)u

(m)
a u(m)

b +p(m)h
(m)
ab . (6)

Furthermore, one can also define a total velocity ua for
all the components so that the total energy-momentum
tensor is

Tab=ρuaub+phab+qaub+uaqb+πab , (7)

where ρ= Tabu
aub and p= (1/3)habTab is total density

and pressure, and qa =−h c
a Tcdu

d and πab =h c
a h

d
b Tcd−

1
3
hab(h

cdTcd) is the total energy flux and anisotropic pres-
sure.
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In terms of the Stewart-Walker lemma: the quantities
which vanish in the FLRW universe are gauge invariant
perturbations. Some basic gauge invariant perturbations
can be found easily through the above discussion:

1) The vorticity, shear and acceleration:

a(m)
a , ω(m)

ab , σ(m)
ab . (8)

2) The matter tensor components:

q(m)
a ≡−hcaT (m)

cd ud , π(m)
ab ≡h c

a h
d
b T

(m)
cd −1

3
hab(h

cdT (m)
cd ).

(9)
3) The relative velocity:

u(m)
a −u(n)

a or u(m)
a −ua . (10)

4) The electric and magnetic parts of the Weyl ten-
sor (contraction with either ua or u(m)

a will give the same
result at the linear order):

Eab=Cacbdu
cud , Hab=

1

2
Caecdu

eηcd bfu
f . (11)

Other gauge invariant perturbations can be obtained
from the spatial gradients of various scalar quantities.
For one component fluid we can define gauge invariant
quantities such as [5, 45, 46]

Xa=Daρ, Ya=Dap, Za=DaΘ, Wa=Daα, Daφ, (12)

where the derivative Da≡h b
a ∇b is the projection of the

covariant derivative into the tangent three-space. In the
case of the multicomponent fluids, to define quantities
that characterize the spatial variation of the density ρ(m),
pressure p(m), expansion rate θ(m), and α(m) of the indi-
vidual components, we have two choices. We could either
define the spatial derivative of each component with re-
spect to the total matter rest frame,

X(m)
a =Daρ

(m) , Y (m)
a =Dap

(m) ,

Z(m)
a =DaΘ

(m) , W (m)
a =Daα

(m) , Daφ
I , (13)

where the derivative Da≡h b
a ∇b is the projection of the

covariant derivative into the tangent three-space orthog-
onal to the total matter velocity ua, or we could define
gradients for the individual components with respect to
the matter rest frame of the components themselves,

?X(m)
a =D(m)

a ρ(m) , ?Y (m)
a =D(m)

a p(m) ,
?Z(m)

a =D(m)
a Θ(m) , ?W (m)

a =D(m)
a α(m) , D(I)

a φI , (14)

where D(m)
a ≡h(m)b

a ∇b is the spatial gradient orthogonal
to the mth fluid velocity ua(m). Note that the quantities

like X(m)
a ,Y (m)

a ,W (m)
a contain information about both the

mth component fluid and the total fluid. Furthermore,
D(I)
a φI exactly vanishes according to the definition of the

four velocity of the scalar field.

3 Conformal invariant perturbations

Following our previous work, we will first derive the
transform rules of the covariantly defined variables under
conformal transformation and then pick up the pertur-
bations which are both gauge and conformal invariant.
In this paper we will attach more importance to the mul-
ticomponent matter sector than the curvature variables,
because the latter has been discussed in our previous
work [44].

Under the conformal transformation g̃ab=Ω2gab, we
have

dλ̃=Ωdλ,ũa(m)=Ω
−1ua(m) , ũ

(m)
a =Ωu(m)

a , h̃(m)b
a =h(m)b

a .
(15)

With these relations, we can immediately find the trans-
form rules of the kinematical variables

ω̃(m)
ab =Ωω(m)

ab , σ̃(m)
ab =Ωσ(m)

ab ,

or ω̃(m)=Ω−1ω(m) , σ̃(m)=Ω−1σ(m) ,

Θ̃(m)=Ω−1Θ(m)+3Ω−2Ω̇ , ã(m)
a =a(m)

a +D(m)
a lnΩ,

α̃(m)=α(m)+lnΩ, S̃(m)=ΩS(m) ,

W̃ (m)
a =W (m)

a +Da lnΩ,
?W̃ (m)

a =?W (m)
a +D(m)

a lnΩ. (16)

In addition, from the definition of the energy-momentum
tensor through the variation of the action with respect
to the metric, one can obtain the following transform

T̃ (m)
ab =Ω−2T (m)

ab . (17)

Thus the energy density and pressure of matter have the
conformal weight 4, i.e., ρ̃(m)=Ω−4ρ(m) , p̃(m)=Ω−4p(m),
and the following ratios change as

X̃(m)
a

ρ̃(m)
=
X(m)
a

ρ(m)
−4Da lnΩ,

Ỹ (m)
a

p̃(m)
=
Y (m)
a

p(m)
−4Da lnΩ .

?X̃(m)
a

ρ̃(m)
=

?X(m)
a

ρ(m)
−4D(m)

a lnΩ,
?Ỹ (m)

a

p̃(m)
=

?Y (m)
a

p(m)
−4D(m)

a lnΩ .

(18)

Furthermore, the energy flux contributed by the mth
fluid, defined as q(m)

a ≡−hcaT (m)
cd ud, is of conformal weight

3. So, we immediately obtain the following gauge and
conformal invariant quantity:

q(m)
a /S

ρ(m)+p(m)
. (19)

With the above transform rules, we obtain the fol-
lowing covariant quantities which are both gauge and
conformal invariant.

1) Electric and magnetic parts of the Weyl tensor
[44]:

Eab , Hab . (20)
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2) The perturbations of the mth component:

ω(m)
ab

S
,
σ(m)
ab

S
, ?W (m)

a −a(m)
a ,

?X(m)
a

ρ(m)
+4?W (m)

a ,

?Y (m)
a

p(m)
+4?W (m)

a ,
?X(m)

a

ρ(m)
−

?Y (m)
a

p(m)
. (21)

3) The quantities related to mth component and total
velocity:

X(m)
a

ρ(m)
+4W (m)

a ,
Y (m)
a

p(m)
+4W (m)

a ,
X(m)
a

ρ(m)
−Y

(m)
a

p(m)
,
q(m)
a /S

ρ(m)+p(m)
.

(22)
4) Relative quantities between the mth and nth flu-

ids:

u(m)
a −u(n)

a

S
, W (m)

a −W (n)
a ,

X(m)
a

ρ(m)
−X

(n)
a

ρ(n)
,
Y (m)
a

p(m)
− Y

(n)
a

p(n)
.

(23)
As usual, we assume all fluid components share the

same four velocity at the FLRW background. The total
scale factor S and the scale factor S(m) associated with
any single component will give the same result as far as
linear perturbation theory is concerned. We should em-
phasize here that the results in Eqs. (20-21) correspond
to those listed in Eq. (22) of our previous work [44] in the
case of a single fluid. Namely, they are not completely
new. However, the quantities shown in Eqs. (22-23) are
new gauge and conformal invariant perturbations which
are absent in the single fluid model.

We can rewrite some of the conformal invariant en-
tropy perturbations above in a more simple and elegant
form, for example,

X(m)
a

ρ(m)
−X

(n)
a

ρ(n)
=
Da(ρ

(m)/ρ(n))

ρ(m)/ρ(n)
=Da ln

(

ρ(m)

ρ(n)

)

, (24)

which obviously represents the spatial derivative of den-
sity ratio of two components with respect to the total
rest frame. With this form, the physical meaning of such
entropy perturbations is clearer. Other quantities, such
as

?X(m)
a

ρ(m)
−

?Y (m)
a

p(m)
,
X(m)
a

ρ(m)
−Y

(m)
a

p(m)

can be similarly rewritten in this way.
Sometimes, the conformal factor Ω is not arbitrary,

and merely depends on a scalar field φ, as in cases of
conventional frame transformations in scalar-tensor the-
ories. Furthermore, the derivative ∇aφ should be time-
like if φ is not vanishing in the FLRW background. In
this case, we can slice the universe by the spacelike hy-
persurfaces φ=Consts and define the total hydrodynam-
ical four velocity ua normal to these hypersurfaces every-
where. With such defined velocity, it is easy to prove that
Daφ=0 and Da lnΩ(φ)=0. So, according to the trans-
form rules in Eq. (16), one can find that the perturba-
tions W (m)

a ,X(m)
a /ρ(m),Y (m)

a /p(m) are invariant under the

conformal transformations with Ω(φ), i.e., W̃ (m)
a =W (m)

a ,
X̃(m)
a /ρ̃(m) =X(m)

a /ρ(m), Ỹ (m)
a /p̃(m) = Y (m)

a /p(m), though
they are not invariant for a general conformal factor.

In the next section we will focus on the conformal in-
variant perturbations, especially those listed in Eqs. (22-
23), and see what forms they have in the coordinate ap-
proach.

4 Links to the coordinate approach

4.1 General conformal transformation and in-

variant variables

As shown in our previous work [44], in the coordi-
nate approach all the gauge invariant vector and tensor
perturbations are conformal invariant. This is because
the conformal factor is a scalar field and its inhomogene-
ity cannot affect the vector and tensor perturbations, at
least up to the linear order. Hence, we will only con-
sider the scalar perturbations in the rest of this paper.
With the coordinate approach, when perturbed metric is
considered, the line element takes the form:

ds2=a2{−(1+2A)dη2+2B,idηdxi+[(1−2ψ)γij+2E|ij ]dx
idxj},
(25)

where A, B, ψ, E denote the perturbations and the sub-
script |ij represents second order covariant derivative as-
sociated with the induced background metric γij , which
will be used to lower and raise the indices hereafter.

According to the normalization of the velocity u(m)
a ,

the mth four-velocity up to linear order is

ua(m)=

(

1−A
a

,
vi(m)

a

)

, (26)

and

u(m)
a =

(

−a(1+A), a(B,i+v
(m)
i )

)

. (27)

For scalar perturbation, v(m)
i is generated by a velocity

potential v(m), so that v(m)
i =v(m)

,i .
Applying the above equations we may calculate the

covariant quantities listed in the previous sections. All
of the quantities will be calculated up to the linear order.
As the conformal invariant quantities listed in Eqs. (20-
21) correspond to the quantities listed in Eq. (22) of [44],
except that there are multicomponent fluids here, they
are not totally new. So we directly skip the calculations
of the following gauge and conformal invariant perturba-
tions:

Eab , Hab ,
ω(m)
ab

S
,
σ(m)
ab

S
, ?W (m)

a −a(m)
a ,

?X(m)
a

ρ(m)
+4?W (m)

a ,
?Y (m)

a

p(m)
+4?W (m)

a ,
?X(m)

a

ρ(m)
−

?Y (m)
a

p(m)
.

(28)
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Now we calculate the quantity W (m)
a . Its spatial com-

ponent is

W (m)
i =∂i[H(B+v)−ψ+

1

3

∫

dη∆(v(m)+E′)], (29)

where v and v(m) represent velocity perturbations of to-
tal matter and the mth component respectively. From
this result we can see it is indeed different from Eq. (36)
of our previous work [44], as expected.

Now we expand the gauge invariant perturbation
X(m)
a /ρ(m) and Y (m)

a /p(m) to the linear order, giving the
non-vanishing spatial components

X(m)
i

ρ(m)
=

[

δρ(m)

ρ(m)
+
ρ′(m)

ρ(m)
(B+v)

]

,i

,

Y (m)
i

p(m)
=

[

δp(m)

p(m)
+
p′(m)

p(m)
(B+v)

]

,i

. (30)

We recognize that

R(m)
1 =

δρ(m)

ρ(m)
+
ρ′(m)

ρ(m)
(B+v)

and

R(m)
2 =

δp(m)

p(m)
+
p′(m)

p(m)
(B+v)

are the comoving density and pressure contrast of the
mth fluid with respect to the total matter rest frame.
They are gauge invariant but generally not conformal
invariant. Then we expand the gauge and conformal in-
variant quantities X (m)

a /ρ(m)+4W (m)
a , Y (m)

a /p(m)+4W (m)
a

and X(m)
a /ρ(m)−Y (m)

a /p(m) to linear order and get the
non-vanishing components

X(m)
i

ρ(m)
+4W (m)

i =

[

δρ(m)

ρ(m)
−4ψ+

(

ρ′(m)

ρ(m)
+4H

)

(B+v)

+
4

3

∫

dη∆(v(m)+E′)

]

,i

, (31)

Y (m)
i

p(m)
+4W (m)

i =

[

δp(m)

p(m)
−4ψ+

(

p′(m)

p(m)
+4H

)

(B+v)

+
4

3

∫

dη∆(v(m)+E′)

]

,i

, (32)

X(m)
i

ρ(m)
−Y

(m)
i

p(m)
=

[

δρ(m)

ρ(m)
−δp

(m)

p(m)

+

(

ρ′(m)

ρ(m)
−p

′(m)

p(m)

)

(B+v)

]

,i

. (33)

which tell us that

R(m)=
δρ(m)

ρ(m)
−4ψ+

(

ρ′(m)

ρ(m)
+4H

)

(B+v),

R(m)
3 =

δp(m)

p(m)
−4ψ+

(

p′(m)

p(m)
+4H

)

(B+v)

and

R(m)
4 =

δρm

ρm
−δp

m

pm
+

(

ρ′(m)

ρ(m)
−p

′(m)

p(m)

)

(B+v)

are both gauge and conformal invariant. The variable
R(m) is more meaningful when the universe is dominated
by radiation fluid, as discussed in Ref. [44]. In that case,
it becomes

R(m)

4
=−ψ+

δρ(m)

3(ρ(m)+p(m))
, (34)

which is the curvature perturbation on uniform-density
hypersurfaces, used extensively in cosmological pertur-
bation theory, and the quantity R(m) is now only related
to the mth component. Note when the fluid has a con-
stant equation of state (EOS), the variable R(m)

4 will be
zero . Actually one can prove that in the case of constant

EOS, the term X
(m)
a

ρ(m) −Y
(m)
a

p(m) will exactly vanish.
From the previous section we know that

q(m)
a /[S(ρ(m) +p(m))] is both gauge and conformal in-

variant. Its non-vanishing component is

q(m)
i /S

ρ(m)+p(m)
=[v(m)−v],i (35)

This means v(m)−v is both gauge and conformal invari-
ant, as is v(mn)≡v(m)−v(n).

Now we calculate the relative quantities between dif-
ferent components. First we have the relative four-
velocity, which is gauge and conformal invariant:

u(m)
a −u(n)

a

S
=(0, v(m)

,i −v(n)
,i ). (36)

Again, we get that v(m)−v(n) is gauge and conformal
invariant. The non-vanishing component of gauge and
conformal invariant quantity W (m)

a −W (n)
a is

W (m)
i −W (n)

i =

[

1

3

∫

dη∆(v(m)−v(n))

]

,i

, (37)

and once again we get the invariant quantity v(mn).
Next we calculate the relative density perturbation

between two components. Its spatial component is

X(m)
i −X(n)

i =

[(

δρ(m)

ρ(m)
−δρ

(n)

ρ(n)

)

+

(

ρ′(m)

ρ(m)
−ρ

′(n)

ρ(n)

)

(B+v)

]

,i

=
[

R(m)
5

]

,i

. (38)

This means R(m)
5 is gauge and conformal invariant. One

can calculate Y (m)
a −Y (n)

a in a similar way.
Now focus on the case of multiple scalar fields. The

scalar field is usually invariant when the theory trans-
forms from one frame to another frame in scalar-tensor
theories such as Brans-Dicke theory [17], Galileon the-
ory [20–22], and so on. For a scalar field φI with zero
conformal weight, which means the scalar itself is confor-
mal invariant, we have a gauge and conformal invariant
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quantity Daφ
I . Its non-vanishing spatial component up

to linear order is

Diφ
I=[δφI+φI

′
(B+v)],i=[δφI(gi)+φI

′
(v+E′)],i , (39)

which means δφI(gi) = δφI+(B−E′)φI′ is conformal in-
variant. This is consistent with our previous result in
Ref. [44]. One can immediately find another composite
conformal invariant quantity

Diφ
I

φI′
−Diφ

J

φJ′ =

[

δφI

φI′
−δφ

J

φJ′

]

,i

(40)

where SIJ = δφI

φI′ − δφJ

φJ′ represents the frequently used

entropy perturbation between two scalar fields [47–49].
This means SIJ must be conformal invariant, which is
consistent with the calculation of the conformal invari-
ant quantity vIJ .

4.2 Restricted conformal transformations and

invariant quantities

We know via the covariant approach that (to linear
order) the vector and tensor perturbations, and the sums
of the scalar perturbations v(m)+E′ ,v(m)−v(n) and Ψ+Φ
and so on in the coordinate approach are both gauge
and conformal invariant, whatever the conformal factor
is. Now we will consider the restricted conformal trans-
formation in which the conformal factor only depends
on a (timelike) scalar field φ, i.e., Ω =Ω(φ). This of-
ten happens in scalar-tensor theories. In these models
the Jordan frame and Einstein frame are related by such
conformal transformations. In this case, it is convenient
to define the total four-velocity as

ua=− ∇aφ√
−∇bφ∇bφ

. (41)

It is then obvious that ua is orthogonal to the hyper-
surfaces Ω = const, and, as we stressed at the end of
the previous section, the perturbationsW (m)

a , X(m)
a /ρ(m),

Y (m)
a /p(m) and Daφ

I/φI themselves are both gauge and
conformal invariant. Firstly, the expansion of Wa gives
the following conformal invariant quantity

ζ=−ψ+H(B+v) . (42)

The variable ζ is the curvature perturbation on uniform-
φ hypersurfaces, and in the case of single fluid it is just
the co-moving curvature perturbation which takes an im-
portant role in cosmological perturbation theory. The
expansion of X(m)

a /ρ(m) and Y (m)
a /p(m) tell us that the

co-moving density perturbation R(m)
1 and pressure per-

turbation R(m)
2 are conformal invariant. The expansion

of Daφ
I/φI gives another conformal invariant quantity

RI
6=

δφI

φI
+
φI

′

φI
(B+v). (43)

From the above discussions we know that ζ, R(m)
1 ,

R(m)
2 and RI

6 are conformal invariant. In term of the
identifications, one find

ui=−a(
δφ

φ′
),i=a(B+v),i , B+v=−δφ

φ′
. (44)

We get the explicit form of the curvature perturbation
on uniform-φ hypersurfaces as:

ζ=−ψ+H(B+v)=−ψ−H δφ
φ′
, (45)

and other invariants:

R(m)
1 =

ρ′(m)

ρ(m)

(

δρ(m)

ρ′(m)
−δφ
φ′

)

,

R(m)
2 =

p′(m)

p(m)

(

δp(m)

p′(m)
−δφ
φ′

)

. (46)

The invariant R(m)
1 (R(m)

2 ) is proportional to the entropy
perturbation between the density (pressure) of the mth
component and the field. For a scalar field other than
φ which is related to the conformal factor, we have the
invariant RI

6. Its detailed form is

RI
6=

φ′I

φI

(

δφI

φ′I
−δφ
φ′

)

, (47)

which is proportional to the entropy perturbation be-
tween two scalar fields φI and φ.

5 One example

Let us take the model of f(R) gravity with a scalar
field as an example. This model was considered in Ref.
[49], and there the action is

S=

∫

d4x
√

−g̃
[

f(R̃)

2
+Ls

]

, (48)

where f is an arbitrary function and Ls=−g̃µν∂µχ∂νχ−
ν(χ) is the Lagrangian for the matter field χ. For con-
venience, we use variables with tildes to refer to those in
the Jordan frame, while their counterparts without tildes
are those in the Einstein frame. As we know, the theory
(48) can be rewritten into the Brans-Dicke form by the
Legendre transformation

SJ=

∫

d4x
√

−g̃
[

ϕR̃

2
−U(ϕ)+Ls

]

, (49)

where ϕ≡F, U(ϕ) =FR̃−f(R̃). Here F is defined as
F≡∂f/∂R̃. There are two scalars in this action, and one
of them is non-minimally coupled to gravity. By a con-
formal transformation we can shift to the Einstein frame
in which the gravity is minimally coupled. The metric
in the Einstein frame connects to the original metric as

gµν=Ω2g̃µν , (50)
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where the conformal factor is Ω=
√
ϕ. The action in the

Einstein frame is

SE=

∫

d4x
√−g

[

R

2
−3

4

∇µϕ∇µϕ

ϕ2
− 1

2ϕ
∇µχ∇µχ−V (ϕ,χ)

]

,

(51)
where

V (ϕ,χ)=ϕ−2(U(ϕ)+ν(χ)). (52)

Furthermore, one can define the new variable φ =
−
√

6/2lnϕ to simplify the non-minimal kinetic term. Af-
ter field redefinitions, we have

SE =

∫

d4x
√−g

[

R

2
−1

2
∇µφ∇µφ

−1

2
e

2√
6
φ∇µχ∇µχ−V (φ,χ)

]

. (53)

Under the conformal transformation (50), the action
(49) in the Jordan frame becomes Eq. (51). Two scalar
fields ϕ and χ are invariant, and thus have zero con-
formal weight. In addition, the conformal factor is the
function of the scalar field ϕ, which is exactly the case
of restricted conformal transformation discussed above.
According to our analysis, the entropy perturbation be-
tween two scalar fields,

δs=
δχ

χ′
−δφ
φ′

(54)

is both gauge and conformal invariant. Another invari-
ant quantity is the famous curvature perturbation on
uniform-ϕ hypersurfaces (sometimes also called the co-
moving curvature perturbation),

ζ=−ψ−H δϕ
ϕ′

=−ψ−H δφ
φ′
. (55)

Note that the co-moving curvature perturbation de-
fined by

R=−ψ− H
ρ+P

δq, (56)

is not conformal invariant in this case, although it is in-
deed invariant in the case of scalar-tensor theory with

only one scalar degree of freedom. Here δq is defined to
satisfy the relation ∂iδq= δT 0

i . Our result is consistent
with the calculation in Ref. [49], where the difference
of co-moving curvature perturbations in two frames is
derived. However, this dose not mean that these two
frames are not equivalent. The frame dependent comov-
ing curvature perturbation R only means it represents
different variables in different frames, and the equations
of motions are also different.

6 Conclusions

Conformal transformations connect one frame to an-
other, and are frequently used in scalar-tensor theories,
including equivalent modified gravities. As the physical
observables should be not only gauge invariant but also
independent of frame, it is important to find those quan-
tities which are both gauge and conformal invariant. In
our previous paper, we revisited the problem of confor-
mal invariances of cosmological perturbations using the
covariant approach, in which the geometric and physical
meanings of the perturbative variables are very clear. In
this work we extend the covariant formalism to a uni-
verse with multicomponent fluids. Besides some similar
results to our previous work, we find some other interest-
ing perturbations which are also conformal and gauge in-
variant, such as the covariantly defined quantities listed
in Eqs.(22-23). These quantities represent the entropy
perturbations between different physical variables or dif-
ferent components. When translating by the language of
the coordinate approach, we find quantities which are in-
variant under general conformal transformation, such as

R(m),R(m)
3 ,R(m)

4 ,R(m)
5 ,v(m)−v(n),δφ(I)gi, and δφ(I)

φ′(I)− δφ(J)

φ′(J)

for the zero weight field. We also showed the second
kind conformal invariant quantities, which are invariant
under the restricted conformal transformation, such as
R(m)

1 ,R(m)
2 ,RI

6, which represent the entropy perturba-
tions between the density (pressure, or another scalar)
and the scalar field the conformal factor depends on.
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